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Abstract

We recently proposed a new measure, termed Phase Slope Index (PSI), It estimates
the causal direction of interactions robustly with respect to instantaneous mixtures of
independent sources with arbitrary spectral content. We compared this method to Granger
Causality for linear systems containing spatially and temporarily mixed noise and found
that, in contrast to PSI, the latter was not able to properly distinguish truly interacting
systems from mixed noise. Here, we extent this analysis with respect to two aspects: a)
we analyze Granger causality and PSI also for non-mixed noise, and b) we analyze PSI for
nonlinear interactions. We found a) that Granger causality, in contrast to PSI, fails also for
non-mixed noise if the memory-time of the sender of information is long compared to the
transmission time of the information, and b) that PSI, being a linear method, eventually
misses nonlinear interactions but is unlikely to give false positive results.
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1. Introduction

To understand the direction of information flow in interacting systems, it is of fundamental
importance to distinguish the driver from the recipient. Granger Causility proposed by
Granger (1969) is probably the most prominent method to estimate the direction of causal
influence in time series analysis.

Apart from Granger Causality, many other methods have been proposed to estimate
the direction of information flow both for bivariate and multivariate data. Baccala and
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Sameshima (1998) suggested to interpret autogressive matrices in the frequency domain
to estimate directionality for bivariate data, which was generalized to multivariate data
by Baccala and Sameshima (2001). The approach of Kaminski and Blinowska (1991) is
equivalent to the preceeding ones for bivariate data, but differs for multivariate data most
notably with regard to the question whether estimated information flux is direct or indirect.
An information theoretic approach was taken by Schreiber (2000) by analyzing entropies of
conditional probabilities (rather than the mean as implicitly done with Granger Causality).
A model based method valid for nonlinear and weakly coupled oscillators was proposed by
Rosenblum and Pikovsky (2001). With the notable exception of Rosenblum and Pikovsky
(2001), all these methods are variations of the highly popular Granger causality, and this
will serve as a comparison to our proposed method.

Granger Causality is based on asymmetric prediction accuracies of one time series on the
future of another. The difficulty in realistic measurements is that asymmetries can also arise
due to other factors, specifically independent background activity having nontrivial spectral
properties and eventually being measured in unknown superposition in the channels. In
this case the interpretation of the asymmetry as a direction of information flow can lead
to significant albeit false results as demonstrated e.g. by Albo et al. (2004). To overcome
this difficulty Nolte et al. (2008) recently proposed a method based on a frequency-average
of the slope of the phase of coherence defined in such way that it is strictly robust with
respect to instantaneous mixtures of independent sources of otherwise arbitrary nature.

In this paper we address two new aspects in more detail. First, in many situations
one could argue that, while the measurements are noisy, this noise is not a mixture, and
Granger Causality might work for this case. Second, the beneficial properties of PSI might
disappear if interactions are nonlinear. We will first shortly recall both methods and then
study both mentioned aspects with simulations.

2. Methods

2.1 Granger Causality

The fundamental basis of estimates of causal relations using Granger Causality is the fact
that a cause precedes the effect. Probably the simplest way to exploit this idea is to use
linear prediction of future values of bivariate data xi(t) for i = 1, 2 with AR-modeling:

x(t) =
P∑

p=1

A(p)x(t − p) + ξ(t) (1)

where A(p) are the AR-matrices up to order P and ξ(t) is white gaussian noise with esti-
mated covariance matrix Σ.

