
Homework 2 (Lecture: Bayesian Learning)

Solve Exercises 1–10, and submit an answer sheet to MAR4.034 by 18.2.2016.
Exercises 1–5 (70P) are mandatory. For Exercises 6-10, you can choose one of
the following.

• Exercises 6 (15P) and 7 (15P).

• Exercises 8 (20P) and 9 (10P).

• Exercises 10 (30P).

Answering more than one can be a plus. (Do more than one if you think your
score in the first homework is not sufficient, or you want a better score/grade.)

1 Notation

We use the following notation for basic distribution (density) function.

NormM (x;µ,Σ) ≡
exp

(
− 1

2 (x− µ)
⊤
Σ−1 (x− µ)

)
(2π)M/2|Σ|1/2

, (1)

Gamma(x;α, β) ≡ βα

Γ (α)
xα−1 exp(−βx), (2)

WishartM (X;V , ν) ≡
|X| ν−M−1

2 exp
(
− tr(V −1X)

2

)
(2ν |V |)M/2ΓM

(
ν
2

) , (3)

MultinomialK,N (x;θ) ≡ N !
K∏

k=1

(xk!)
−1θxk

k , (4)

DirichletK(x;ϕ) ≡
Γ (
∑K

k=1 ϕk)∏K
k=1 Γ (ϕk)

K∏
k=1

x
ϕk−1

k . (5)

Moments of them can be found in the pdf file for the introduction of this
lecture (BayesianLearningIntroduction.pdf).
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2 Conditional Conjugacy

Assume that the parameters w of a model likelihood p(D|w) can be divided
into S groups w = (w1, . . . ,wS), so that the following conditional conjugacy
holds: There exists a decomposable prior

p(w) =
S∏

s=1

p(ws)

such that, for any s = 1, . . . , S, the posterior

p(ws|{ws′}s′ ̸=s,D) =
p(D|w)p(ws)

p(D|{ws′}s′ ̸=s)

on ws given the other parameters {ws′}s′ ̸=s fixed as constants is in the same
distribution family as the prior p(ws). We also assume that computing moments
of, as well as drawing samples from, this family is not hard.

3 Variational Bayesian (VB) learning

Let r be an approximate posterior distribution, and define the free energy by

F (r) =

⟨
log

r(w)

p(D|w)p(w)

⟩
r(w)

. (6)

Exercise 1 (10P): Prove that minimizing the free energy (6) amounts
to minimizing the Kullback Leibler divergence to the Bayes poste-
rior.

Under the assumed conditional conjugacy, variational Bayesian learning solves
the following problem:

min
r

F (r) s.t. r(w) =
S∏

s=1

rs(ws). (7)

Exercise 2 (20P): Derive the following general update rule for varia-
tional Bayesian learning:

rs(ws) ∝ p(ws) exp ⟨log p(D|w)⟩∏
s′ ̸=s rs′ (ws′ )

. (8)

4 Gibbs sampling

Gibbs sampling simply iterates the following sampling process for s = 1, . . . , S
in turn to get a Markov chain:

Draw wnew
s from p(ws|{wold

s′ }s′ ̸=s,D).
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Figure 1: A distribution with two modes.

5 Difference between variational Bayes (VB) and
expectation propagation (EP)

Variational Bayes minimizes

KL (r(w)||p(w|D)) =

∫
r(w) log

r(w)

p(w|D)
dw, (9)

while expectation propagation minimizes

KL (p(w|D)||r(w)) =

∫
p(w|D) log

p(w|D)

r(w)
dw. (10)

Exercise 3 (10P): Assume that the Bayes posterior has two modes
like in Fig.1. It is observed that the variational Bayes posterior tends
to cover one of the modes, while the expectation propagation tends
to cover both modes with a broader distribution. Explain intuitively
(and qualitatively) why this tendency is observed.

