Summary

Shinichi nakajima (TU Berlin) nakajima@tu-berlin.de http://sites.google.com/site/shinnkj23/

Bayesian learning

Posterior: $\quad p(\boldsymbol{w} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w})}{p(\mathcal{D})}$
where $\quad p(\mathcal{D})=\int p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w}) d \boldsymbol{w}$

Analytically computed in the conjugate cases, e.g., Gaussian, Multinomial, etc.

Approximation methods

\%Conditionally conjugate
(Gaussian MF, Mixture of Gaussians, LDA)
\&Gibbs sampling
\%Variational Bayes
\&Non-conjugate (likelihood with sigmoid function)
\&Metropolis-Hastings
\%Local variational Bayes, Expectation Propagation

Approximation methods

\%Conditionally conjugate
(Gaussian MF, Mixture of Gaussians, LDA)
\&Gibbs sampling
\%Variational Bayes
\&Non-conjugate (likelihood with sigmoid function)
\&Metropolis-Hastings
\&Local variational Bayes, Expectation Propagation

Logistic regression

$$
p(y \mid \boldsymbol{w})=\psi\left(y \boldsymbol{w}^{\top} \boldsymbol{x}\right)
$$

$$
\begin{aligned}
y & \in\{-1,1\}, \\
\boldsymbol{x} & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Logistic regression

$$
\begin{aligned}
p(y \mid \boldsymbol{w}) & =\psi\left(y \boldsymbol{w}^{\top} \boldsymbol{x}\right) \\
& =\frac{1}{1+e^{-y \boldsymbol{w}^{\top} \boldsymbol{x}}} \\
& =\frac{e^{\frac{y \boldsymbol{w}^{\top} \boldsymbol{x}}{2}}}{e^{\frac{y \boldsymbol{w}^{\top} \boldsymbol{x}}{2}}+e^{-\frac{y \boldsymbol{w}^{\top} \boldsymbol{x}}{2}}} \\
& =\frac{e^{\frac{y \boldsymbol{w}^{\top} \boldsymbol{x}}{2}}}{e^{\frac{\boldsymbol{w}^{\top} \boldsymbol{x}}{2}}+e^{-\frac{\boldsymbol{w}^{\top} \boldsymbol{x}}{2}}} \\
& \propto e^{\frac{y \boldsymbol{w}^{\top} \boldsymbol{x}}{2}}
\end{aligned}
$$

$$
\begin{aligned}
y & \in\{-1,1\}, \\
\boldsymbol{x} & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Bayesian logistic regression

$$
\begin{aligned}
p(\boldsymbol{w} \mid \mathcal{D}) & \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w}) \\
& =\prod_{n=1}^{N} \underbrace{\psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)} \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right)
\end{aligned}
$$

No conjugate prior

$$
\begin{aligned}
y & \in\{-1,1\}, \\
\boldsymbol{x} & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Bayesian logistic regression

$$
\begin{aligned}
p(\boldsymbol{w} \mid \mathcal{D}) & \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w}) \\
& =\prod_{n=1}^{N} \underbrace{\psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)} \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right)
\end{aligned}
$$

No conjugate prior
Approximate with Gaussian

Approximate with Gaussian

$$
\begin{aligned}
y & \in\{-1,1\}, \\
\boldsymbol{x} & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Bayesian logistic regression

$p(\boldsymbol{w} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w})$

$$
=\prod_{n=1}^{N} \psi \underbrace{\left.y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)} \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right)
$$

No conjugate prior
Approximate with Gaussian

$$
\begin{aligned}
y & \in\{-1,1\}, \\
\boldsymbol{x} & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Local variational approximation

$$
p(\boldsymbol{w} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w})
$$

$$
=\prod_{n=1}^{N} \underbrace{\psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)} \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right)
$$

No conjugate prior

$$
\begin{aligned}
y & \in\{-1,1\}, \\
\boldsymbol{x} & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Approximate with (unnormalized) Gaussian

$$
\begin{aligned}
\underline{\psi}(z ; \xi)= & \psi(\xi) \exp \left(\frac{z-\xi}{2}+\frac{2 \psi(\xi)-1}{4 \xi}\left(z^{2}-\xi^{2}\right)\right) \\
& \forall \xi>0, \quad \psi(z) \geq \underline{\psi}(z ; \xi)) \\
p(\boldsymbol{w} \mid \mathcal{D}) \approx & \prod_{n=1}^{N} \underline{\psi}\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} ; \xi^{(n)}\right) \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right)
\end{aligned}
$$

Local variational approximation

$$
\begin{array}{rlrl}
p(\boldsymbol{w} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w}) & y & \in\{-1,1\}, \\
=\prod_{n=1}^{N} \underbrace{\psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)}_{\text {No conjugate prior }} \exp \left(-\frac{\boldsymbol{w}^{D} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right) & & \\
\boldsymbol{w} & \in \mathbb{R}^{D}, \\
\psi(z) & =\frac{1}{1+e^{-z}}
\end{array}
$$