The diagonal elements of Σ (i.e Σii for i = 1, 2) measure the remaining error when
future values of xi(t) are modeled with both time series’, simultaneously. Instead of one
multivariate model one can also model the data by two separate univariate models:

xi(t) =
P∑

p=1

Ai(p)xi(t − p) + ξi(t) (2)
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for i = 1, 2, and where ξi(t) has estimated variance Σi.
Note that Σi ≤ Σii because the univariate models do not use information contained in

the other time series. The additional information contained in xj about the future of xi for
j �= i can be quantified as

Γj→i = log
(

Σi

Σii

)
(3)

If Γj→i > 0 one says that channel j ’Granger causes’ channel i.
For a unidirectional information flow one has Γ1→2 = 0 or Γ2→1 �= 0 or vice versa with

obvious direction of information flux. In practice, results are rarely that clear and one can
define the effective information flux from the first to the second channel as

G̃ = Γ1→2 − Γ2→1 (4)

We here normalize G̃ by its standard deviation, estimated by the Jackknife procedure (the
validity was confirmed in simulations), and define the Granger Causality finally as

G =
G̃

std(G̃)
(5)

2.2 Phase Slope Index

In an alternative approch we first devide the whole data set into K segments of duration T
(in physical units) and estimate the cross-spectral density as

Sij(f) =
1
K

∑
k

zi(f, k)z∗j (f, k) (6)

where zi(f, k) is the Fourier transform of the Hanning-windowed data in channel i and
segment k. The ’Phase Slope Index’ (PSI) is now defined as (Nolte et al. (2008))

Ψ̃ij = �
⎛
⎝∑

f∈F

C∗
ij(f)Cij(f + δf)

⎞
⎠ (7)

where

Cij(f) =
Sij(f)√

Sii(f)Sjj(f)
(8)

is the complex coherency, δf = 1/T is the frequency resolution, and �(·) denotes taking
the imaginary part. F is the set of frequencies over which the slope is summed. Typically,
F contains all frequencies, but it can also be restricted to a specified band for rhythmic
activities.

To see that the definition of Ψ̃ij corresponds to a meaningful estimate of the average
slope it is convenient to rewrite it as

Ψ̃ij =
∑
f∈F

αij(f)αij(f + δf) sin(Φ(f + δf) − Φ(f)) (9)
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with Cij(f) = αij(f) exp(iΦ(f)) and αij(f) = |Cij(f)| being frequency dependent weights.
For smooth phase spectra, sin(Φ(f+δf)−Φ(f)) ≈ Φ(f+δf)−Φ(f) and hence Ψ̃ corresponds
to a weighted average of the slope.

Let us list the most important properties of Ψ̃:

1. For an infinite amount of data and for arbitrary instantaneous mixtures of an arbitrary
number of independent sources, Ψ̃ is exactly zero, because mixtures of independent
sources do not induce an imaginary part of coherencies (Nolte et al. (2004)) which in
turn is necessary to generate a non-vanishing Ψ̃. For finite data, Ψ̃ will then fluctuate
in this case around zero within error bounds. A special case of this are phase jumps
from 0 to ±π which can arise also for mixtures of independent sources.

2. Ψ̃ is expressed in terms of coherencies, only. The standard deviation of a coherency is
approximately constant and approximately only depends on the number of averages
which is equal for all frequencies. Thus, large but meaningless phase fluctuations in
frequency bands containing essentially independent signals are implicitly suppressed.

3. If the phase Φ(f) is linear in f and provided that the frequency resolution is sufficient
(i.e. δf is sufficiently small), the argument in the sum has the same sign across all
frequencies and then Ψ̃ will have the same sign as the slope of Φ(f).

Finally, as for Granger Causality it is convenient to normalize Ψ̃ by an estimate of its
standard deviation

Ψ =
Ψ̃

std(Ψ̃)
(10)

with std(Ψ̃) being estimated by the Jackknife method, which was validated in simulations.
In the examples below we consider absolute values of each larger than 2 as significant.

3. Simulations and Causality Challenge

3.1 Uncorrelated noise

Granger Causality is based on the assumption that a sender possesses information about
the future of the recipient which is not available at the recipient itself, because, roughly
speaking, this information has not yet arrived. In contrast, the recipient cannot access any
information about the sender other than that already contained in the present and past of
the sender because causal interactions are necessarily forward in time.