6 Matrix factorization

Consider the matrix factorization model

p(V |A,B) =
L∏

l=1

M∏
m=1

Norm1(Vl,m; b̃
⊤
l ãm, σ2)

=
exp

(
− 1

2σ2 ∥V −BA⊤∥2Fro
)

(2πσ2)LM/2
, (11)

p(A) =
M∏

m=1

NormH(ãm;0,CA)
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=
exp

(
− 1

2 tr
(
AC−1

A A⊤
))

(2π)MH/2|CA|M/2
, (12)

p(B) =
L∏

l=1

NormH(b̃l;0,CB)

=
exp

(
− 1

2 tr
(
BC−1

B B⊤
))

(2π)LH/2|CB |L/2
, (13)

where V ∈ RL×M is an observed matrix, A ∈ RM×H ,B ∈ RL×H for H ≤
min(L,M) are the parameters to be estimated. A column vector is denoted by
a bolded-faced small letter, and a row vector is denoted by a bolded-faced small
letter with tilde, e.g.,

A = (a1, . . . ,aH) = (ã1, . . . , ãM )
⊤ ∈ RM×H .

The noise variance σ2 is treated as a hyperparameter, i.e., considered as a
constant or point-estimated by the empirical Bayesian procedure. The prior
covariances

CA = Diag(c2a1
, . . . , c2aH

), CB = Diag(c2b1 , . . . , c
2
bH ) (14)

are assumed to be diagonal, and also treated as hyperparameters.

6.1 VB for MF

We solve the following problem to get a local search algorithm for VB posterior:

min
r

F (r) s.t. r(A,B) = rA(A)rB(B),

where

F (r) =

⟨
log

r(A,B)

p(V |A,B)p(A)p(B)

⟩
r(A,B)

.

In this model, the stationary condition (8) is written as

rA(A) ∝ p(A|CA) exp ⟨log p(V |A,B)⟩rB(B) , (15)

rB(B) ∝ p(B|CB) exp ⟨log p(V |A,B)⟩rA(A) . (16)

Substituting the model likelihood (11) and the prior (12) on A into the
stationary condition (15), and focusing on the dependency on A, we have

rA(A) ∝ exp(− 1
2 tr(AC−1

A A⊤))
(2π)MH/2|CA|M/2 · exp

⟨
log

(
exp(− 1

2σ2 ∥V −BA⊤∥2
Fro)

(2πσ2)LM/2

)⟩
rB(B)

∝ exp

(
−1

2
tr
(
AC−1

A A⊤
)
− 1

2σ2

⟨
∥V −BA⊤∥2Fro

⟩
rB(B)

)
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∝ exp

(
−1

2
tr

(
AC−1

A A⊤ +
1

σ2

⟨
−2V ⊤BA⊤ +AB⊤BA⊤

⟩
rB(B)

))
∝ exp

(
−1

2
tr

(
A

( ⟨B⊤B⟩
rB(B)

σ2 +C−1
A

)
A⊤ − 2V ⊤⟨B⟩rB(B)A

⊤

σ2

))

∝ exp

−
tr
(
(A− Â)Σ̂

−1

A (A− Â)⊤
)

2

 , (17)

where

Â = σ−2V ⊤ ⟨B⟩rB(B) Σ̂A, (18)

Σ̂A = σ2

(⟨
B⊤B

⟩
rB(B)

+ σ2C−1
A

)−1

. (19)

Similarly, by substituting the model likelihood (11) and the prior (13) on B
into the stationary condition (16), and focusing on the dependency on B, we
have

rB(B) ∝ exp

(
−1

2
tr
(
BC−1

B B⊤
)
− 1

2σ2

⟨
∥V −BA⊤∥2Fro

⟩
rA(A)

)
∝ exp

(
−1

2
tr

(
BC−1

B B⊤ +
1

σ2

⟨
−2V AB⊤ +BA⊤AB⊤

⟩
rA(A)

))

∝ exp

−
tr
(
(B − B̂)Σ̂

−1

B (B − B̂)⊤
)

