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Bayesian Learning Approximate Bayesian Learning

What is difficult ? (and what is easy)

Bayesian Learning (easy cases)
Gaussian

Posterior: p(w|D) ∝ p(w,D) ∝ exp
(
− µ
⊤C−1µ

2

)

︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸
prior

∏n
i=1 exp

(
− (µ−x(i))⊤Σ−1(µ−x(i))

2

)

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
likelihood

Complete the square! ∝ exp
(
− (µ−mµ)⊤S−1

µ (µ−mµ)
2

)

∴ p(w|D) = N(µ; mµ,Sµ)

Multinomial
Posterior: p(w|D) ∝ p(w,D) ∝∏K

k=1 θk
φk−1

︸!!!!!!!!!︷︷!!!!!!!!!︸
prior

∏K
k=1 θk

xk

︸!!!!!!︷︷!!!!!!︸
likelihood

Add exponents! ∝∏K
k=1 θk

xk+φk−1

∴ p(w|D) = Dir
(
θ; {xk + φk}Kk=1

)

These two patterns cover most of the cases, including approximate learning!
Bayesian learning is computationally hard, but Bayesian do easy work. All what you need
are square completion, addition, and Wikipedia (to consult on moments)!
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If Wikipedia does not know, ...

moments (expectation of some function f (w)) are approximated by

∫
f (w) · p(w|D)dw ≈ 1

J
∑J

j=1 f (w( j)), where w( j) ∼ p(w|D).
MCMC Sampling

(Metropolis-Hastings,
Gibbs Sampling)

or

∫
f (w) · p(w|D)dw ≈

∫
f (w) · q(w)dw where q(w) ≈ p(w|D).

Deterministic Approximation
(Laplace Approximation,

Variational Bayes,
Expectation Propagation)

q(w) must be in a known form.
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution
We need samples such that

w ∼ p(w|D)
︸!!︷︷!!︸
unknown

∝ p(w,D)
︸!!!︷︷!!!︸

known!

.

If p
(
wm |w\m,D

)
is in a known form (sampler available),

Metropolis-Hastings (MH) (a general method):
In the j-th iteration,

1 Draw a sample w∗ ∼ r(w|w( j−1)), e.g., r(w|w( j−1)) ∝ exp
(
− ∥w−w( j−1)∥2

2γ2

)
.

2 Set the j-th sample to

w( j) =

⎧⎪⎪⎨
⎪⎪⎩

w∗ with probability T,
w( j−1) with probability 1 − T,

with acceptance probability (which satisfies detailed balance property appendix )

T = min

⎛
⎜⎜⎜⎜⎜⎜⎝1,

p (w∗,D) r
(
w( j−1) |w∗

)

p
(
w( j−1),D)

r
(
w∗ |w( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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Markov Chain Monte Carlo (MCMC) Sampling

Sampling from unnormalized distribution
We need samples such that

w ∼ p(w|D)
︸!!︷︷!!︸
unknown

∝ p(w,D)
︸!!!︷︷!!!︸

known!

.

If p
(
wm |w\m,D

)
is in a known form (sampler available),

Gibbs Sampling (GS) (a special case of MH) is efficient:
In the j-th iteration,

1 Draw a sample element w∗m ∼ p
(
wm |w( j−1)

\m ,D
)
, and set w∗\m = w( j−1)

\m .

2 Set w( j)
m = w∗ (with probability 1).

The reason why the acceptance probability is one is

T = min

⎛
⎜⎜⎜⎜⎜⎜⎝1,

p(w∗,D)r
(
w( j−1) |w∗

)

p
(
w( j−1),D)

r
(
w∗ |w( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠

= min

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1,

p
(
w∗m |w∗\m,D

)
p
(
w∗\m,D

)
p
(
w( j−1)

m |w∗\m,D
)

p
(
w( j−1)

m |w∗\m,D
)

p
(
w∗\m,D

)
p
(
w∗m |w∗\m,D

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 1.
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The reason why the acceptance probability is one is
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⎛
⎜⎜⎜⎜⎜⎜⎝1,

