Differences between revisions 4 and 45 (spanning 41 versions)
Revision 4 as of 2012-07-12 18:18:51
Size: 1037
Editor: IreneWinkler
Comment:
Revision 45 as of 2012-10-22 07:52:54
Size: 2972
Editor: mlm
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
||'''Erster Termin für Themenvergabe'''|| Mittwoch, 18.05.2011, 10:00-12:00 Uhr, Raum FR 6046 ||
||'''Termin für Blockseminar'''|| nach Vereinbarung ||
||'''Erster Termin für Themenvergabe'''|| Donnerstag, 08.11.2012, 15:00-16:00 Uhr, Raum FR 6046 ||
||'''Termin für Blockseminar'''|| nach Absprache ||
Line 13: Line 13:
=== Papers === In diesem Seminar werden mathematische und statistische Modelle zur Erkennung von kausalen Zusammenhängen besprochen. Im Gegensatz zu reinen Vorhersagemodellen, die auf den Assoziationen/Korrelationen zwischen Variablen beruhen, ist das Ziel der empirischen Kausalanalyse, Ursache und Wirkung in komplexen Systemen zu identifizieren.
Line 15: Line 15:
Die Vorträge sollen jeweils 35 Minuten (+ 10 Minuten Diskussion) dauern. Wir legen Wert auf diese Zeitvorgabe und werden Vorträge bei deutlicher Überschreitung abbrechen. Die Vorträge sollen jeweils 30 Minuten (+ 10 Minuten Diskussion) dauern. Wir legen Wert auf diese Zeitvorgabe und werden Vorträge bei deutlicher Überschreitung abbrechen.
Line 17: Line 17:
|| '''Thema''' || '''Betreuer''' || '''Student''' ||
|| [[attachment:PhysRevLett_103_214101.pdf|Stationary Subspace Analysis]] || [[mailto:buenau@cs.tu-berlin.de|Paul von Bünau]] || ||
Als Entscheidungsmittel empfehlen wir den Eintrag [[ https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation | Correlation does not imply Causation]] auf Wikipedia.

|| '''Thema''' || '''Betreuer''' || '''Student''' || '''Beschreibung''' ||
|| [[attachment:Pearl Diagrams and Causality.pdf]] || Daniel Bartz || || J. Pearl ist ein großer Name in Kausalanalyse, graphischen Modellen usw. (Review paper) ||
|| [[attachment:Granger Causality.pdf]], ([[http://www.scholarpedia.org/article/Granger_causality | Scholarpedia Zusammenfassung]])|| Duncan Blythe || || Eine beliebte Operationalisierung von Kausalität auf Zeitreihen ||
|| [[attachment:Cointegration.pdf]] || Irene Winkler || || Granger und Engle, Nobelpreis für Wirtschaft 2003||
|| [[attachment:Rubin Model.pdf]] || Duncan Blythe || || Ähnliche Vorgehensweise zur Granger Causality ||
|| [[attachment:PSI.pdf]] || Daniel Bartz || || Granger Kausalität funktioniert nicht immer, z.b. im Gehirn ... ||
|| [[attachment:Cortical Interaction and Coherency.pdf]] || Duncan Blythe || || Wie analysiert man Kausalität im Gehirn? ||
|| [[attachment:Nonlinearity and Causality.pdf]] || Duncan Blythe || || Aus Nichtlinearität kann man oft eine kausale Richtung schliessen ||
|| [[attachment:Conditional Complexity.pdf]] || Duncan Blythe || || Kausal Analyse mittels ein Maßes für bedingte Verteilungen der Komplexität ||



Als Hintergrund zu den Schwierigkeiten bei der Kausalanalyse, mag [[http://plato.stanford.edu/entries/paradox-simpson/|Simpson's Paradox]] nutzlich sein.

Besonders motivierte Studenten können sich [[http://www.gutenberg.org/files/9662/9662-h/9662-h.htm |An Enquiry Concerning Human Understanding]] von David Hume anschauen, um das Thema in die historische Perspektive zu setzen.

Block-Seminar "Moderne Verfahren des Maschinellen Lernens: Kausalanalyse"

Termine und Informationen

Erster Termin für Themenvergabe

Donnerstag, 08.11.2012, 15:00-16:00 Uhr, Raum FR 6046

Termin für Blockseminar

nach Absprache

Verantwortlich

Prof. Dr. Klaus-Robert Müller

Ansprechtpartner(in)

Duncan Blythe, Irene Winkler

Sprache

Englisch

Anrechenbarkeit

Wahlpflicht in dem M.Sc. Modul Maschinelles Lernen 1

In diesem Seminar werden mathematische und statistische Modelle zur Erkennung von kausalen Zusammenhängen besprochen. Im Gegensatz zu reinen Vorhersagemodellen, die auf den Assoziationen/Korrelationen zwischen Variablen beruhen, ist das Ziel der empirischen Kausalanalyse, Ursache und Wirkung in komplexen Systemen zu identifizieren.

Die Vorträge sollen jeweils 30 Minuten (+ 10 Minuten Diskussion) dauern. Wir legen Wert auf diese Zeitvorgabe und werden Vorträge bei deutlicher Überschreitung abbrechen.

Als Entscheidungsmittel empfehlen wir den Eintrag Correlation does not imply Causation auf Wikipedia.

Thema

Betreuer

Student

Beschreibung

Pearl Diagrams and Causality.pdf

Daniel Bartz

J. Pearl ist ein großer Name in Kausalanalyse, graphischen Modellen usw. (Review paper)

Granger Causality.pdf, (Scholarpedia Zusammenfassung)

Duncan Blythe

Eine beliebte Operationalisierung von Kausalität auf Zeitreihen

Cointegration.pdf

Irene Winkler

Granger und Engle, Nobelpreis für Wirtschaft 2003

Rubin Model.pdf

Duncan Blythe

Ähnliche Vorgehensweise zur Granger Causality

PSI.pdf

Daniel Bartz

Granger Kausalität funktioniert nicht immer, z.b. im Gehirn ...

Cortical Interaction and Coherency.pdf

Duncan Blythe

Wie analysiert man Kausalität im Gehirn?

Nonlinearity and Causality.pdf

Duncan Blythe

Aus Nichtlinearität kann man oft eine kausale Richtung schliessen

Conditional Complexity.pdf

Duncan Blythe

Kausal Analyse mittels ein Maßes für bedingte Verteilungen der Komplexität

Als Hintergrund zu den Schwierigkeiten bei der Kausalanalyse, mag Simpson's Paradox nutzlich sein.

Besonders motivierte Studenten können sich An Enquiry Concerning Human Understanding von David Hume anschauen, um das Thema in die historische Perspektive zu setzen.

IDA Wiki: Main/WS12_SeminarKausalanalyse (last edited 2012-11-13 12:36:20 by mlm)