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Bayesian Learning
ocooe

What is difficult ? (and what is easy)

Bayesian Learning (easy cases)

Gaussian

-1 )T 51 (D
Posterior:  p(w|D) o« p(w, D) o exp (—”Tg ‘") [T, exp (—%)

prior likelihood

—m) TS (-
Complete the square! o exp (—w)

pWID) = N(u; my,, S,.)

Multinomial
Posterior:  p(w|D) « p(w, D) o< [TX, 6,91 TIK | 6%
—— e
prior likelihood
Add exponents! o [IK, g+t

pOWID) = Dir (6; {x¢ + gi}f, )

These two patterns cover most of the cases, including approximate learning!
Bayesian learning is computationally hard, but Bayesian do easy work. All what you need
are square completion, addition, and Wikipedia (to consult on moments)!
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Approximate Bayesian Learning

If Wikipedia does not know, ...

moments (expectation of some function f(w)) are approximated by

MCMC Sampling
f fw) - pw|D)dw ~ ‘72§:1 FwD), where w) ~ pw|D).  (Metropolis-Hastings,
Gibbs Sampling)

or

Deterministic Approximation
(Laplace Approximation,
Variational Bayes,
Expectation Propagation)

ff(W)'p(WID)dw ~ [ fw)-qowydw where g(w) ~ pw|D).

g(w) must be in a known form.
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Approximate Bayesian Learning
00®0000

Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

w ~ pw|D) < pw, D).
—_—

unknown known!

Metropolis-Hastings (MH) (a general method):

In the j-th iteration,
. . i—1)2
Draw a sample w* ~ r(w|wU=D), e.g., rwwt =) o« exp (—%)

Set the j-th sample to

W) = w* with probability T,
~ lwlY=D  with probability 1T,

with acceptance probability (which satisfies detailed balance property )

pw*, D) r(wi=Dpw*) ]

T = min(l,

P (w(j—l), D)r (w*|w(j—1))
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Approximate Bayesian Learning
00®0000

Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

w ~ pw|D) < pw, D).
—_—

unknown known!

If p (wm\w\m,D) is in a known form (sampler available),




Approximate Bayesian Learning
00®0000

Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

w\m

Draw a sample element w}, ~ p(wmlw(\{;] s ) and set w;

Set w'? = w* (with probability 1).
The reason why the acceptance probability is one is

\m

pw*, Dyr (w(f’l)lw*)

T =min| 1, - -
P (w(./’l)’ D) r (w*lw(j*l))
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Approximate Bayesian Learning
00®0000

Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
G-

-1

. Draw a sample element w}, ~ p(wmlw ) Z)) and set w\m =Wy,

Set w'? = w* (with probability 1).
The reason why the acceptance probability is one is

) p(w*,Z))r(w(f’l)lw*) ) pw* D)p(w(/ Dpypr . Z))p(w(] 1)Iw Z))
T =min|1 = 1 \
’ i—1 # 1y (=1 ’ i 1 1
P OO0, D) (w7 WD) P =0, D) p(wiwi), V. D) p (wi, (). D) |
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

-1
El Draw a sample elementw;, ~ p(wmlw ) Z)) and set w\m =Wy,
Set w'? = w* (with probability 1).
The reason why the acceptance probability is one is
— p(w*,Z))r(w(f’l)lw*) ] ) {1 pw*, D)p (w(’ 1)Iw\m D)p(w(] 1)Iw Z))
= min =
’ i—1 # 1y (=1 ’ i 1 1
P oD, D) (w7 WD) P 0. D) p(wiwi), V. D) p (v, ). D) |

Shinichi Nakajima Technische Universitat Berlin

Markov Chain Monte Carlo



Approximate Bayesian Learning
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

Draw a sample element w#, ~ p(wmlw(\fn_ b, D), and set Wi, =W,
Set w'? = w* (with probability 1).
The reason why the acceptance probability is one is
. pw*. Dyr (WD) (. por Dyp(wiVw,. D)
T = min| 1, - - = s
p W=D, D) r(wwli-D) p(w(f‘]),i))p( LW U= Z))
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Approximate Bayesian Learning
00®0000

Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

Draw a sample element w#, ~ p(wmlw(\{;] .D), and setw!, = =w
Set w'? = w* (with probability 1).

