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Abstract
The discovery of causal relationships between a set of observed variables is a fun-
damental problem in science. For continuous-valued data linear acyclic causal
models with additive noise are often used because these models are well under-
stood and there are well-known methods to fit them to data. In reality, of course,
many causal relationships are more or less nonlinear, raising some doubts as to
the applicability and usefulness of purely linear methods. In this contribution we
show that in fact the basic linear framework can be generalized to nonlinear mod-
els. In this extended framework, nonlinearities in the data-generating process are
in fact a blessing rather than a curse, as they typically provide information on
the underlying causal system and allow more aspects of the true data-generating
mechanisms to be identified. In addition to theoretical results we show simula-
tions and some simple real data experiments illustrating the identification power
provided by nonlinearities.

1 Introduction
Causal relationships are fundamental to science because they enable predictions of the consequences
of actions [1]. While controlled randomized experiments constitute the primary tool for identifying
causal relationships, such experiments are in many cases either unethical, too expensive, or techni-
cally impossible. The development of causal discovery methods to infer causal relationships from
uncontrolled data constitutes an important current research topic [1, 2, 3, 4, 5, 6, 7, 8]. If the ob-
served data is continuous-valued, methods based on linear causal models (aka structural equation
models) are commonly applied [1, 2, 9]. This is not necessarily because the true causal relationships
are really believed to be linear, but rather it reflects the fact that linear models are well understood
and easy to work with. A standard approach is to estimate a so-called Markov equivalence class of
directed acyclic graphs (all representing the same conditional independencies) from the data [1, 2, 3].
For continuous variables, the independence tests often assume linear models with additive Gaussian
noise [2]. Recently, however, it has been shown that for linear models, non-Gaussianity in the data
can actually aid in distinguishing the causal directions and allow one to uniquely identify the gen-
erating graph under favourable conditions [7]. Thus the practical case of non-Gaussian data which
long was considered a nuisance turned out to be helpful in the causal discovery setting.

In this contribution we show that nonlinearities can play a role quite similar to that of non-
Gaussianity: When causal relationships are nonlinear it typically helps break the symmetry between
the observed variables and allows the identification of causal directions. As Friedman and Nach-
man have pointed out [10], non-invertible functional relationships between the observed variables
can provide clues to the generating causal model. However, we show that the phenomenon is much
more general; for nonlinear models with additive noise almost any nonlinearities (invertible or not)
will typically yield identifiable models. Note that other methods to select among Markov equivalent
DAGs [11, 8] have (so far) mainly focussed on mixtures of discrete and continuous variables.



In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
xi is associated with a node i in a directed acyclic graph G, and the value of xi is obtained as a
function of its parents in G, plus independent additive noise ni, i.e.

xi := fi(xpa(i)) + ni, (1)

where fi is an arbitrary function (possibly different for each i), xpa(i) is a vector containing the
elements xj such that there is an edge from j to i in the DAG G, the noise variables ni may
have arbitrary probability densities pni

(ni), and the noise variables are jointly independent, that
is pn(n) =

∏
i pni

(ni), where n denotes the vector containing the noise variables ni. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions fi, and
the ni sampled independently from the same densities pni(ni).

Note that this model includes the special case when all the fi are linear and all the pni
are Gaussian,

yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities pni

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution px(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x → y with y := f(x) + n where f is nonlinear, the supports of the densities px(x)
and pn(n) are compact regions, and the function f is constant on each connected component of the
support of px. The support of the joint density is now given by the two gray squares. Note that the
input distribution px, the noise distribution pn and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.



both Gaussian and statistically independent. In panel (a) we plot the joint density p(x, y) of the
observed variables, for the linear case of f(x) = x. As a trivial consequence of the model, the
conditional density p(y | x) has identical shape for all values of x and is simply shifted by the
function f(x); this is illustrated in panel (b). In general, there is no reason to believe that this
relationship would also hold for the conditionals p(x | y) for different values of y but, as is well
known, for the linear–Gaussian model this is actually the case, as illustrated in panel (c). Panels (d-f)
show the corresponding joint and conditional densities for the corresponding model with a nonlinear
function f(x) = x + x3. Notice how the conditionals p(x | y) look different for different values
of y, indicating that a reverse causal model of the form x := g(y) + ñ (with y and ñ statistically
independent) would not be able to fit the joint density. As we will show in this section, this will in
fact typically be the case, however, not always.