p(w∗,D)r
(
w( j−1) |w∗

)

p
(
w( j−1),D)

r
(
w∗ |w( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠

= min

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1,

p
(
w∗m |w∗\m,D

)
p
(
w∗\m,D

)
p
(
w( j−1)

m |w∗\m,D
)

p
(
w( j−1)

m |w∗\m,D
)

p
(
w∗\m,D

)
p
(
w∗m |w∗\m,D

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ = 1.
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⎛
⎜⎜⎜⎜⎜⎜⎝1,

p(w∗,D)r
(
w( j−1) |w∗

)

p
(
w( j−1),D)

r
(
w∗ |w( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠ = min

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1,

p(w∗,D)p
(
w( j−1)

m |w∗\m,D
)

p
(
w( j−1)
\m |w∗\m,D

)

p
(
w( j−1),D)

p
(
w∗m |w( j−1)

\m ,D
)

p
(
w∗\m |w

( j−1)
\m ,D

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ .

= 1.
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p(w∗,D)r
(
w( j−1) |w∗

)

p
(
w( j−1),D)

r
(
w∗ |w( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠ = min

⎛
⎜⎜⎜⎜⎜⎜⎜⎝1,

p(w∗,D)p
(
w( j−1)

m |w∗\m,D
)

p
(
w( j−1)
\m |w∗\m,D

)

p
(
w( j−1),D)

p
(
w∗m |w( j−1)

\m ,D
)

p
(
w∗\m |w
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\m ,D
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w∗ |w( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠ = min

⎛
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(
w( j−1)
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Latent Dirichlet AllocationOutlined font

Complete

Likelihood and Prior

p(w(n,m) |Θ, B) =
∏L

l=1
(
(BΘ⊤)l,m

)w(n,m)
l ,

p(Θ) ∝∏M
m=1

∏H
h=1(Θm,h)α−1,

p(B) ∝∏H
h=1

∏L
l=1(Bl,h)η−1.

Word distribution is a mixture of multinomial topic distribution.

Θ ∈ [0, 1]M×H :Document parameter

B ∈ [0, 1]L×H :Topic parameter

z(n,m) ∈ [0, 1]H :Topic assignment for each word

M :# of documents

L :vocabulary size

H :# of topics (≤ min(M, L))

N(m) :# of words in m-th document

α, β :Hyperparameters
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Latent Dirichlet AllocationOutlined font

Complete

Likelihood and Prior

p(w(n,m) |Θ, B) =
∏L

l=1

(∑H
h=1 Bl,hΘm,h

)w(n,m)
l ,

p(Θ) ∝∏M
m=1

∏H
h=1(Θm,h)α−1,

p(B) ∝∏H
h=1

∏L
l=1(Bl,h)η−1.

Sum in the probability (mixture) is intractable.

Θ ∈ [0, 1]M×H :Document parameter

B ∈ [0, 1]L×H :Topic parameter

z(n,m) ∈ [0, 1]H :Topic assignment for each word

M :# of documents

L :vocabulary size

H :# of topics (≤ min(M, L))

N(m) :# of words in m-th document

α, β :Hyperparameters
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Latent Dirichlet AllocationOutlined font

Complete Likelihood and Prior

p(w(n,m), z(n,m) |Θ, B) =
∏L

l=1

(∏H
h=1

(
Bl,hΘm,h

)z(n,m)
h

)w(n,m)
l
,

p(Θ) ∝∏M
m=1

∏H
h=1(Θm,h)α−1,

p(B) ∝∏H
h=1

∏L
l=1(Bl,h)η−1.

Latent variable z(n,m) changes the sum to the product,

and
makes likelihood separable.