The reason why the acceptance probability is one is

\m

T =min|1

pw*. Dyr (WD) (. pov D (wi Viwe,, D)
. - - = nil,
p WU=D, D) r (w*wli-D) p (w(j—])’D)p( m|W (-1 Z))
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

Draw a sample element w#, ~ p(wmlw(\{;] .D), and setw!, = =w
Set w'? = w* (with probability 1).

The reason why the acceptance probability is one is

\m

T =min| 1

p(w*,Z))r(w(j’l)lw*) ) (w* |w* D)p(w(m Z))p(w(jfl)lw* D)
’p(w(fl),z)),(wqw(jl))] =m ( G-Dp (/ D 1)) (w/ D 2)) ( m|w/ ) 2)) :

\m
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

= w\m

Draw a sample element w}, ~ p(wmlw(\{;] s ) and set w;
Set w'? = w* (with probability 1).

The reason why the acceptance probability is one is

\m

T =min| 1

o D () Y p(wt, D)p(wi, D) p (i, D)
" o WUD, D) r (wrwl) m L (Wi Ol D D) p (-, D) p(w il 0 D))

\m
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution

We need samples such that

W ~ pWID) e p(w, D). ]
R Lo | LA
unknown known! P w9 1)

If p (w/,,\w\m,ﬂ)) is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:

In the j-th iteration,
(=1

= w\m

Draw a sample element w}, ~ p(wmlw(\{;] s ) and set w;
Set w'? = w* (with probability 1).

The reason why the acceptance probability is one is

\m

T =min| 1

p(w*’D)r(w(jil)lw*) ] =mi p(wfn|w§m,ﬂ)p(w<m,l))p( a 1)lw\m D)
O D) ) (0, D) (0, D) p (v, )
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Approximate Bayesian Learning
0000®00

Markov Chain Monte Carlo (MCMC) Sampling

Latent Dirichlet Allocation

The William Randolph Hearst will give to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act " O_w
every bit as important as our traditional areas of in health, medical education H
and the social Hearst Randolph A. Hearst said Monday in
the Lincoln Center’s share will be for its new which C ‘
will young artists and new The Metropolitan Opera Co. and
New York Philharmonic will each. The Juilliard School, where music and a [ z w oy
the performing arts are taught, will get The Hearst aleading supporter M
of the Lincoln Center Consolidated Corporate will make its usual
donation, too.

Likelihood and Prior 0 €0, IJMXH :Document parameter
| | |
B € [0, 11“*H :Topic parameter
(mig By = TTL BOT W;n'm)
pw |6, B) = H[:l (« M.m) ,

0) « M_ H7 e} a/—l,
r©) m=1 Hh—l( mh) L :vocabulary size

p(B) o< T2, T, (Bi)™. H +# of topics (< min(M, L))

M :# of documents

N -4 of words in m-th document
a,f :Hyperparameters
Word distribution is a mixture of multinomial topic distribution.
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Approximate Bayesian Learning
0000®00

Markov Chain Monte Carlo (MCMC) Sampling

Latent Dirichlet Allocation

The William Randolph Hearst will give to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act
every bit as important as our traditional areas of in health, medical education H
and the social Hearst Randolph A. Hearst said Monday in

the Lincoln Center’s share will be for its new which
will young artists and new The Metropolitan Opera Co. and G ( ) A’Q—%
New York Philharmonic will each. The Juilliard School, where music and @ 6
the performing arts are taught, will get The Hearst aleading supporter M
of the Lincoln Center Consolidated Corporate will make its usual
donation, too.

ikeli i 0 <0, 11M*H .p t 1
Likelihood and Pr €[0,1] ocument parameter

B € [0, 11"*H :Topic parameter

£y
w
g

W(n,m)

p(w(n,m)|0’ B) = n1L=1 (ZhH=1 BI.h@m.h) L
M H a—1
PO) o< Ty =y Oma)™™ L :vocabulary size

p(B) o< [TE, TIE, (BL)™ . H +# of topics (< min(M, L))

M :# of documents

N # of words in m-th document
a,f :Hyperparameters
Sum in the probability (mixture) is intractable.
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Markov Chain Monte Carlo (MCMC) Sampling

Latent Dirichlet Allocation

The William Randolph Hearst will give to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act " O_w
every bit as important as our traditional areas of in health, medical education H
and the social Hearst Randolph A. Hearst said Monday in
the Lincoln Center’s share will be for its new which
will young artists and new The Metropolitan Opera Co. and G ( ) ‘O—:‘
New York Philharmonic will each. The Juilliard School, where music and @ 0 z w oy
the performing arts are taught, will get The Hearst a leading supporter M
of the Lincoln Center Consolidated Corporate will make its usual
donation, too.

