Homework 1 (Lecture: Bayesian Learning)

Solve Exercises 1–8, and submit an answer sheet at the end of the lecture on 7.1.2016.

1 Linear regression model

Consider a linear regression model with unknown parameter $\boldsymbol{w} = \boldsymbol{a} \in \mathbb{R}^{M}$:

$$p(y|\boldsymbol{x}, \boldsymbol{a}) = \operatorname{Norm}_{1}(y; \boldsymbol{a}^{\top} \boldsymbol{x}, \sigma^{2}) = \frac{\exp\left(-\frac{(y-\boldsymbol{a}^{\top} \boldsymbol{x})^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi\sigma^{2}}}.$$
 (1)

Norm_M($\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}$) denotes the *M*-dimensional Gaussian distribution with mean $\boldsymbol{\mu}$ and the covariance $\boldsymbol{\Sigma}$. We treat the noise variance σ^2 as a fixed constant.

Assume that we observed N samples $\mathcal{D} = \{(\boldsymbol{x}^{(1)}, y^{(1)}), \dots, (\boldsymbol{x}^{(N)}, y^{(N)})\},\$ and that, for each given input $\boldsymbol{x}^{(n)}$, the output $y^{(n)}$ was independently and identically (i.i.d.) drawn from Norm₁ $(y; \boldsymbol{a}^{*\top}\boldsymbol{x}, \sigma^2)$ with unknown \boldsymbol{a}^* .

Define

$$\boldsymbol{y} = (y^{(1)}, \dots, y^{(N)})^{\top} \in \mathbb{R}^N, \qquad \boldsymbol{X} = (\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)})^{\top} \in \mathbb{R}^{N \times M}.$$

Then, the model likelihood is written as

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{a}) = \operatorname{Norm}_{N}(\boldsymbol{y}; \boldsymbol{X}\boldsymbol{a}, \sigma^{2}\boldsymbol{I}_{N}) = \frac{\exp\left(-\frac{\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{a}\|^{2}}{2\sigma^{2}}\right)}{(2\pi\sigma^{2})^{N/2}},$$
(2)

where I_N is the $N \times N$ identity matrix. We adopt Gaussian prior with mean **0** and covariance C.

$$p(\boldsymbol{a}|\boldsymbol{C}) = \operatorname{Norm}_{M}(\boldsymbol{a};\boldsymbol{0},\boldsymbol{C}) = \frac{\exp\left(-\frac{1}{2}\boldsymbol{a}^{\top}\boldsymbol{C}^{-1}\boldsymbol{a}\right)}{(2\pi)^{M/2}|\boldsymbol{C}|^{1/2}}.$$
(3)

2 Posterior and Predictive distributions

Exercise 1: Derive the posterior distribution p(a|y, X, C) on a.

Exercise 2: Derive the predictive distribution $p(y^*|x^*, y, X, C)$ on the output y^* for a new input x^* .

Figure 1: N = 30 samples from the linear regression model $y = \boldsymbol{a}^{*\top} \boldsymbol{x} + \varepsilon$, where $\boldsymbol{a}^* = (-2, 0.4, 0.3, -0.1)^\top$, $\boldsymbol{x} = (1, t, t^2, t^3)^\top$, and $\varepsilon \sim \operatorname{Norm}_1(0, 1^2)$.

Exercise 3: A set of training samples (shown as crosses in Fig.1) are given in a separate file "data.txt". The upper row corresponds to t and the lower row corresponds to y. Draw the same figure as Fig. 1. Numerically compute the mean \hat{y} and the covariance $\hat{\sigma}_y^2$ of the predictive distribution $p(y^*|x^*, y, X, C)$ as a function of t^* (on a grid, for example, $t^* = -4.00, -3.99, -3.98, \ldots, 4.00$). Here, set $C = 10000I_M$ and $\sigma^2 = 1$. Then, overlap the three curves corresponding to \hat{y} and $\hat{y} \pm \hat{\sigma}_y$ in the previous figure. Any programming language or software can be used. Only submit a printed figure.

3 Marginal Likelihood and Empirical Bayesian Learning

Exercise 4: Compute the marginal likelihood $p(\mathcal{D}|C)$ (without omitting any constant factor).

Estimating the hyperparameter C by maximizing the marginal likelihood is called *empirical Bayesian learning*. Equivalently, we minimize the negative log of the marginal likelihood

$$F^* = -\log p(\mathcal{D}|\mathbf{C}),\tag{4}$$

which is called the *Bayes free energy* or *stochastic complexity*. In addition, $\log p(\mathcal{D}|\mathbf{C})$ is called the *log marginal likelihood* or *evidence*.

Assume that

$$\boldsymbol{C} = \mathbf{Diag}(c_1^2, \dots, c_M^2) \in \mathbb{D}_{++}^M, \qquad \boldsymbol{X} = \boldsymbol{I}_M,$$
(5)

where \mathbb{D}_{++}^{M} denotes the set of positive definite diagonal matrices (i.e., $c_m^2 > 0, \forall m$). With the diagonal covariance to be estimated via empirical Bayesian learning, the prior

$$p(\boldsymbol{a}|\boldsymbol{C}) = \prod_{m=1}^{M} \frac{1}{\sqrt{2\pi c_m^2}} \exp\left(-\frac{a_m^2}{2c_m^2}\right)$$

is called automatic relevance determination (ARD) prior.

Under the assumption (5), the Bayes free energy can be decomposed as

$$2F^* = \sum_{m=1}^{M} 2F_m^* + \text{const.},$$
 (6)

where each F_m^* depends on c_m^2 but not on $c_{m'}^2$ for $m' \neq m$. Note that the latter assumption in (5) is only for simplifying the subsequent computation. In typical applications, X is not diagonal.

Exercise 5: Compute F_m^* .

Exercise 6: Draw F_m^* as a function of c_m^2 for $y_m^2 = 0, 1, 1.5, 2$ and $\sigma^2 = 1$. (Submit a printed figure.)

Exercise 7: Prove that the solution to $\min_{C} F^*$ is given by

$$\widehat{c}_m^2 = \begin{cases} y_m^2 - \sigma^2 & \text{if } y_m^2 > \sigma^2, \\ +0 & \text{otherwise.} \end{cases}$$
(7)

Exercise 8: Derive the empirical Bayesian estimator $\widehat{a}^{ ext{EB}}$ (the posterior mean of a with the hyperparameter C replaced with its estimator).