Homework 1 (Lecture: Bayesian Learning)

Solve Exercises 1-8, and submit an answer sheet at the end of the lecture
on 7.1.2016.

1 Linear regression model

Consider a linear regression model with unknown parameter w = a € RM:
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Norms(; pt, X) denotes the M-dimensional Gaussian distribution with mean
w1 and the covariance X. We treat the noise variance o2 as a fixed constant.
Assume that we observed N samples D = {(x), yM), ... (™) y())}
and that, for each given input (™, the output y™ was independently and
identically (i.i.d.) drawn from Norm; (y;a*"x,c?) with unknown a*.
Define

(1)

p(y|x,a) = Norml(y;aT:c,UQ) =

Yy = (y(1)7 . ,y(N))T cRY, X — (m(l),...,w(N))T c RVXM

Then, the model likelihood is written as
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p(y|X,a) = Normy (y; Xa,0°Iy) = (2mo2)N/2 ) (2)

where I is the N x N identity matrix. We adopt Gaussian prior with mean 0
and covariance C'.

exp (—%aTC_la)

p(a|C) = Normy(a;0,C) = (2m)M/2|C|1/2

(3)

2 Posterior and Predictive distributions

Exercise 1: Derive the posterior distribution p(a|y, X,C) on a.

Exercise 2: Derive the predictive distribution p(y*|z*,y, X,C) on the
output y* for a new input x*.



Figure 1: N = 30 samples from the linear regression model y = a* " x + ¢, where
a* =(-2,04,0.3,-0.1)", & = (1,t,42,#+*) T and € ~ Norm, (0, 12).

Exercise 3: A set of training samples (shown as crosses in Fig.1)
are given in a separate file “data.txt”. The upper row corresponds
to t and the lower row corresponds to y. Draw the same figure as
Fig. 1. Numerically compute the mean  and the covariance 32 of the
predictive distribution p(y*|z*,y, X, C) as a function of t* (on a grid,
for example, t* = —4.00,—-3.99,—3.98,...,4.00). Here, set C = 100001 s
and 02 = 1. Then, overlap the three curves corresponding to 7 and
y+0, in the previous figure. Any programming language or software

can be used. Only submit a printed figure.

3 Marginal Likelihood and Empirical Bayesian
Learning

Exercise 4: Compute the marginal likelihood p(D|C) (without omit-
ting any constant factor).

Estimating the hyperparameter C' by maximizing the marginal likelihood is
called empirical Bayesian learning. Equivalently, we minimize the negative log
of the marginal likelihood

F* = ~logp(D|C), (4)

which is called the Bayes free energy or stochastic complexity. In addition,
logp(D|C) is called the log marginal likelihood or evidence.



Assume that

C = Diag(ci,...,c};) € DI, X =1y, (5)
where DY Y., denotes the set of positive definite diagonal matrices (i.e., 2 >
0,vm). With the diagonal covariance to be estimated via empirical Bayesian
learning, the prior
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is called automatic relevance determination (ARD) prior.
Under the assumption (5), the Bayes free energy can be decomposed as

M
= Z 2F + const., (6)

m=1

where each F¥, depends on 2, but not on 2, for m’ # m.
Note that the latter assumption in (5) is only for simplifying the subsequent
computation. In typical applications, X is not diagonal.

Exercise 5: Compute F};,.

Exercise 6: Draw F), as a function of ¢2, for y2, =0,1,1.5,2 and 02 = 1.
(Submit a printed figure.)

Exercise 7: Prove that the solution to ming F* is given by

o _ Jum—o? ity >0

Cn = : (7)
+0 otherwise.

Exercise 8: Derive the empirical Bayesian estimator a™® (the poste-

rior mean of a with the hyperparameter C replaced with its estima-
tor).