Complete Likelihood and Prior 6 € [0, 11"H :Document parameter

Wl B € [0, 11"*H :Topic parameter

(nm) \Wy
p(w("""), z(n,m)lg’ B) = H1L=1 (H]Ij:l (B[,/I Qm,/z)w ) s

2™ ¢ 10, 11" :Topic assignment for each word

p(O) H%:[ Hthl(@m,h)U—l’ M :# of documents
H L 1 L :vocabulary size
7
PB) o iy Ty (Bra)™ H +# of topics (< min(M, L))

N 4 of words in m-th document

a,f :Hyperparameters
Latent variable z™ changes the sum to the product,
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Markov Chain Monte Carlo (MCMC) Sampling

Latent Dirichlet Allocation

[The William Randolph Hearst will give to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our felt that we had a
real opportunity to make a mark on the future of the performing arts with these an act 0 O_@'
every bit as important as our traditional areas of in health, medical education H
and the social Hearst Randolph A. Hearst said Monday in
the Lincoln Center’s share will be for its new which
will young artists and new The Metropolitan Opera Co. and G ( ) M
New York Philharmonic will each. The Juilliard School, where music and @ 7 z w N
the performing arts are taught, will get The Hearst aleading supporter M
of the Lincoln Center Consolidated Corporate will make its usual
donation, too.

Complete Likelihood Prior 6 € [0, 11" :Document parameter

LxH :
(n,m) (n.m)_(n.m) Bel0,1] :Topic parameter
(n,m) ,(n,m) — e 2, I Wz,
p(W 0% |0, B) Hh=1 (@m.h) l_[lzl (B],/z) 5 L ¢ [0, l]H Topic assignment for each word
P(@) o Hﬁ‘n/lzl HhH=1(@mJ1)a_ls M :# of documents
H L = L :vocabulary size
p(B) ce Hh:l H1=1(BIJI)” 1- Y

H :# of topics (< min(M, L))
N # of words in m-th document

Latent variable z™ changes the sum to the product, and ./ Hyperparameters

makes likelihood separable.
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Approximate Bayesian Learning
0000000
Markov Chain Monte Carlo (MCMC) Sampling

Joint is NOT in known form, but ...

Posterior: p ({z<ﬂ-m>}, o, B|{w<"~'">}) o p({z™™}, O, B, (w™}), where

pz"™™}, 0, B, (w™™}) = p(w™™}, {26, B)p(©)p(B)

N(m) ~(nn)Jr a—1)/Nm L W(n.m)z(n.m)Jr —1)/(MN™
& nm 1 “h 1(0771/)” (e=by/ HI:I(B/JI) 1, =D/ ).

Joint distribution (on {z">™}, @, B ) is not in a known form, but conditionals

_(n.m)

(m) (n,m) . h
PO, B, w1y o TIML TINC) TIIE 1( i TTEy (Bi)™t ) Multinomial
. () n .
PO, ™) oc ﬂ%=1 TV TTH (@, )+ DIV Dirichlet
m ) (n m m
OB, ™) o TV, TIV T2, TTE, (Bu)™ Ho=DIMN™) - Dirichlet

are in known forms. — Gibbs sampling!
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Approximate Bayesian Learning
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

(Naive) Gibbs Sampling:

In j-th step,
For each (1, m) independently, draw zU"™ ~ p(zm|@U=D BU=D (yytmy)

For each m independently, draw 8. ~ p(@,,|{z™}, (w®m}),
El For each i independently, draw,B”) ~ p(Byl{z My, (wmy),

_(n,m)
(m) Wl . .
P16, B, w™™yy o TTM, [TV 112, (wm‘h e, (B)" ) Multinomial
(m) (n,m) _ (m) ..
PO, ™) o TTHL 1HN Ty @y TN Dirichlet

m (n m) (n m) .
POBIE™™) w ™)) o TV TV TIL, Ty (Bt o = DIGINT) - Dirichles

Conditionally independent! (— easily parallelized) But we can do better.
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Approximate Bayesian Learning
0000000

Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Since joint is in (independent) Dirichlet forms of @ and B, given {z""}, we can marginalize:

pz"™y, (W) = f p(z"™}, 0, B, (w"™})dOdB

L N(m) (n "), (n m)
(m) iy T+ Za, 232
* Hh ! {(H ((I * ZN (n m)))[ ( N(’") (n m) ) .
(L’V'Zm 1 Zn=1 )

Now {z"™} are mutually dependent, and

p({z(n,m)}’ {w(n,m) })

(nm)y ¢ (n".m") (nm)yy _
P(Z HZ }(n’,m’)#(n,m)’ {w }) = s
P({Z(" " )}n’in,m’ims {w(n,m) })

n m)

( ) (] ( /)
o 1_[h=l L (')
77"'2('1 m’ YEmm) X

For derivation, see Wikipedia for Dirichlet moments, and use I'(t + 1) = 7I°(7).
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Collapsed Gibbs Sampling:

In j-th step,

For a pair (n, m) chosen,
draw a sample 2 ~ p (2D UM} 0y, (W),

and set U ) = ZG=L"m) for (0 m') £ (n, m).
Usually, (1, m) is chosen sequentially, and pick a sample every after all {z">"} are updated.

p({z"m™), iwmy)
P({Z("/ ) Yo nan’ #m> {w(n,m)})

p(z(ll.ln)l{z(n o )}(n’,m’)#(n,m)v {w(n,m)}) =

_(n.m)

(' m) o'’y ")\
" ((H'Zn'#n Iy )(’7+Z(n’,m’)¢(n,m) W,'(w(n‘m))&h '
& Hh=1

" m")
(L77+Z(n'.m’)#(n,m) 4/," " )
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Collapsed Gibbs Sampling:

In j-th step,

For a pair (n, m) chosen, '
draw a sample Z(j,n,m) ~p (Z(”Jml{zu_l’n n )}(n’,m’ )#(nm)s {w(n,m) })!

and set 20 ) = ZU=17m) for (!, m’) # (n, m).

Usually, (n, m) is chosen sequentially, and pick a sample every after all {z""} are updated.

* The energy in the right figure is a collapsed likelihood

pz™™y, Wy = f p({z™™}, @, B, (w™™})dOdB,

Energy

which is proportional to the posterior p({Z""™}l{w®™}).
) " tteration

Technische Universitat Berlin
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Approximate Bayesian Learning
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Collapsed Gibbs Sampling:

In j-th step,

For a pair (n, m) chosen, _
draw a Sample Z(j'nﬁm) ~p (Z(’l’,”)l{z<]71’n o )}(n’.m’#(n,m)» {w(n,m) }),

and set 2 = 201D for (' ') # (n, m).

Usually, (1, m) is chosen sequentially, and pick a sample every after all {z"""} are updated.

1 Z(J,n.m)'

. . —(n,m) _ J
With the estimator 27 = 77 2= 2 in+1

Energy

°f Burn-in Take

" hteration

niversitat Berlin
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Collapsed Gibbs Sampling:

In j-th step,

For a pair (n, m) chosen, _
draw a Sample Z(j'nﬁm) ~p (Z(’l’,”)l{z<]71’n o )}(n’.m’#(n,m)» {w(n,m) }),

and set 2 = 201D for (' ') # (n, m).

Usually, (1, m) is chosen sequentially, and pick a sample every after all {z"""} are updated.

1 Z(J,n.m)'

. . —(n,m) _ J
With the estimator 27 = 77 2= 2 in+1

— _ N —~(n,m)
PONE"™ ), ™™y o TTE (0,0 En=1 5

PBAGE™ Y, W™y oc [T (BT + e &

N(m) w(n,m};{n.m)
n=1 "I “h

Energy

°f Burn-in Take

" hteration

niversitat Berlin
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Collapsed Gibbs Sampling:

In j-th step,

For a pair (n, m) chosen,
draw a Sample z(j’"’m) ~p (Z("J”)l{z(jil’n o )}(11’,m’)¢(n,m)’ {W( m)})

and set U ) = ZG=L" ) for (0’ m’) £ (n, m).

Usually, (1, m) is chosen sequentially, and pick a sample every after all {z"*""} are updated

ZUnm)

—~(n,m) _ 1 J
With the estimator 7 = 57— 3y a1

(m)
(gnlr(nm) (""’))—Dlr(a+22’1 /-{nm)}h 1)

Energy

P, W my) = Dir({n F M SNyl 1)

° Burn-in Take average

" eration

({z"™} are mutually dependent).

