Maschinelles Lernen I Wintersemester 2007/2008

Termine und Informationen

Es handelt sich um eine integrierte Vorlesung mit Übung. Dieser Kurs ist eine Basisveranstaltung. Siehe auch den Eintrag im Vorlesungsverzeichnis

Vorlesung

Donnerstags, 10 - 12 (ab 16.10.2008)

Raum

FR 3002

*Übung*

Donnerstags, 12 - 14 (ab 16.10.2008)

Raum

FR 7039

Dozenten

Prof. Dr. Klaus-Robert Müller

Dr. Mikio Braun

Sprechzeiten

Prof. Dr. Klaus-Robert Müller: nach Vereinbarung

Dr. Mikio Braun: nach Vereinbarung

Es gibt eine Google group, in der aktuelle Ankündigungen zur Vorlesung zu finden sind. Dort können auch Fragen gestellt werden (z.B. Fehler auf dem Aufgabenblatt). Man muß angemeldet sein, um die Inhalte lesen zu können, der Zugang ist jedoch jedem offen.

Themen

Die Vorlesung behandelt einführende Themen im Bereich des maschinellen Lernens.

Im Einzelnen wird sich die Vorlesung mit den folgenden Themen beschäftigen:

Im Anschluss an die Vorlesung findet die Übung statt, in der die erlernten Methoden vertieft werden.

Vorkenntnisse

Kenntnisse in Linearer Algebra und Grundkenntnisse in Wahrscheinlichkeitsrechnungsind werden vorausgesetzt. Zur Lösung eines Teils der Hausaufgaben werden Kenntnisse in einer mathematischen/statistischen Software benötigt. Wir empfehlen die Benutzung von matlab bzw. octave. Letzteres ist unter www.octave.org frei erhältlich. Matlab ist auf dem vom irb verwalteten System installiert und kann mit /home/ml/ml/bin/matlab gestartet werden.

Übungen

Die Übungsleistung geht in die Gesamtbenotung ein. Mindestens 50% der Übungen müssen bearbeitet werden, um zur abschließenden mündlichen Prüfung zugelassen zu werden.

Einige Hinweise zu den Abgaben:

  1. Die Lösungen zu theoretischen Aufgaben sind handschriftlich abzugeben.

  2. Die praktischen Aufgaben werden über ein Webinterface abgegeben (wird jeweils bekanntgegeben).
  3. Die Übungsblätter dürfen in Zweiergruppen bearbeitet und abgegeben werden, die Zusammensetzung sollte sich jedoch nicht ändern.

Darüber hinaus beachtet bitte folgende Hinweise:

Folgene Bücher geben eine umfassende Einführung in den Bereich des Maschinellen Lernens.

Folgende Bücher geben eine umfassende Einführung in die Wahrscheinlichkeitstheorie und in die Statistik.

Die wichtigsten Gleichungen für das Rechnen mit Matrizen und insbesondere die Ableitungsregeln für höherdimensionale Funktionen findet man hier:

Weitere Unterlagen zur Vorlesung

Folien

Übungszettel

  1. Übungsblatt 1

  2. Übungsblatt 2

  3. Übungsblatt 3 Aufgabe 3 war fehlerhaft und wird aus der Wertung genommen. Die Punktevergabe ist jetzt (Aufgabe 1: 9 Punkte, Aufgabe 2: 9 Punkte, Aufgabe 4: 12 Punkte)

  4. Übungsblatt 4 Programmskelett sheet04.m

  5. Übungsblatt 5 Programmskelett sheet05_01.m Programmskelett sheet05_02.m

  6. Übungsblatt 6 Programmskelett sheet06.m

  7. Übungsblatt 7 Programmskelett sheet07.m

  8. Übungsblatt 8 Programmskelett sheet08.m

  9. Übungsblatt 9

  10. Übungsblatt 10 Programmskelett sheet10.m

  11. Übungsblatt 11 Programmskelett sheet11.m

  12. Übungsblatt 12 Programmskelett sheet12.m Daten sheet12_data.m

  13. Übungsblatt 13

  14. Übungsblatt 14 Programmskelett sheet14.m Daten sheet14_data.m

-- Main/MikioBraun - 19 Sep 2008

IDA Wiki: Main/MaschinellesLernenW08 (last edited 2009-04-21 12:55:55 by MikioBraun)