Approximate with (unnormalized) Gaussian

$$
\begin{aligned}
& \underline{\psi}(z ; \xi)=\psi(\xi) \exp \left(\frac{z-\xi}{2}+\frac{2 \psi(\xi)-1}{4 \xi}\left(z^{2}-\xi^{2}\right)\right) \\
& \forall \xi>0, \quad \psi(z) \geq \underline{\psi}(z ; \xi) \\
& p(\boldsymbol{w} \mid \mathcal{D}) \approx \prod_{n=1}^{N} \underline{\psi}\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} ; \xi^{(n)}\right) \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right) \\
&\left\{\xi^{(n)}\right\}=\underset{\left\{\xi^{(n)}\right\}}{\operatorname{argmin}} F
\end{aligned}
$$

where $\quad F=-\log \widetilde{p}(\mathcal{D})=-\log \int \prod_{n=1}^{N} \underline{\psi}\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} ; \xi^{(n)}\right) \exp \left(-\frac{\boldsymbol{w}^{\boldsymbol{\top}} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right) d \boldsymbol{w}$

Expectation propagation

$$
\begin{aligned}
p(\boldsymbol{w} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w}) & y & \in\{-1,1\}, \\
=\prod_{n=1}^{N} \underbrace{\psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)}_{\text {No conjugate prior }} \exp \left(-\frac{\mathbb{R}^{D},}{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{ }^{2}\right) & & \in \mathbb{R}^{D}, \\
\boldsymbol{w} & \psi(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$

Approximate with (unnormalized) Gaussian

$$
\begin{array}{rlr}
& \widetilde{r}\left(y \boldsymbol{w}^{\top} \boldsymbol{x} ; \boldsymbol{\theta}\right)=\frac{1}{Z} \operatorname{Gauss}_{1}\left(y \boldsymbol{w}^{\top} \boldsymbol{x} ; \mu, \sigma^{2}\right) & \boldsymbol{\theta}=\left(\begin{array}{c}
Z \\
\mu \\
\sigma^{2}
\end{array}\right) \\
p(\boldsymbol{w} \mid \mathcal{D}) \approx & r(\boldsymbol{w} ; \boldsymbol{\Theta}) & \boldsymbol{\Theta}=\left\{\boldsymbol{\theta}^{(n)}\right\}_{n=1}^{N} \\
= & \exp \left(-\frac{\boldsymbol{w}^{\top} \boldsymbol{C}^{-1} \boldsymbol{w}}{2}\right) \prod_{n=1}^{N} \widetilde{r}\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} ; \boldsymbol{\theta}^{(n)}\right) \\
& \text { where } \quad \boldsymbol{\Theta}=\underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \operatorname{KL}(p(\boldsymbol{w} \mid \mathcal{D}) \| r(\boldsymbol{w} ; \boldsymbol{\Theta}))
\end{array}
$$

Expectation propagation

$$
\eta=\binom{\mu / \sigma^{2}}{-\frac{1}{2 \sigma^{2}}}
$$

$$
\boldsymbol{\Theta}=\underset{\boldsymbol{\Theta}}{\operatorname{argmin}} \mathrm{KL}(p(\boldsymbol{w} \mid \mathcal{D}) \| r(\boldsymbol{w} ; \boldsymbol{\Theta}))
$$

Exponential family: $\quad r(\boldsymbol{w} \mid \boldsymbol{\eta})=h(\boldsymbol{w}) g(\boldsymbol{\eta}) \exp \left(\boldsymbol{\eta}^{\top} \boldsymbol{T}(\boldsymbol{w})\right)$

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\eta}}\left\{\langle\log p(\boldsymbol{w} \mid \mathcal{D})\rangle_{p(\boldsymbol{w} \mid \mathcal{D})}-\langle\log r(\boldsymbol{w} \mid \boldsymbol{\eta})\rangle_{p(\boldsymbol{w} \mid \mathcal{D})}\right\} & =-\frac{\partial}{\partial \boldsymbol{\eta}} \log g(\boldsymbol{\eta})-\langle\boldsymbol{T}(\boldsymbol{w})\rangle_{p(\boldsymbol{w} \mid \mathcal{D})} \\
& =\langle\boldsymbol{T}(\boldsymbol{w})\rangle_{r(\boldsymbol{w} \mid \boldsymbol{\eta})}-\langle\boldsymbol{T}(\boldsymbol{w})\rangle_{p(\boldsymbol{w} \mid \mathcal{D})}
\end{aligned}
$$

Moment matching!