2

 , (20)

where

B̂ = σ−2V ⟨A⟩rA(A) Σ̂B , (21)

Σ̂B = σ2

(⟨
A⊤A

⟩
rA(A)

+ σ2C−1
B

)−1

. (22)

Eqs.(17) and (20) imply that

⟨A⟩rA(A) = Â,⟨
A⊤A

⟩
rA(A)

= Â
⊤
Â+MΣ̂A,

⟨B⟩rB(B) = B̂,⟨
B⊤B

⟩
rB(B)

= B̂
⊤
B̂ + LΣ̂B .

Substituting above into Eqs.(18)–(22) gives

Â = σ−2V ⊤B̂Σ̂A, (23)
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Σ̂A = σ2
(
B̂

⊤
B̂ + LΣ̂B + σ2C−1

A

)−1

, (24)

B̂ = σ−2V ÂΣ̂B , (25)

Σ̂B = σ2
(
Â

⊤
Â+MΣ̂A + σ2C−1

B

)−1

. (26)

Starting from some initial values, iterating Eqs.(23)–(26) (substituting the
right-hand side into the left-hand side) until convergence forms a local search
algorithm of VB in MF.

6.2 Empirical VB for MF

The free energy can be written as a function of Â, Σ̂A, B̂, Σ̂B,CA,CB and σ2:

2F = LM log(2πσ2) +
∥V − B̂Â

⊤
∥2Fro

σ2
+M log

|CA|
|Σ̂A|

+ L log
|CB |
|Σ̂B |

− (L+M)H + tr
{
C−1

A

(
Â

⊤
Â+MΣ̂A

)
+C−1

B

(
B̂

⊤
B̂ + LΣ̂B

)
+σ−2

(
−Â

⊤
ÂB̂

⊤
B̂ +

(
Â

⊤
Â+MΣ̂A

)(
B̂

⊤
B̂ + LΣ̂B

))}
, (27)

where | · | is the determinant of a matrix. Remember that CA and CB , defined
in Eq.(14), are diagonal.

Exercise 4 (20P): Compute the partial derivatives of Eq.(27) with re-
spect to each diagonal element c2ah

of CA, each diagonal element c2bh of

CB and the noise variance σ2. (Advise) Confirm that the derivatives
are consistent with the updated rules (28)–(30), which are derived as
the stationary condition.

From the derivatives, we obtain the following update rules:

c2ah
= ∥âh∥2/M +

(
Σ̂A

)
h,h

, (28)

c2bh = ∥b̂h∥2/L+
(
Σ̂B

)
h,h

, (29)

σ2 =
∥V ∥2Fro − tr

(
2V ⊤B̂Â

⊤)
+ tr

(
(Â

⊤
Â+MΣ̂A)(B̂

⊤
B̂ + LΣ̂B)

)
LM

. (30)

Iterating Eqs.(23)–(26) and Eqs.(28)–(30) gives a local solution of empirical VB
learning.

6.3 Gibbs sampling for MF

Let (A(t),B(t)) be the current sample in the Markov chain. In Gibbs sampling,
we draw a new sample from the following Gaussian conditional posterior:

A(t+1) ∼ p(A|B(t),V ) ∝ p(V |A,B(t))p(A)
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∝ exp

−
tr
(
(A− Â)Σ̂

−1

A (A− Â)⊤
)

2

 ,

B(t+1) ∼ p(B|A(t+1),V ) ∝ p(V |A(t+1),B)p(B)

∝ exp

−
tr
(
(B − B̂)Σ̂

−1

B (B − B̂)⊤
)

2

 .

Exercise 5 (10P): Derive Â, Σ̂A, B̂, and Σ̂B.

