
Homework 1 (Lecture: Bayesian Learning)

Solve Exercises 1–8, and submit an answer sheet at the end of the lecture
on 7.1.2016.

1 Linear regression model

Consider a linear regression model with unknown parameter w = a ∈ RM :

p(y|x,a) = Norm1(y;a
⊤x, σ2) =

exp
(
− (y−a⊤x)2

2σ2

)
√
2πσ2

. (1)

NormM (x;µ,Σ) denotes the M -dimensional Gaussian distribution with mean
µ and the covariance Σ. We treat the noise variance σ2 as a fixed constant.

Assume that we observed N samples D = {(x(1), y(1)), . . . , (x(N), y(N))},
and that, for each given input x(n), the output y(n) was independently and
identically (i.i.d.) drawn from Norm1(y;a

∗⊤x, σ2) with unknown a∗.
Define

y = (y(1), . . . , y(N))⊤ ∈ RN , X = (x(1), . . . ,x(N))⊤ ∈ RN×M .

Then, the model likelihood is written as

p(y|X,a) = NormN (y;Xa, σ2IN ) =
exp

(
−∥y−Xa∥2

2σ2

)
(2πσ2)N/2

, (2)

where IN is the N ×N identity matrix. We adopt Gaussian prior with mean 0
and covariance C.

p(a|C) = NormM (a;0,C) =
exp

(
−1

2a
⊤C−1a

)
(2π)M/2|C|1/2

. (3)

2 Posterior and Predictive distributions

Exercise 1: Derive the posterior distribution p(a|y,X,C) on a.

Exercise 2: Derive the predictive distribution p(y∗|x∗,y,X,C) on the
output y∗ for a new input x∗.
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Figure 1: N = 30 samples from the linear regression model y = a∗⊤x+ε, where
a∗ = (−2, 0.4, 0.3,−0.1)⊤, x = (1, t, t2, t3)⊤, and ε ∼ Norm1(0, 1

2).

Exercise 3: A set of training samples (shown as crosses in Fig.1)
are given in a separate file “data.txt”. The upper row corresponds
to t and the lower row corresponds to y. Draw the same figure as
Fig. 1. Numerically compute the mean ŷ and the covariance σ̂2

y of the
predictive distribution p(y∗|x∗,y,X,C) as a function of t∗ (on a grid,
for example, t∗ = −4.00,−3.99,−3.98, . . . , 4.00). Here, set C = 10000IM

and σ2 = 1. Then, overlap the three curves corresponding to ŷ and
ŷ± σ̂y in the previous figure. Any programming language or software
can be used. Only submit a printed figure.

3 Marginal Likelihood and Empirical Bayesian
Learning

Exercise 4: Compute the marginal likelihood p(D|C) (without omit-
ting any constant factor).

Estimating the hyperparameter C by maximizing the marginal likelihood is
called empirical Bayesian learning. Equivalently, we minimize the negative log
of the marginal likelihood

F ∗ = − log p(D|C), (4)

which is called the Bayes free energy or stochastic complexity. In addition,
log p(D|C) is called the log marginal likelihood or evidence.
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Assume that

C = Diag(c21, . . . , c
2
M ) ∈ DM

++, X = IM , (5)

where DM
++ denotes the set of positive definite diagonal matrices (i.e., c2m >

0, ∀m). With the diagonal covariance to be estimated via empirical Bayesian
learning, the prior

p(a|C) =
M∏

m=1

1√
2πc2m

exp

(
− a2m
2c2m

)
is called automatic relevance determination (ARD) prior.

Under the assumption (5), the Bayes free energy can be decomposed as

2F ∗ =
M∑

m=1

2F ∗
m + const., (6)

where each F ∗
m depends on c2m but not on c2m′ for m′ ̸= m.

Note that the latter assumption in (5) is only for simplifying the subsequent
computation. In typical applications, X is not diagonal.

Exercise 5: Compute F ∗
m.

Exercise 6: Draw F ∗
m as a function of c2m for y2m = 0, 1, 1.5, 2 and σ2 = 1.

(Submit a printed figure.)

Exercise 7: Prove that the solution to minC F ∗ is given by

ĉ2m =

{
y2m − σ2 if y2m > σ2,

+0 otherwise.
(7)

Exercise 8: Derive the empirical Bayesian estimator âEB (the poste-
rior mean of a with the hyperparameter C replaced with its estima-
tor).
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