Wintersemester 2013

Fachgebiet Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller

Tag 4: Wahrscheinlichkeitsrechnung

$\ddot{\mathbf{U}}\mathbf{bungsaufgaben}$

Aufgabe	1
Auigabe	Т

uf	gabe 1					
1.	Sei X eine reelle Zufallsvariable und seien $[a_1a_2], [b_1,b_2] \subset \mathbb{R}$ zwei disjunkte Intervalle $\mathbb{R}, [a_1a_2] \cap [b_1,b_2] = \emptyset$. Es sei $P(X \in [a_1,a_2]) = 0.3$ und $P(X \in [b_1,b_2]) = 0.4$. Dans $P(X \in [a_1a_2] \cup [b_1,b_2])$ gleich					
	□ 0.35	□ 0.4	□ 0.7	7		
2.	$0.75~\mathrm{Kopf}$ ergibt, und eine ge	einer Schachtel befinden sich 3 Münzen: eine faire, eine gezinkte die mit Wahrscheinlichkei 75 Kopf ergibt, und eine gefälscht, die auf beiden Seiten einen Kopf zeigt. Es wird zufällige der drei Münzen gewählt und geworfen. Wie hoch ist die Wahrscheinlichkeit, dass eine ppf geworfen wird?				
	$\Box \ \frac{5}{12}$	$\Box \frac{4}{9}$	$\Box \frac{3}{4}$			
3.	Sei X eine reellwertig Zufall	eine reellwertig Zufallsvariable, und p ihre Dichtefunktion. Es gilt für alle $c \in \mathbb{R}$:				
	$ \Box P(X \le c) = p(c) \Box P(X \le c) = \int_{-\infty}^{c} p(x) dx \Box P(X \le c) = \int_{-\infty}^{c} xp(x) dx $					
4.	Die gemeinsame Dichte der	Zufallsvariablen X u	nd Y ist gegeben dure	ch		
		$p(x,y) = \begin{cases} e^{-x-y} \\ 0 \end{cases}$	wenn $x, y \ge 0$ sonst			
	Welche der folgenden Aussagen ist richtig?					
	\square X und Y sind unabhän \square X und Y sind unkorrel \square X und Y sind weder un	iert, aber nicht unab				
5.		e Zufallsvariable mit Dichte p und sei $c>0$ eine Konstante. Die Aussage "Die iable cX besitzt die Dichtefunktion cp " ist				
	□ richtig□ falsch□ nur richtig wenn Var(X	T(r) = 1/c gilt.				
6.	Sei X eine reellwertig Zufall X^2 , $\mathbb{E}(X^2)$ ist definiert als	svariable, und p ihre	e Dichtefunktion. Der	Erwartungswert von		
	$\int_{-\infty}^{\infty} x p(x^2) dx$	$\int_{-\infty}^{\infty} x^2 p$	$\Box p(x^2)dx$	$\int_{-\infty}^{\infty} x^2 p(x) dx$		

7. Sei X eine Zufallsvariable mit $\mathbb{E}(X) = 1$ und Var(X) = 5. Dann ist $\mathbb{E}((2+X)^2)$ gleich

 \square 8 \square 12 \square 14

8. Sei X eine eindimensionale Zufallsvariable und $c \in \mathbb{R}$. Es gelte Var(X+c) = Var(x) + Var(c). Daraus folgt

 \Box nichts, denn Var(X+c) = Var(x) + Var(c) gilt immer.

 $\Box c = 0.$

 $\Box \operatorname{Var}(X+c) = 0.$

9. Sei $X\in\mathbb{R}^2$ eine zweidimensionale Zufallsvariable mit Kovarianzmatrix $\begin{pmatrix}2&-1\\-1&2\end{pmatrix}$. Dann gilt

 $\Box \text{ Corr}(X_1, X_2) = -0.25$

 $\Box \text{ Corr}(X_1, X_2) = -0.5$

 $\Box \operatorname{Corr}(X_1, X_2) = -1$

10. Sei X eine reelwertige Zufallsvariable, $\alpha \in \mathbb{R} \setminus \{0\}$ und $Y = \alpha X$. Dann gilt

 \square Corr $(X, Y) = \alpha$

 \square Corr $(X, Y) = sign(\alpha)$

 \square Corr(X, Y) = 1

Aufgabe 2

Ein bestimmtes Krebsdiagnoseverfahren liefert in 99 Prozent aller Fälle das richtige Ergebnisse. Tatsächlich sind 1 Prozent der Bevölkerung krebskrank. Wie hoch ist die Wahrscheinlichkeit, dass eine getestete Person an Krebs erkrankt ist, unter der Bedingung, dass dies der Test ergab?

Aufgabe 3

Es seien X,Y zwei Zufallsvariablen mit den möglichen Werten 0,1 und 2 sowei der gemeinsamen Verteilung gemäß der folgenden Tabelle

P(X,Y)	Y=0	Y=1	Y=2
X=0	$\frac{1}{5}$	$\frac{1}{5}$	0
X=1	0	$\frac{1}{5}$	$\frac{1}{5}$
X=2	0	0	$\frac{1}{5}$

- 1. Berechne die Randverteilungen von X und Y, P(X) und P(Y).
- 2. Berechne die Posteriorverteilung von X, P(X|Y).
- 3. Sind X und Y unabhängig?
- 4. Berechne die Erwartungswerte von X und Y .

Aufgabe 4

Die Zufallsvariablen X sei gleichverteilt auf dem Intervall von -1 bis 1. Die Dichte ist definiert durch

$$p(x) = \begin{cases} 0.5 & \text{wenn } -1 \le x \le 1\\ 0 & \text{sonst} \end{cases}$$

- 1. Verifiziere, dass p(x) eine Dichte ist.
- 2. Berechne die Verteilungsfunktion F von X.
- 3. Zeichne die Dichte von X und die Verteilungsfunktion von X in eine Graphik ein.
- 4. Berechne den Erwartungswert von X.
- 5. Berechne die Varianz und die Standardabweichung von X.

Aufgabe 5

Seien X und Y zwei eindimensionale Zufallsvariablen und $a, b, c, d \in \mathbb{R}$. Man zeige:

- 1. Cov(aX + b, cY + d) = ac Cov(X, Y).
- 2. $Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$. Hinweis: Wegen 1. kann man hier o.B.d.A $\mathbb{E}(X) = \mathbb{E}(Y) = 0$ annehmen.

Aufgabe 6

Seien X_1, \ldots, X_n unabhängige, identisch verteilte Zufallsvariablen mit Erwartungswert μ und Varianz σ^2 . Wir definieren die Zufallsvariable Y als $Y := \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Zeige, dass $\mathbb{E}(Y) = \mu$.
- 2. Berechne Var(Y) in Abhängigkeit von σ^2 und n.

Aufgabe 7

Sei $X \in \mathbb{R}^n$ eine mehrdimensionale Zufallsvariable mit Erwartungswert $\mathbb{E}(X) = 0$ und der Kovarianzmatrix $\Sigma := \mathbb{E}(XX^T)$. Sei $\Sigma = U\Lambda U^T$ eine Eigenzerlegung von Σ (d.h. Λ ist eine Diagonalmatrix und U ist eine orthogonale Matrix). Wir definieren die Zufallsvariable $Y \in \mathbb{R}^n$ durch $Y := \sqrt{\Lambda} U^T X$.

Zeige, dass Y unkorreliert ist und jedes Y_i die Varianz 1 besitzt, d.h. zeige dass

$$\mathbb{E}(YY^T) = I$$