7 MF with missing entries

Let Λ be the set of indices, at which the element of V are observed. Then, the
model likelihood is written as

p(V |A,B) =
∏

(l,m)∈Λ

Norm1(Vl,m; b̃
⊤
l ãm)

=
exp

(
− 1

2σ2 ∥PΛ(V )−PΛ(BA⊤)∥2Fro
)

(2πσ2)|Λ|/2 , (31)

where PΛ (V ) : RL×M 7→ RL×M maps the observed entries to the observed
values and the unobserved entries to zero, i.e.,

(PΛ (V ))l,m =

{
Vl,m if (l,m) ∈ Λ,

0 otherwise,

and |Λ| denotes the number of the observed entries Λ.
We use the priors (12) and (13).

7.1 VB for MF with missing entries

We can start from the stationary conditions (15) and (16). Substituting the
model likelihood (31) and the prior (12) into the stationary condition (15), and
focusing on the dependency on A, we have

rA(A) ∝ exp

−1

2
tr
(
AC−1

A A⊤
)
−

⟨
∥PΛ(V )− PΛ(BA⊤)∥2Fro

⟩
rB(B)

2σ2


∝ exp

(
− 1

2 tr
(
AC−1

A A⊤
)

+

∑
(l,m)∈Λ⟨−2Vl,m

∑H
h=1 Bl,hAm,h+

∑H
h=1

∑H
h′=1

Bl,hBl,h′Am,hAm,h′⟩
rB(B)

σ2

)
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∝ exp

−

∑M
m=1

(
(ãm − ̂̃am)⊤Σ̂

−1

A,m(ãm − ̂̃am)
)

2

 , (32)

where ̂̃am = σ−2Σ̂A,m

∑
l;(l,m)∈Λ

Vl,m

⟨
b̃l

⟩
rB(B)

, (33)

Σ̂A,m = σ2

 ∑
l;(l,m)∈Λ

⟨
b̃lb̃

⊤
l

⟩
rB(B)

+ σ2C−1
A

−1

. (34)

Here,
∑

(l,m)∈Λ is the sum over the indices (l,m) condtained in the set Λ, and∑
l;(l,m)∈Λ is the sum over l that satisfies (l,m) ∈ Λ given m.

Eq.(32) implies that the posterior on A is the Gaussian

rA(A) =
M∏

m=1

NormH(ãm; ˜̂am, Σ̂A,m)

=
M∏

m=1

exp

(
− (ãm−˜̂am)⊤Σ̂

−1

A,m(ãm−˜̂am)

2

)
(2π)H/2|Σ̂A,m|1/2

(35)

with mean ˜̂am and covariance Σ̂A,m satisfying Eqs.(33) and (34).
Similarly, we have

rB(B) ∝ exp

−1

2
tr
(
BC−1

B B⊤
)
−

⟨
∥PΛ(V )− PΛ(BA⊤)∥2Fro

⟩
rA(A)

2σ2



∝ exp

−

∑L
l=1

(
(b̃m − ̂̃bl)⊤Σ̂−1

B,l(b̃l −
̂̃
bl)

)
2

 , (36)

where ̂̃
bl = σ−2Σ̂B,l

∑
m;(l,m)∈Λ

Vl,m ⟨ãm⟩rA(A) , (37)

Σ̂B,l = σ2

 ∑
m;(l,m)∈Λ

⟨
ãmã⊤

m

⟩
rA(A)

+ σ2C−1
B

−1

. (38)

Eq.(36) implies that the posterior on B is Gaussian

rB(B) =
L∏

l=1

NormH(b̃l;
˜̂
bl, Σ̂B,l)
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=
L∏

l=1

exp

(
− (b̃l−

˜̂
bl)

⊤Σ̂
−1

B,l(b̃l−
˜̂
bl)

2

)
(2π)H/2|Σ̂B,l|1/2

(39)

with mean
˜̂
bm and covariance Σ̂B,l satisfying Eqs.(37) and (38).

Exercise 6 (15P): Compute the expectations in the right-hand sides
of Eqs.(33), (34), (37), and(38) based on Eqs.(35) and (39). Then, de-

rive update rules for the means and the covariances ˜̂am, Σ̂A,m,
˜̂
bl, Σ̂B,l.