To see the latter, we first show that there exist models other than the linear–Gaussian and the in-
dependent case which admit both a forward x → y and a backward x ← y model. Panel (g) of
Figure 1 presents a nonlinear functional model with additive non-Gaussian noise and non-Gaussian
input distributions that nevertheless admits a backward model. The functions and probability den-
sitities can be chosen to be (arbitrarily many times) differentiable. Note that the example of panel
(g) in Figure 1 is somewhat artificial: p has compact support, and x, y are independent inside the
connected components of the support. Roughly speaking, the nonlinearity of f does not matter since
it occurs where p is zero — an artifical situation which is avoided by the requirement that from now
on, we will assume that all probability densities are strictly positive. Moreover, we assume that all
functions (including densities) are three times differentiable. In this case, the following theorem
shows that for generic choices of f , px(x), and pn(n), there exists no backward model.

Theorem 1 Let the joint probability density of x and y be given by

p(x, y) = pn(y − f(x))px(x) , (2)

where pn, px are probability densities on R. If there is a backward model of the same form, i.e.,

p(x, y) = pñ(x− g(y))py(y) , (3)

then, denoting ν := log pn and ξ := log px, the triple (f, px, pn) must satisfy the following differ-
ential equation for all x, y with ν′′(y − f(x))f ′(x) 6= 0:

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν′′
+
f ′′

f ′

)
− 2ν′′f ′′f ′ + ν′f ′′′ +

ν′ν′′′f ′′f ′

ν′′
− ν′(f ′′)2

f ′
, (4)

where we have skipped the arguments y − f(x), x, and x for ν, ξ, and f , respectively. Moreover, if
for a fixed pair (f, ν) there exists y ∈ R such that ν′′(y − f(x))f ′(x) 6= 0 for almost all x ∈ R, the
set of all px for which p has a backward model is contained in a 3-dimensional affine space.

Loosely speaking, the statement that the differential equation for ξ has a 3-dimensional space of
solutions (while a priori, the space of all possible log-marginals ξ is infinite dimensional) amounts
to saying that in the generic case, our forward model cannot be inverted.

A simple corollary is that if both the marginal density px(x) and the noise density pn(y− f(x)) are
Gaussian then the existence of a backward model implies linearity of f :

Corollary 1 Assume that ν′′′ = ξ′′′ = 0 everywhere. If a backward model exists, then f is linear.

Finally, we note that if f is linear then the only model for which there is a backward model is
the jointly Gaussian case. This is a stronger result than what was previous known and utilized [7]
because it rules out the existence of a nonlinear backward model.

Corollary 2 Let p(x, y) have forward and backward models of the form (2) and (3) with linear
non-constant f . Then g is linear and p(x, y) is bivariate Gaussian.

All proofs are provided in the appendix.

Although these results strictly only concern the two-variable case, there are strong reasons to believe
that the general argument also holds for larger models. In this brief contribution we do not pursue any
further theoretical results, rather we show empirically that the estimation principle can be extended
to networks involving more than two variables.



4 Model estimation
Section 3 established for the two-variable case that given knowledge of the exact densities, the true
model is (in the generic case) identifiable. We now consider practical estimation methods which
infer the generating graph from sample data.

Again, we begin by considering the case of two observed scalar variables x and y. Our basic method
is straightforward: First, test whether x and y are statistically independent. If they are not, we
continue as described in the following manner: We test whether a model y := f(x)+n is consistent
with the data, simply by doing a nonlinear regression of y on x (to get an estimate f̂ of f ), calculating
the corresponding residuals n̂ = y − f̂(x), and testing whether n̂ is independent of x. If so, we
accept the model y := f(x) + n; if not, we reject it. We then similarly test whether the reverse
model x := g(y) + n fits the data.