$$
\begin{aligned}
\because-\frac{\partial}{\partial \boldsymbol{\eta}} \log g(\boldsymbol{\eta}) & =\frac{\partial}{\partial \boldsymbol{\eta}} \log \int h(\boldsymbol{w}) \exp \left(\boldsymbol{\eta}^{\top} \boldsymbol{T}(\boldsymbol{w})\right) d \boldsymbol{w} \\
& =\frac{\int \boldsymbol{T}(\boldsymbol{w}) h(\boldsymbol{w}) \exp \left(\boldsymbol{\eta}^{\top} \boldsymbol{T}(\boldsymbol{w})\right) d \boldsymbol{w}}{\int h(\boldsymbol{w}) \exp \left(\boldsymbol{\eta}^{\top} \boldsymbol{T}(\boldsymbol{w})\right) d \boldsymbol{w}} \\
& =\langle\boldsymbol{T}(\boldsymbol{w})\rangle_{r(\boldsymbol{w} \mid \boldsymbol{\eta})}
\end{aligned}
$$

Expectation propagation

$$
\langle\boldsymbol{T}(\boldsymbol{w})\rangle_{r(\boldsymbol{w} \mid \boldsymbol{\eta})}=\langle\boldsymbol{T}(\boldsymbol{w})\rangle_{p(\boldsymbol{w} \mid \mathcal{D})}
$$

Moment matching!
current distribution: $\quad r(\boldsymbol{w} \mid \boldsymbol{\theta})=p(\boldsymbol{w}) \prod_{n=1}^{N} \widetilde{r}\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} \mid \boldsymbol{\theta}^{(n)}\right)$
Step 1:

$$
\widetilde{r}^{\backslash n}(\boldsymbol{w})=\frac{\widetilde{r}(\boldsymbol{w})}{\widetilde{r}\left(\boldsymbol{w} \mid \boldsymbol{\theta}^{(n)}\right)}
$$

Step 2: $\quad \widetilde{r}\left(\boldsymbol{w} \mid \boldsymbol{\theta}^{(n)}\right)=\frac{1}{Z^{(n)}} \operatorname{Gauss}\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} ; \mu^{(n)}, \sigma^{2(n)}\right)$

$$
\text { where } \begin{aligned}
Z^{(n)} & =\int \widetilde{r}^{n}(\boldsymbol{w}) \psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right) d \boldsymbol{w} \\
\mu^{(n)} & =\int y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)} \widetilde{r}^{n}(\boldsymbol{w}) \psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right) d \boldsymbol{w} \\
\sigma^{2(n)} & =\int\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right)^{2} \widetilde{r}^{n}(\boldsymbol{w}) \psi\left(y^{(n)} \boldsymbol{w}^{\top} \boldsymbol{x}^{(n)}\right) d \boldsymbol{w} .
\end{aligned}
$$

Bayesian learning

Pros:

\&Less prone to overfitting.
$\%$ Information on uncertainty is available.

\&All unknowns (hyperparameters) can be estimated from observation through Bayesian model selection.

Cons:
\%|ntegral computation is required.

Clustering

Mixture models:

$$
p(x)=\sum_{h=1}^{H} a_{h} \mathcal{N}\left(x ; \mu_{h}, \sigma_{h}^{2}\right)
$$

Maximum likelihood estimation results in

The plausible number of clusters is found.

Matrix factorization
 $$
V=B A^{\top}+\mathcal{E}
$$

Collaborative filtering

The plausible rank (PCA-dimension) is found

Subspace clustering

Use Y for dictionary (i.e., $D=Y$):

$$
Y=Y X+\mathcal{E}
$$

Estimate X, given Y :

$$
\min _{X}\|Y-Y X\|_{\text {low-rankness inducing penalty }}^{2}+\underbrace{\lambda\|X\|_{\mathrm{tr}}}_{\text {Ir }}
$$

(c) cars 3
(d) cars 10

Spectral clustering with affinity matrix

$$
\operatorname{abs}(X)+\operatorname{abs}\left(X^{\top}\right)
$$

gives clustering result.
Subspaces with plausible dimensionality is found.

Foreground/Background video separation

$$
V=U^{\mathrm{BG}}+U^{\mathrm{FG}}+\mathcal{E}
$$

Impose different types of sparsity on U^{BG} and U^{FG}

Robust PCA

$$
V=U^{\text {low-rank }}+U^{\text {element-wise }}+\mathcal{E}
$$

FB/BG separation is made without manual tuning parameter.

Sparse estimation

$$
L(\boldsymbol{x})=\|\boldsymbol{y}-A \boldsymbol{x}\|^{2}+\lambda\|\boldsymbol{x}\|_{1}
$$

\&Convex
$\% \lambda$ should be tuned.

Bayesian with automatic relevance determination

\&non-convex (local solver, sparser solution)
\&no hand-tuning parameters (including kernel parameters in GP)

Recent development

\&Metropolis Hastings is slow...
\%Hamiltonian Monte Carlo.
\%VB approximation can be crude...
\%Theoretical support.
\% Expectation propagation.
\&Slow in non-conjugate cases
\%Various variational methods (e.g., proximal gradient).
\%Big data
\&stochastic gradient.
\&distributed computation.