(Advise: Confirm that the update rules coincide to Eqs.(23)–(26)
when there is no missing entries, i.e., Λ contains all the elements
of V .)

7.2 Gibbs sampling for MF with missing entries

Let (A(t),B(t)) be the current sample in the Markov chain. In Gibbs sampling,
we draw a new sample from the following Gaussian conditional posterior: for

each row of A(t) = (ã
(t)
1 , . . . , ã

(t)
M ) and B(t) = (b̃

(t)

1 , . . . , b̃
(t)

L ),

ã(t+1)
m ∼ p(ãm|B(t),V ) ∝ p(V |A,B(t))p(A)

∝ NormH(ãm; ˜̂am, Σ̂A,m),

b̃
(t+1)

l ∼ p(b̃l|A(t+1),V ) ∝ p(V |A(t+1),B)p(B)

∝ NormH(b̃l;
˜̂
bl, Σ̂B,l).

Exercise 7 (15P): Derive ˜̂am, Σ̂A,m,
˜̂
bl, and Σ̂B,l.

8 Mixture of Gaussians (MoG)

Consider the following Gaussian mixture model:

p(z|α) = MultinomialK,1(z;α), (40)

p(x|z, {µk}Kk=1) =
K∏

k=1

{NormM (x;µk, IM )}zk , (41)

p(α|ϕ) = DirichletK(α; (ϕ, . . . , ϕ)⊤), (42)

p({µk}Kk=1|σ2
0) =

K∏
k=1

NormM (µk|0, σ2
0IM ). (43)

For N observations D = {x(1), . . . ,x(N)}, the complete likelihood for the
parameters w = (α, {µk}Kk=1) and the hidden variables H = {z(1), . . . , z(N)}
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are given as

p(D, {z(n)}Nn=1|α, {µk}Kk=1) =

N∏
n=1

K∏
k=1

{
αkNormM (x(n);µk, IM )

}z
(n)
k

. (44)

8.1 VB for MoG

To obtain an approximate posterior r(H,w) on the parameters and the hidden
variables, we solve the following problem

r̂ = argmin
r

F (r) s.t. r(H,w) = rH(H)rw(w). (45)

Under this constraint, the free energy is written as

F (r) =

⟨
log

rH(H)rw(w)

p(D,H|w)p(w)

⟩
rH(H)rw(w)

=
∑
H

∫
rH(H)rw(w) log

rH(H)rw(w)

p(D,H|w)p(w)
dw. (46)

By applying the variational method to the problem above, we obtain the
following as stationary conditions, which corresponds to Eq.(8):

rH(H) ∝ exp ⟨log p(D,H|w)⟩rw(w) , (47)

rw(w) ∝ p(w) exp ⟨log p(D,H|w)⟩rH(H) . (48)

By substituting (44) into Eq.(47), and focusing on the dependency on H =
{z(n)}Nn=1, we have

rz({z(n)}Nn=1)

∝ exp

⟨
log

N∏
n=1

K∏
k=1

αk

exp
(
−∥x(n)−µk∥

2

2

)
(2π)M/2

z
(n)
k ⟩

rα,µ(α,{µk}K
k=1)

∝
N∏

n=1

K∏
k=1

exp

⟨
z
(n)
k

(
logαk − 1

2
∥x(n) − µk∥2

)⟩
rα,µ(α,{µk}K

k=1)

∝
N∏

n=1

K∏
k=1

exp

(
z
(n)
k

(
⟨logαk⟩rα,µ(α,{µk}K

k=1)

− 1

2

⟨
∥x(n) − µk∥2

⟩
rα,µ(α,{µk}K

k=1)

))