Θ ∈ [0, 1]M×H :Document parameter

B ∈ [0, 1]L×H :Topic parameter

z(n,m) ∈ [0, 1]H :Topic assignment for each word

M :# of documents

L :vocabulary size

H :# of topics (≤ min(M, L))

N(m) :# of words in m-th document

α, β :Hyperparameters
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Markov Chain Monte Carlo (MCMC) Sampling

Joint is NOT in known form, but ...
Posterior: p

(
{z(n,m)},Θ, B|{w(n,m)}

)
∝ p({z(n,m)},Θ, B, {w(n,m)}), where

p({z(n,m)},Θ, B, {w(n,m)}) = p({w(n,m)}, {z(n,m)}|Θ, B)p(Θ)p(B)

∝∏M
m=1

∏N(m)

n=1
∏H

h=1(Θm,h)z(n,m)
h +(α−1)/N(m) ∏L

l=1(Bl,h)w(n,m)
l z(n,m)

h +(η−1)/(MN(m)).

Joint distribution (on {z(n,m)},Θ, B ) is not in a known form, but conditionals

p({z(n,m)}|Θ, B, {w(n,m)}) ∝∏M
m=1

∏N(m)

n=1
∏H

h=1

(
Θm,h

∏L
l=1(Bl,h)w(n,m)

l

)z(n,m)
h

Multinomial

p(Θ|{z(n,m)}, {w(n,m)}) ∝∏M
m=1

∏N(m)

n=1
∏H

h=1(Θm,h)z(n,m)
h +(α−1)/N(m)

Dirichlet

p(B|{z(n,m)}, {w(n,m)}) ∝∏M
m=1

∏N(m)

n=1
∏H

h=1
∏L

l=1(Bl,h)w(n,m)
l z(n,m)

h +(η−1)/(MN(m)) Dirichlet

are in known forms. → Gibbs sampling!
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling
(Naive) Gibbs Sampling:

In j-th step,

1 For each (n,m) independently, draw z( j,n,m) ∼ p(z(n,m) |Θ( j−1), B( j−1), {w(n,m)}),
2 For each m independently, draw θ̃

( j)
m ∼ p(̃θm |{z( j,n,m)}, {w(n,m)}),

3 For each h independently, draw β( j)
h ∼ p(βh |{z( j,n,m)}, {w(n,m)}).

p({z(n,m)}|Θ, B, {w(n,m)}) ∝∏M
m=1

∏N(m)

n=1
∏H

h=1

(
Θm,h

∏L
l=1(Bl,h)w(n,m)

l

)z(n,m)
h

Multinomial

p(Θ|{z(n,m)}, {w(n,m)}) ∝∏M
m=1

∏N(m)

n=1
∏H

h=1(Θm,h)z(n,m)
h +(α−1)/N(m)

Dirichlet

p(B|{z(n,m)}, {w(n,m)}) ∝∏M
m=1

∏N(m)

n=1
∏H

h=1
∏L

l=1(Bl,h)w(n,m)
l z(n,m)

h +(η−1)/(MN(m)) Dirichlet

Conditionally independent! (→ easily parallelized) But we can do better.
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Gibbs Sampling
Since joint is in (independent) Dirichlet forms of Θ and B, given {z(n,m)}, we can marginalize:

p({z(n,m)}, {w(n,m)}) =
∫

p({z(n,m)},Θ, B, {w(n,m)})dΘdB

∝∏H
h=1

⎧⎪⎪⎨
⎪⎪⎩

(∏M
m=1 Γ

(
α +

∑N(m)

n=1 z(n,m)
h

)) ⎛⎜⎜⎜⎜⎜⎜⎝

∏L
l=1 Γ

(
η+

∑M
m=1

∑N(m)
n=1 w(n,m)

l z(n,m)
h

)

Γ
(
Lη+

∑M
m=1

∑N(m)
n=1 z(n,m)

h

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ .

Now {z(n,m)} are mutually dependent, and

p(z(n,m) |{z(n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}) = p({z(n,m)}, {w(n,m)})
p({z(n′ ,m′)}n′!n,m′!m, {w(n,m)})

∝∏H
h=1

⎧⎪⎪⎨
⎪⎪⎩

(
α+

∑
n′!n z(n′ ,m)

h

)(
η+

∑
(n′ ,m′)!(n,m) w(n′ ,m′ )

ĺ(w(n,m) )
z(n′ ,m′ )
h

)

(
Lη+

∑
(n′ ,m′ )!(n,m) z(n′ ,m′ )

h

)

⎫⎪⎪⎬
⎪⎪⎭

z(n,m)
h

.

For derivation, see Wikipedia for Dirichlet moments, and use Γ(τ + 1) = τΓ(τ).
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Gibbs Sampling
Collapsed Gibbs Sampling:

In j-th step,

1 For a pair (n,m) chosen,
draw a sample z( j,n,m) ∼ p

(
z(n,m) |{z( j−1,n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}

)
,

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

Usually, (n,m) is chosen sequentially, and pick a sample every after all {z(n,m)} are updated.

p(z(n,m) |{z(n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}) = p({z(n,m)}, {w(n,m)})
p({z(n′ ,m′)}n′!n,m′!m, {w(n,m)})

∝∏H
h=1

⎧⎪⎪⎨
⎪⎪⎩

(
α+

∑
n′!n z(n′ ,m)

h

)(
η+

∑
(n′ ,m′)!(n,m) w(n′ ,m′ )

ĺ(w(n,m) )
z(n′ ,m′ )
h

)

(
Lη+

∑
(n′ ,m′ )!(n,m) z(n′ ,m′ )

h

)

⎫⎪⎪⎬
⎪⎪⎭

z(n,m)
h

.

Shinichi Nakajima Technische Universität Berlin

Markov Chain Monte Carlo



Bayesian Learning Approximate Bayesian Learning
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Gibbs Sampling
Collapsed Gibbs Sampling:

In j-th step,

1 For a pair (n,m) chosen,
draw a sample z( j,n,m) ∼ p

(
z(n,m) |{z( j−1,n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}

)
,

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

Usually, (n,m) is chosen sequentially, and pick a sample every after all {z(n,m)} are updated.

With the estimator ẑ(n,m) = 1
J−Jburn-in

∑J
j=Jburn-in+1 z( j,n,m),

* The energy in the right figure is a collapsed likelihood

p({z(n,m)}, {w(n,m)}) =
∫

p({z(n,m)},Θ, B, {w(n,m)})dΘdB,

which is proportional to the posterior p({̂z(n,m)}|{w(n,m)}).

p(̃θm |{̂z(n,m)}, {w(n,m)}) = Dir
(
{α +∑N(m)

n=1 ẑ(n,m)
h }Hh=1

)

p(βh |{̂z(n,m)}, {w(n,m)}) = Dir
(
{η +∑M

m=1
∑N(m)

n=1 w(n,m)
l ẑ(n,m)

h }Ll=1

)
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Gibbs Sampling
Collapsed Gibbs Sampling:

In j-th step,

1 For a pair (n,m) chosen,
draw a sample z( j,n,m) ∼ p

(
z(n,m) |{z( j−1,n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}

)
,

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

Usually, (n,m) is chosen sequentially, and pick a sample every after all {z(n,m)} are updated.

With the estimator ẑ(n,m) = 1
J−Jburn-in

∑J
j=Jburn-in+1 z( j,n,m),

p(̃θm |{̂z(n,m)}, {w(n,m)}) = Dir
(
{α +∑N(m)

n=1 ẑ(n,m)
h }Hh=1

)

p(βh |{̂z(n,m)}, {w(n,m)}) = Dir
(
{η +∑M

m=1
∑N(m)

n=1 w(n,m)
l ẑ(n,m)

h }Ll=1

)
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling
Collapsed Gibbs Sampling:

In j-th step,

1 For a pair (n,m) chosen,
draw a sample z( j,n,m) ∼ p

(
z(n,m) |{z( j−1,n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}

)
,

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

Usually, (n,m) is chosen sequentially, and pick a sample every after all {z(n,m)} are updated.