However, the situation changes when the measurements, especially of the sender, are
noisy. In that case the signal of the recipient contains delayed but cleaner information about
the sender which is masked/hidden to the sender itself due to the noise. Thus, the slightly
outdated information of the receiver may help to predict the future of the sender and yet
lead to wrong results in a Granger test. In other words, the disadvantage of the recipient
of receiving only old information might have been compensated or even overcompensated
by the advantage of being measured in a much cleaner way.

Apparently, the impact of this trade-off depends on the memory time of the sender: If
the sender has a long memory and the transmission time is short then the time delay of the
interaction is largely irrelevant.
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Figure 1: Granger Causality and PSI as a function of noise level for systems with different
memory. The memory time in bins is roughly given by 1/(1−α). Values outside
the narrow horizontal strip are statistically significant.

To show this explicitly we simulated clean data of the sources using an AR(1) model
with coefficient matrix

A(1) =
(

α 0
1 .5

)
(11)

This system models a unidirectional information flow from channel 1 to channel 2. The
memory of the first channel, the sender, is controlled by α: any input decays after n time
points as αn = exp(−n log(1/α)) and has hence a decay rate of −1/ log(α).

Let us denote the output of this clean system for the i.th source (i.e. true signal of
interest) as xi(t). Then we assume the measurements yi(t) to be y1(t) = x1(t) + βη(t) and
y2(t) = x2(t) with η(t) being white gaussian noise and β a free parameter which controlls the
relative strength of true signal and noise. Results for these systems are shown in Fig.1 for
various values of α. We observe that Granger Causality results in significant wrong direction
estimates for long memory times of the sender. In contrast, the Phase Slope Index always
results in the correct directionality. We note, that with α also the magnitude of the sender
changes which also has an impact on the results. However, normalizing the sender leads to
essentially identical results provided that influence of the sender on the recipient is at least
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Figure 2: Top panels: Power and autocorrelation of a single channel for a real EEG ex-
periment. Bottom: Granger Causality and PSI as a function of noise level using
the real EEG data as driver and adding noise to the sender. The noise level is
measured as the power ratio at the peak frequency. The vertical bars correspond
to two estimated standard deviations and indicate significance if they do not cross
the zero line.

as large as the innovation process of the recipient, i.e. of ξ2(t). This leads to the somewhat
paradoxical situation that for noisy measurements the larger the causal drive from A to B
the more likely Granger Causality estimates a drive from B to A.

In a second example, we simulated the situation based on real EEG data. Results for
power and autocorrelation function are shown in Fig.2. The memory time of the system
is about 0.5 seconds which is large compared to typical transmission times along neuronal
fibers. Neuronal signals in axons in white brain matter, which are relevant for long dis-
tance information transfer, travel with a speed of about 1cm/msec and need only a few
milliseconds to cross the whole brain. The simulation was identical to the previous one
with the exception that the real data x(t), normalized to unit standard deviation, were
taken as sender and the recipient was assumed to be y(t) = 2x(t − 3) − .5y(t − 1) + η(t)
with η(t) being white gaussian noise with unit standard deviation. Since the sampling rate
was 256 Hz, the delay corresponds to a transmission time of about 12ms. Results again
showed that already a fairly small amount of noise put on the measurement of the sender
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is sufficient to result in significant false direction estimates of Granger Causality while PSI
always predicted the correct direction.

3.2 Nonlinear interactions

To test Granger Causality and PSI for bivariate nonlinear systems we included a nonlinearity
of specific order into the interaction term and generated 500 examples as randomly as
possible. The data z(t) were generated as

z(t) = (1 − γ)
x(t)
||X|| + γ

By(t)
||BY || (12)

where x is a unidirectional and in general nonlinear system and y are two independent
noise sources which are mixed into channels by a random matrix B. The parameter γ was
set randomly between 0 and 1, and || · || denotes Frobenius matrix norm. The noise y(t)
was generated with an AR(10)-model with diagonal but otherwise random parameters. The
signal x(t) was generated in the following way. If, e.g., the first channel was the sender then
x1(t) was generated with a random AR-model of order 10, and x2(t) was generated as