∝
N∏

n=1

(
K∏

k=1

(
z
(n)
k

)z(n)
k

)
, (49)
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where

z
(n)
k = exp

(
⟨logαk⟩rα,µ(α,{µk}K

k=1)
− 1

2

⟨
∥x(n) − µk∥2

⟩
rα,µ(α,{µk}K

k=1)

)
. (50)

Eq.(49) implies that

rz({z(n)}Nn=1) =
N∏

n=1

MultinomialK,1

(
z(n); ẑ(n)

)
, (51)

where

ẑ
(n)
k =

z
(n)
k∑K

k′=1 z
(n)
k′

. (52)

On the other hand, by substituting the model likelihood (44) and the priors
(42) and (43) into Eq.(48), and focusing on the dependency onw = (α, {µk}Kk=1),
we have

rα,µ(α, {µk}Kk=1)

∝

 K∏
k=1

αϕ−1
k

exp
(
−∥µk∥

2

2σ2
0

)
(2πσ2

0)
M/2



· exp

⟨
log

N∏
n=1

K∏
k=1

αk

exp
(
−∥x(n)−µk∥

2

2

)
(2π)M/2

z
(n)
k ⟩

rz({z(n)}N
n=1)

∝
K∏

k=1

αϕ−1
k exp

{
− ∥µk∥2

2σ2
0

+
N∑

n=1

(
logαk − 1

2
∥x(n) − µk∥2

)⟨
z
(n)
k

⟩
rz({z(n)}N

n=1)

}

∝
K∏

k=1

αNk+ϕ−1
k exp

−
(Nk + σ−2

0 )∥µk − Nkxk

Nk+σ−2
0

∥2

2

 , (53)

where

Nk =
N∑

n=1

⟨z(n)k ⟩rz({z(n)}N
n=1)

, (54)

xk =
1

Nk

N∑
n=1

x(n)⟨z(n)k ⟩rz({z(n)}N
n=1)

. (55)

Eq.(53) implies that the posterior is the (independent) product of a Dirichlet
distribution on α and the Gaussian distribution on {µk}Kk=1, i.e.,

rα,µ(α, {µk}Kk=1) = rα(α)rµ({µk}Kk=1),
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where rα(α) = Dirichlet (α; α̂) , (56)

rµ({µk}Kk=1) =
K∏

k=1

NormM

(
µk; µ̂k, σ̂

2
kIM

)
, (57)

α̂k = Nk + ϕ, (58)

µ̂k =
Nkxk

Nk + σ−2
0

, (59)

σ̂2
k =

1

Nk + σ−2
0

. (60)

We can use the following expectation over multinomial, Dirichlet, and Gaus-
sian distribution:

⟨z(n)k ⟩rz({z(n)}N
n=1)

= ẑ
(n)
k ,

⟨logαk⟩rα,µ(α,{µk}K
k=1)

= ⟨logαk⟩rα(α)

= Ψ(α̂k)− Ψ

(
K∑

k′=1

α̂k′

)
,⟨

∥x(n) − µk∥2
⟩
rα,µ(α,{µk}K

k=1)
=
⟨
∥(x(n) − µ̂k) + (µ̂k − µk)∥2

⟩
r(µk)

= ∥x(n) − µ̂k∥2 +Mσ̂2
k,

where

Ψ(x) =
∂ logΓ (x)

∂x

is called the Digamma function.
By substituting above into Eqs.(50), (54), and (55), we conclude that the

VB posterior is given by

r({z(n)}Nn=1,α, {µk}Kk=1) = rz({z(n)}Nn=1)rα(α)rµ({µk}Kk=1),

where rz({z(n)}Nn=1) =
N∏

n=1

MultinomialK,1

(
z(n); ẑ(n)

)
,

rα(α) = Dirichlet (α; α̂) ,

rµ({µk}Kk=1) =
K∏

k=1

NormM

(
µk; µ̂k, σ̂

2
kIM

)
.