With the estimator ẑ(n,m) = 1
J−Jburn-in

∑J
j=Jburn-in+1 z( j,n,m),

p(̃θm |{̂z(n,m)}, {w(n,m)}) ∝∏H
h=1(Θm,h)α−1+

∑N(m)
n=1 ẑ(n,m)

h

p(βh |{̂z(n,m)}, {w(n,m)}) ∝∏L
l=1(Bl,h)η−1+

∑M
m=1

∑N(m)
n=1 w(n,m)

l ẑ(n,m)
h
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Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling
Collapsed Gibbs Sampling:

In j-th step,

1 For a pair (n,m) chosen,
draw a sample z( j,n,m) ∼ p

(
z(n,m) |{z( j−1,n′ ,m′)}(n′ ,m′)!(n,m), {w(n,m)}

)
,

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).

Usually, (n,m) is chosen sequentially, and pick a sample every after all {z(n,m)} are updated.

With the estimator ẑ(n,m) = 1
J−Jburn-in

∑J
j=Jburn-in+1 z( j,n,m),

p(̃θm |{̂z(n,m)}, {w(n,m)}) = Dir
(
{α +∑N(m)

n=1 ẑ(n,m)
h }Hh=1

)

p(βh |{̂z(n,m)}, {w(n,m)}) = Dir
(
{η +∑M

m=1
∑N(m)

n=1 w(n,m)
l ẑ(n,m)

h }Ll=1

)

More efficient! But lost independence... ({z(n,m)} are mutually dependent).

Shinichi Nakajima Technische Universität Berlin

Markov Chain Monte Carlo



Bayesian Learning Approximate Bayesian Learning
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Gibbs Sampling
Collapsed Gibbs Sampling:

In j-th step,
1 For a pair (n,m) chosen, estimate
Θ̂\(n,m) = ⟨Θ⟩p(Θ|{z( j−1,n′ ,m′ )}\(n,m) ,{w(n,m)}), B̂\(n,m) = ⟨B⟩p(B|{z( j−1,n′ ,m′)}\(n,m) ,{w(n,m)}).

2 Draw a sample z( j,n,m) ∼ p
(
z(n,m) |Θ̂\(n,m), B̂\(n,m), {w(n,m)}

)
,

and set z( j,n′ ,m′) = z( j−1,n′ ,m′) for (n′,m′) ! (n,m).
Usually, (n,m) is chosen sequentially, and pick a sample every after all {z(n,m)} are updated.

With the estimator ẑ(n,m) = 1
J−Jburn-in

∑J
j=Jburn-in+1 z( j,n,m),

p(̃θm |{̂z(n,m)}, {w(n,m)}) = Dir
(
{α +∑N(m)

n=1 ẑ(n,m)
h }Hh=1

)

p(βh |{̂z(n,m)}, {w(n,m)}) = Dir
(
{η +∑M

m=1
∑N(m)

n=1 w(n,m)
l ẑ(n,m)

h }Ll=1

)

Amounts to global parameter update after each element sampling.

Shinichi Nakajima Technische Universität Berlin

Markov Chain Monte Carlo



Bayesian Learning Approximate Bayesian Learning

Markov Chain Monte Carlo (MCMC) Sampling

Gibbs Sampling
Approximate Collapsed Gibbs Sampling

In j-th step,

1 For chosen pairs (n,m), independently draw z( j,n,m) ∼ p(z(n,m) |Θ̂( j−1)
, B̂

( j−1)
, {w(n,m)}),

2 Estimate Θ̂
( j)
= ⟨Θ⟩p(Θ|{z( j,n,m)},{w(n,m)}),

3 Estimate B̂
( j)
= ⟨B⟩p(B|{z( j,n,m)},{w(n,m)}).

With the estimator ẑ(n,m) = 1
J−Jburn-in

∑J
j=Jburn-in+1 z( j,n,m),

p(̃θm |{̂z(n,m)}, {w(n,m)}) = Dir
(
{α +∑N(m)

n=1 ẑ(n,m)
h }Hh=1

)

p(βh |{̂z(n,m)}, {w(n,m)}) = Dir
(
{η +∑M

m=1
∑N(m)

n=1 w(n,m)
l ẑ(n,m)

h }Ll=1

)