x2(t) =
∑

p

A22(p)x2(t − p) + f(x1(t − 1), ..., x1(t − P )) (13)

where P was set to 10 and f is a in general nonlinear function of specific order chosen in
the most general way. E.g., for order 4 the function f was given by

f(x1(t − 1), ..., x1(t − P )) =
∑
ijkl

aijklx1(t − i)x1(t − j)x1(t − k)x1(t − l) (14)

with random parameters aijkl. The construction for other orders is analoguous.
Results for PSI and Granger Causality are shown in Fig.3 and Fig.4, respectively. We

observe that PSI, in contrast to Granger Causality, hardly ever results in false significant
direction estimates. We also oberve that for even order of nonlinearity PSI is also not able
to detect any intercation at all. However, this can be explained by the sign symmetry of
the interaction and is due to the linear nature of PSI.

3.3 Causality Challenge

We submitted a dataset to the Causality Challenge1 which consists of 1000 examples iden-
tical to the ones in the previous section for the order = 1 case except for two minor details:
for the challenge we chose uniformly distributed innovation processes (i.e. ξ(t) in Eq.(1))
instead of gaussian distributed input, and we chose three noise sources instead of two.

The task is to estimate the causal direction for as many examples as possible. The
counting is as follows: +1 point for each correct result, -10 points for each wrong results,
and 0 points for each missed example. For the top left panel of Fig.3 this means that one
gets +1 point for each dot in the lower left or upper right box, -10 points for each point
in the lower right or upper left box, and 0 points for each point in the narrow horizontal
stripe.

1. ”NOISE”, http://www.causality.inf.ethz.ch/repository.php?id=17
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Figure 3: Results for PSI for 500 random systems as a function of noise level times the sign
of true direction for different orders of nonlinearity (order=1 is linear). All results
in the narrow horizontal strip are insignificant, and the others are as indicated
in the lower right panel. For each panel, left and right borders, i.e. 1 − γ = 1,
correspond to zero noise and the center, i.e. γ = 1, corresponds to only noise.

For the challenge data, Granger causality leads to 736 correct and 100 wrong results
scoring a total of -264 points. Note, that 164 insignificant results are not counted. In
comparison, PSI2 leads to 638 correct and 6 wrong results scoring a total of +578 points.

This counting was introduced to address the importance of evidence for scientific claims.
A finding which was just guessed right has little value. In many cases conclusions cannot
be drawn with the given data measured in a specific situation. Researchers must be able to
also recognize these cases and should then not draw conclusions at all.

In a second set of data sets we provided real EEG data for 10 subjects measured at rest
in eyes closed condition. A specific feature of this measurement is a strong 10Hz rhythm
predominantly in the back part of the brain. Using our methods we found information flow

2. The Matlab code can be downloaded at http://ml.cs.tu-berlin.de/causality/
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Figure 4: Same as Fig.3 for Granger Causality.

from front to back, i.e. from channels with low signal to ratio to channels with high signal
to ratio.

The data used in section 3.1 were taken from one of these subjects. We showed in that
section that Granger Causality has a bias to estimate direction from clean to noisy signals,
and a finding using Granger Causality stating that information is flowing from back to front
is possibly caused by the different signal to noise ratios rather than by true information flow.

For the challenge we can only put this to discussion since the ground truth is not known.
We therefore just presented our own results and provided excellent data sets to let people
apply their own methods to this case.

4. Conclusion

The paper presents novel insights on causality measures and carefully evaluates their domain
of applicability. In particular, we present simulations that contrast Granger Causality and
our new Phase Slope Index.
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Interestingly, under noise the classical Granger Causality can fail, even to an extent
that a wrong causal direction is inferred with a high significance level and even if noise is
uncorrelated.

We could show that the PSI approach does not suffer from such a shortcoming including
in simulations modeling random and highly nonlinear interactions. Clearly real-world data
are always noisy and many complex technical or biological systems contain nonlinear ele-
ments. Therefore inference on causal structure in data is required to be robust, a property
that is inherent to our proposed new method.
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