Here, {ẑ(n)}Nn=1, α̂ and {µ̂k, σ̂
2
k}Kk=1 satisfies

ẑ
(n)
k =

z
(n)
k∑K

k′=1 z
(n)
k′

, (61)

α̂k = Nk + ϕ, (62)

12



µ̂k =
Nkxk

Nk + σ−2
0

, (63)

σ̂2
k =

1

Nk + σ−2
0

, (64)

where

z
(n)
k = exp

(
Ψ(α̂k)− Ψ

(
K∑

k′=1

α̂k′

)
− 1

2

∥∥∥x(n) − µ̂k

∥∥∥2 +Mσ̂2
k

)

= exp

(
Ψ(α̂k)−

1

2

∥∥∥x(n) − µ̂k

∥∥∥2 +Mσ̂2
k + const.

)
, (65)

Nk =
N∑

n=1

ẑ
(n)
k , (66)

xk =
1

Nk

N∑
n=1

x(n)ẑ
(n)
k . (67)

Applying Eqs.(61)–(64) in turn (Eqs.(65)–(67) are also used when necessary),
we can obtain a local solution for VB learning, which monotonically minimizes
the free energy:

F =

⟨
log

rH(H)rw(w)

p(w)

⟩
rH(H)rw(w)

− ⟨log p(D,H|w)⟩rH(H)rw(w)

=

⟨
log

(ẑ
(n)
k )z

(n)
k

Γ (
∑K

k=1 α̂k)∏K
k=1 Γ (α̂k)

∏K
k=1 α

α̂k−1
k

exp

(
− ∥µk−µ̂k∥2

2σ̂2
k

)
(2πσ̂2

k)
M/2

Γ (Kϕ)
(Γ (ϕ))K

∏K
k=1 α

ϕ−1
k

exp

(
− ∥µk∥2

2σ2
0

)
(2πσ2

0)
M/2

⟩
rH(H)rw(w)

−

⟨
log

N∏
n=1

K∏
k=1

αk

exp
(
−∥x(n)−µk∥

2

2

)
(2π)M/2


z
(n)
k ⟩

rH(H)rw(w)

= log

(
Γ (
∑K

k=1 α̂k)∏K
k=1 Γ (α̂k)

)
− log

(
Γ (Kϕ)

(Γ (ϕ))K

)
+

M

2

K∑
k=1

log
σ2
0

σ̂2
k

− KM

2

+
N∑

n=1

K∑
k=1

ẑ
(n)
k log ẑ

(n)
k +

K∑
k=1

(
α̂k − ϕ−Nk

) (
Ψ(α̂k)− Ψ(

∑K
k′=1 α̂k′)

)
+

K∑
k=1

∥µ̂k∥2 +Mσ̂2
k

2σ2
0

+
K∑

k=1

Nk

(
M log(2π) +Mσ̂2

k

)
2

+
K∑

k=1

Nk∥xk − µ̂k∥2 +
∑N

n=1 ẑ
(n)
k ∥x(n) − xk∥2

2
. (68)

Note that const. in (65) does not affect Eq.(61), and can be replaced with 0.

13
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Figure 2: Scatter plot of “data2.txt”.

Exercise 8 (20P): Implement the VB algorithm for MoG. N = 100 sam-
ples in L = 2 dimensional space are given in a separate file “data2.txt”.
Fig.2 shows a scatter plot of the data points. Set K = 10, ϕ = 1, σ2

0 =

10000, Use the initial values for {ẑ(n)k }, given as a K × N matrix in a
separate file “initial.txt”. Since the initialization for other unknowns
are not given, the update rules should be applied in the following
order, Eqs.(62), (63), (64), (61). Iterate the whole update rules T = 20
times.