More efficient! But lost independence...

niversitat Berlin
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Approximate Bayesian Learning
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Collapsed Gibbs Sampling:

In j-th step,
For a pair (n, m) chosen, estimate
@\(:Lm) = <@>p(g|(z(j—l.n’,m’)‘\(n‘m)y(w(n,m)))s B\(n.m) = <B>P(BHZU_I’”/’”’/))\(”_m),(w(”’m)))'
Draw a Sample z(j,mm) ~p (Z(’7‘m)|@\()z$771)v E\()un)v {w(ﬂ,m)})’
and set U = ZG=L" ) for (0 m') £ (n, m).
Usually, (n, m) is chosen sequentially, and pick a sample every after all {z""} are updated.

Znm) _ 1

- ¢ J (jin,m)
With the estimator Z TToumin L=t 27

(0 |r~(nm) (nm) )_ Dlr( a+ ZN('”)f(nm)} 1)

. (m)
PUBIE™™), 00%)) = Dir (i + XL, S0 w0 )

Energy

't Burn-in Take average

" Meration

Amounts to global parameter update after each element sampling.
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling

Approximate Collapsed Gibbs Sampling

In j-th step,
I
Bl For chosen palrs (n,m), independently draw z(-m ~ p(z("’”)lé')” B L {wmm

Estimate 6 = (8) p(o|(2inm) i)y
. =W
Estimate B~ = (B) ,(g|(zinm) ppnm)).-

—(n, m _ 1 J (jon,m)
With the estimatorZ J=Journ-in Zj='/hurn—in+l M,

(Emlﬁ(n,m)}’ {w(n,m)}) = Dir ({a' + ZnN(rT)/{hn )\ H }h 1)

Energy

p(ﬂhlﬁ(n,m)} (nm)}) _ Dlr( n+ Zm . ZN(Wl) (ann m)} )

° Burn-in Take average

" teration

This should work.
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Markov Chain Monte Carlo (MCMC) Sampling

Variational Bayesian Learning

Variational Bayesian Approximation:

In j-th step,
. . —nm) _ g (nm)
For chosen pairs (1, m), estimate 7 = @) gl 5 oy
. ~0)
Estimate @ = (@) ,g|(ztinm) pommyy»

. =)
Estimate B~ = <B>p(B|(Z(j‘""”)Hw("'"’)))'

Variational Bayes is similar.
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Markov Chain Monte Carlo (MCMC) Sampling

Variational Bayesian Learning

Variational Bayesian Approximation:

In j-th step,
. . —nm) _ g (nm)
For chosen pairs (1, m), estimate 7 = @) gl 5 oy
. ~0)
Estimate @ = (@) ,g|(ztinm) pommyy»

. =)
Estimate B~ = <B>p(B|(Z(j‘""”)Hw("'"’)))'

For each k (a part of unknowns) in turn,
Gibbs sampling draws a sample from conditional wy ~ p(wklw\k,Z)).

m Slow (each iteration gives one sample from the distribution).
m  Accurate (correlation between {wy} is taken into account).

Variational Bayes estimates the mean of conditional wy = WD (el D)

m Fast (each iteration estimates whole distribution).
m Inaccurate (correlation between {wy} is neglected).

Variational Bayes is similar.
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Markov Chain Monte Carlo (MCMC) Sampling

Properties of MCMC methods

m Converges to the Bayesian posterior.
m (Generally) slower than deterministic methods.

m To get independent samples, we have to subsample
from the MCMC sequence.

m Efficient methods are being developed (Hamiltonian
Monte Carlo, distributed computation, stochastic
gradient).
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Appendix: Detailed Balance Property

Transition probability is  (all probability below is conditional on D)
p (WD) = T (WD) - (wP=D)

. . Dy (=D (D)
— min (r(w(1)|w(rl)) 7 %) .

Therefore,

( = 1)) r(w(j>|w<j—l))’[J (wm) B (w(/—n‘w(_/)))
( (/>) ( (/fl)w(j)) p(w(f"))r(w(f)lw(f’l)))
= T (WD) r (WD) p (W)

( u- 1)Iw(f)) ( (/)) Detailed Balance Property
.‘.fp(w(j)lw(j_l)) WUD) ) = fp D) p (W) awli=D = p (w)

Detailed balance = p (w(f)) is stationary of Markov process.

p (WD) p (WD) = min (p
min(p
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