This should work.
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Variational Bayesian Learning
Variational Bayesian Approximation:

In j-th step,
1 For chosen pairs (n,m), estimate ẑ( j,n,m) = ⟨z(n,m)⟩

p(z(n,m) |Θ̂( j−1)
,B̂( j−1)

,{w(n,m)}),

2 Estimate Θ̂
( j)
= ⟨Θ⟩p(Θ|{z( j,n,m)},{w(n,m)}),

3 Estimate B̂
( j)
= ⟨B⟩p(B|{z( j,n,m)},{w(n,m)}).

For each k (a part of unknowns) in turn,

Gibbs sampling draws a sample from conditional wk ∼ p
(
wk |w\k ,D

)
.

Slow (each iteration gives one sample from the distribution).
Accurate (correlation between {wk} is taken into account).

Variational Bayes estimates the mean of conditional ŵk = ⟨wk⟩p(wk |ŵ\k ,D).

Fast (each iteration estimates whole distribution).
Inaccurate (correlation between {wk} is neglected).

Variational Bayes is similar.
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Variational Bayesian Learning
Variational Bayesian Approximation:

In j-th step,
1 For chosen pairs (n,m), estimate ẑ( j,n,m) = ⟨z(n,m)⟩

p(z(n,m) |Θ̂( j−1)
,B̂( j−1)

,{w(n,m)}),

2 Estimate Θ̂
( j)
= ⟨Θ⟩p(Θ|{z( j,n,m)},{w(n,m)}),

3 Estimate B̂
( j)
= ⟨B⟩p(B|{z( j,n,m)},{w(n,m)}).

For each k (a part of unknowns) in turn,

Gibbs sampling draws a sample from conditional wk ∼ p
(
wk |w\k ,D

)
.

Slow (each iteration gives one sample from the distribution).
Accurate (correlation between {wk} is taken into account).

Variational Bayes estimates the mean of conditional ŵk = ⟨wk⟩p(wk |ŵ\k ,D).

Fast (each iteration estimates whole distribution).
Inaccurate (correlation between {wk} is neglected).

Variational Bayes is similar.
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Properties of MCMC methods

Converges to the Bayesian posterior.

(Generally) slower than deterministic methods.

To get independent samples, we have to subsample
from the MCMC sequence.

Efficient methods are being developed (Hamiltonian
Monte Carlo, distributed computation, stochastic
gradient).
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Appendix: Detailed Balance Property
Transition probability is (all probability below is conditional on D)

p
(
w( j) |w( j−1)

)
= T

(
w( j) |w( j−1)

)
· r

(
w( j) |w( j−1)

)

= min
(
r
(
w( j) |w( j−1)

)
,

p
(
w( j)

)
r
(
w( j−1) |w( j)

)

p(w( j−1))

)
.

Therefore,

p
(
w( j) |w( j−1)

)
p
(
w( j−1)

)
= min

(
p
(
w( j−1)

)
r
(
w( j) |w( j−1)

)
, p

(
w( j)

)
r
(
w( j−1) |w( j)

))

= min
(
p
(
w( j)

)
r
(
w( j−1) |w( j)

)
, p

(
w( j−1)

)
r
(
w( j) |w( j−1)

))

= T
(
w( j−1) |w( j)

)
r
(
w( j−1) |w( j)

)
p
(
w( j)

)

= p
(
w( j−1) |w( j)

)
p
(
w( j)

)
Detailed Balance Property

∴
∫

p
(
w( j) |w( j−1)

)
p
(
w( j−1)

)
dw( j−1) =

∫
p
(
w( j−1) |w( j)

)
p
(
w( j)

)
dw( j−1) = p

(
w( j)

)

Detailed balance⇒ p
(
w( j)

)
is stationary of Markov process. back
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