Draw the data samples with different colors according to the argmaxk(ẑ
(n)
k )

for t = 2, 5, 10, where t = 1, . . . , T is the number of iterations. Also,
draw α̂k after sorting in decreasing order. Fig.3 show them for t = 1
and t = 20 (Estimated clustering centers {µ̂k} are also plotted with
circles). Any programming language or software can be used. Only
submit printed figures. (Advises) When confirming the monotonic
decrease of the free energy (68) (this is not mandatory), don’t com-
pute products of gamma functions but the sum of the log of gamma
functions, which is supported by popular programming languages,
e.g., the gammaln command in matlab. Fig.4 shows a typical curve
of the decreasing free energy in VB learning.

8.2 Gibbs sampling for MoG

Let (α(t), {µ(t)
k }Kk=1, {z(n,t)}Nn=1) be the current sample in the Markov chain. In

the naive Gibbs sampling, we draw a new sample from the following distribu-
tions:

{z(n,t+1)}Nn=1 ∼ p({z(n)}Nn=1|α(t), {µ(t)
k }Kk=1,D) =

N∏
n=1

MultinomialK,1

(
z(n); ẑ(n)

)
,

(69)
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Figure 3: Scatter plot (left) with different colors based on the clustering result,
and the estimated weight parameters (right) for t = 1 (top) and t = 20 (bottom).

α(t) ∼ p(α|{z(n,t+1)}Nn=1,D) = Dirichlet (α; α̂) , (70)

{µ(t)
k }Kk=1 ∼ p({µk}Kk=1|{z(n,t+1)}Nn=1,D) =

K∏
k=1

NormM

(
µk; µ̂k, σ̂

2
kIM

)
.

(71)

Exercise 9 (10P): Derive ẑ(n), α̂, µ̂k, and σ̂2
k.

Based on the conditional conjugacy, one can integrate the parametersα, {µk}Kk=1

out, and obtain the posterior on the hidden variables {z(n)}Nn=1. Then, the pos-
terior of z(n) conditioned on {z(n′)}n′ ̸=n can be used for sampling. This method
is called collapsed Gibbs sampling.

9 Latent Dirichlet allocation (LDA)

Assume that a corpus of M documents are given. Each document m consists of

N (m) tokens {w(n,m)}N(m)

n=1 , and we express L different words with the one-of-L
expression w(n,m) ∈ {el}Ll=1 (el is a L-dimensional vector with only a single
element equal to one, and the others equal to zero).

In latent Dirichlet allocation, we assume that each token belongs to a latent
topic z(n,m) ∈ {eh}Hh=1. Each document has a specific topic distributions θ̃m,
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Figure 4: Free energy.

and each topic has a specific word distribution βh. The model is described as
follows:

p(z(n,m)|θ̃m) = MultinomialH,1(z
(n,m); θ̃m), (72)

p(w(n,m)|z(n,m),β1, . . . ,βH) =
H∏

h=1

{
MultinomialL,1(w

(n,m);βh)
}z

(n,m)
h

. (73)

We use the Dirichlet priors for θ̃m and βh:

p(θ̃m|α) = DirichletH(θ̃m;α), (74)

p(βh|η) = DirichletL(βh;η). (75)

We summarize the document parameters as Θ = (θ̃1, . . . , θ̃M )⊤ ∈ RM×H ,
and the topic parameters as B = (β1, . . . ,βH) ∈ RL×H . The joint distribution

of the observed data D = {{w(n,m)}N(m)

n=1 }Mm=1, and the hidden variables H =

{{z(n,m)}N(m)

n=1 }Mm=1 is written as

p(D,H|Θ,B) =

M∏
m=1

N(m)∏
n=1

p(w(n,m)|z(n,m),βh)p(z
(n,m)|θ̃m)

=

M∏
m=1

N(m)∏
n=1

H∏
h=1

(
Θm,h

L∏
l=1

B
w

(n,m)
l

l,h

)z
(n,m)
h

. (76)

Exercise 11 (30P): Derive the variational Bayesian algorithm for es-

timating the posterior on the hidden variables H = {{z(n,m)}N(m)

n=1 }Mm=1

and the parameters w = (Θ,B), fixing the hyperparameters κ = (α,η)
as constants.
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