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Bayesian learning

where

Posterior:

Analytically computed in the conjugate cases,
e.g., Gaussian, Multinomial, etc.
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Approximation methods

✤Conditionally conjugate 
             (Gaussian MF, Mixture of Gaussians, LDA)

✤Gibbs sampling

✤Variational Bayes

✤Non-conjugate (likelihood with sigmoid function)
✤Metropolis-Hastings

✤Local variational Bayes, Expectation Propagation
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Approximation methods

✤Conditionally conjugate 
             (Gaussian MF, Mixture of Gaussians, LDA)

✤Gibbs sampling

✤Variational Bayes

✤Non-conjugate (likelihood with sigmoid function)
✤Metropolis-Hastings

✤Local variational Bayes, Expectation Propagation
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Logistic regression
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Logistic regression
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Bayesian logistic regression
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Bayesian logistic regression
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Bayesian logistic regression
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Local variational approximation

No conjugate prior

Approximate with (unnormalized) Gaussian
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Local variational approximation

No conjugate prior
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where

Approximate with (unnormalized) Gaussian
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Expectation propagation

No conjugate prior

Approximate with (unnormalized) Gaussian

where
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Expectation propagation

Exponential family:

Moment matching!
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Expectation propagation
Moment matching!

current distribution: 

where

Step 1:

Step 2:

1-D numerical integration is required in each iteration. 
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Bayesian learning

✤Less prone to overfitting.

✤Information on uncertainty is available.

✤All unknowns (hyperparameters) can be estimated from 
observation through Bayesian model selection. 

✤Integral computation is required.

Cons:

Pros:
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Figure 2: Predictive distribution of the linear regression model (C = 10000 ·
I,σ2 = 1). The training samples (blue crosses) and the true function (red curve)
are identical to those in Figure 1. The predictive mean ŷ and the confidence
interval ŷ ± σ̂y are shown by the magenta and the green curves.
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Here, we used Eqs.(4), (5), and (6).
Therefore,

p(y∗|x∗,y,X,C) = Norm1

(
x; ŷ, σ̂2

y

)
.
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Clustering

Mixture models:

Maximum likelihood 
estimation results in

The plausible number of clusters is found.
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Matrix factorization
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(Probabilistic) PCA Collaborative filtering

The plausible rank (PCA-dimension) is found
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Hopkins 155 dataset
3.5. Reference

Data from real sequences contain not only noise and out-
liers, but also some degree of perspective effects, which are
not accounted for by the affine model. Therefore, obtaining
a perfect segmentation is not always possible.

In order to verify the validity of the affine model on real
data, we will also compare the performance of affine algo-
rithms with an “oracle” algorithm (here called Reference).
This algorithm cannot be used in practice, because it re-
quires the ground truth segmentation as an input. The algo-
rithm uses least-squares to fit a subspace to the data points in
each group using the SVD. Then, the data are re-segmented
by assigning each point to its nearest subspace.

This Reference algorithm shows, with a perfect estima-
tion of the subspaces, if the data can be segmented using
the approximation of affine cameras and constitutes a good
term of comparison for all the other (practical) algorithms.

4. Benchmark
We collected a database of 50 video sequences of indoor

and outdoors scenes containing two or three motions. Each
video sequence X with three motions was split into three
motion sequences X g12, X g13 and X g23 containing the
points from groups one and two, one and three, and two
and three, respectively. This gave a total of 155 motion se-
quences: 120 with two motions and 35 with three motions.

Figure 1 shows a few sample images from the videos in
the database with feature points superimposed. The entire
database is available at http://www.vision.jhu.edu.
These sequences contain degenerate and non-degenerate
motions, independent and partially dependent motions, ar-
ticulated motions, nonrigid motions, etc. To summarize the
amount of motion present in all the sequences, we estimated
the rotation and translation between all pairs of consecutive
frames for each motion in each sequence. This information
was used to produce the histograms shown in Figure 2.

Based on the content of the video and the type of motion,
the sequences can be categorized into three main groups:
Checkerboard sequences: this group consists of 104 se-
quences of indoor scenes taken with a handheld camera un-
der controlled conditions. The checkerboard pattern on the
objects is used to assure a large number of tracked points.
Sequences 1R2RC–2T3RTCR contain three motions: two
objects (identified by the numbers 1 and 2, or 2 and 3) and
the camera itself (identified by the letter C). The type of mo-
tion of each object is indicated by a letter: R for rotation,
T for translation and RT for both rotation and translation.
If there is no letter after the C, this signifies that the cam-
era is fixed. For example, if a sequence is called 1R2TC
it means that the first object rotates, the second translates
and the camera is fixed. Sequence three-cars is taken from
[18] and contains three motions of two toy cars and a box
moving on a plane (the table) taken by a fixed camera.

(a) 1R2RCT B (b) 2T3RCRT

(c) cars3 (d) cars10

(e) people2 (f) kanatani3

Figure 1: Sample images from some sequences in the
database with tracked points superimposed.
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(b) Amount of translation τ = ∥tf∥/ max{depth}.

Figure 2: Histograms with the amount of rotation and trans-
lation between two consecutive frames for each motion.

Traffic sequences: this group consists of 38 sequences of
outdoor traffic scenes taken by a moving handheld camera.
Sequences carsX–truckX have vehicles moving on a street.
Sequences kanatani1 and kanatani2 are taken from [14] and
display a car moving in a parking lot. Most scenes contain
degenerate motions, particularly linear and planar motions.
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Interest points on a rigid body moves within a low-dimensional subspace.
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Subspace clustering

Use Y for dictionary (i.e., D = Y):

Estimate X, given Y:

low-rankness inducing penalty

Spectral clustering with affinity matrix

gives clustering result.

Subspaces with plausible 
dimensionality is found.
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Foreground/Background video separation

Robust PCA

time

pixels

FB/BG separation is made
without manual tuning parameter.
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Sparse estimation

✤      regularization

✤Convex

✤    should be tuned.

✤Bayesian with automatic relevance determination
✤non-convex (local solver, sparser solution)

✤no hand-tuning parameters (including kernel parameters in GP)

�1
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Recent development

✤Metropolis Hastings is slow...
✤Hamiltonian Monte Carlo.

✤VB approximation can be crude...
✤Theoretical support.

✤Expectation propagation.

✤Slow in non-conjugate cases
✤Various variational methods (e.g., proximal gradient).

✤Big data
✤stochastic gradient.

✤distributed computation.