The above procedure will result in one of several possible scenarios. First, if x and y are deemed
mutually independent we infer that there is no causal relationship between the two, and no further
analysis is performed. On the other hand, if they are dependent but both directional models are
accepted we conclude that either model may be correct but we cannot infer it from the data. A
more positive result is when we are able to reject one of the directions and (tentatively) accept the
other. Finally, it may be the case that neither direction is consistent with the data, in which case we
conclude that the generating mechanism is more complex and cannot be described using this model.

This procedure could be generalized to an arbitrary numberN of observed variables, in the following
way: For each DAG Gi over the observed variables, test whether it is consistent with the data by
constructing a nonlinear regression of each variable on its parents, and subsequently testing whether
the resulting residuals are mutually independent. If any independence test is rejected, Gi is rejected.
On the other hand, if none of the independence tests are rejected, Gi is consistent with the data.

The above procedure is obviously feasible only for very small networks (roughly N ≤ 7 or so) and
also suffers from the problem of multiple hypothesis testing; an important future improvement would
be to take this properly into account. Furthermore, the above algorithm returns all DAGs consistent
with the data, including all those for which consistent subgraphs exist. Our current implementation
removes any such unnecessarily complex graphs from the output.

The selection of the nonlinear regressor and of the particular independence tests are not constrained.
Any prior information on the types of functional relationships or the distributions of the noise should
optimally be utilized here. In our implementation, we perform the regression using Gaussian Pro-
cesses [12] and the independence tests using kernel methods [13]. Note that one must take care to
avoid overfitting, as overfitting may lead one to falsely accept models which should be rejected.

5 Experiments
To show the ability of our method to find the correct model when all the assumptions hold we have
applied our implementation to a variety of simulated and real data.

For the regression, we used the GPML code from [14] corresponding to [12], using a Gaussian kernel
and independent Gaussian noise, optimizing the hyperparameters for each regression individually.1
In principle, any regression method can be used; we have verified that our results do not depend
significantly on the choice of the regression method by comparing with ν-SVR [15] and with thin-
plate spline kernel regression [16]. For the independence test, we implemented the HSIC [13] with
a Gaussian kernel, where we used the gamma distribution as an approximation for the distribution
of the HSIC under the null hypothesis of independence in order to calculate the p-value of the test
result.

Simulations. The main results for the two-variable case are shown in Figure 2. We simulated data
using the model y = x + bx3 + n; the random variables x and n were sampled from a Gaussian
distribution and their absolute values were raised to the power pwhile keeping the original sign. The

1The assumption of Gaussian noise is somewhat inconsistent with our general setting where the residuals
are allowed to have any distribution (we even prefer the noise to be non-Gaussian); in practice however, the
regression yields acceptable results as long as the noise is sufficiently similar to Gaussian noise. In case of
significant outliers, other regression methods may yield better results.
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Figure 2: Results of simulations (see main text for details): (a) The proportion of times the forward
and the reverse model were accepted, paccept, as a function of the non-Gaussianity parameter p (for
b = 0), and (b) as a function of the nonlinearity parameter b (for p = 1).

parameter b controls the strength of the nonlinearity of the function, b = 0 corresponding to the linear
case. The parameter p controls the non-Gaussianity of the noise: p = 1 gives a Gaussian, while
p > 1 and p < 1 produces super-Gaussian and sub-Gaussian distributions respectively. We used
300 (x, y) samples for each trial and used a significance level of 2% for rejecting the null hypothesis
of independence of residuals and cause. For each b value (or p value) we repeated the experiment 100
times in order to estimate the acceptance probabilities. Panel (a) shows that our method can solve the
well-known linear but non-Gaussian special case [7]. By plotting the acceptance probability of the
correct and the reverse model as a function of non-Gaussianity we can see that when the distributions
are sufficiently non-Gaussian the method is able to infer the correct causal direction. Then, in panel
(b) we similarly demonstrate that we can identify the correct direction for the Gaussian marginal
and Gaussian noise model when the functional relationship is sufficiently nonlinear. The results are
consistent with Corollaries 2 and 1, respectively. Note in particular, that the model is identifiable
also for positive b in which case the function is invertible, indicating that non-invertibility is not a
necessary condition for identification.

We also did experiments for 4 variablesw, x, y and z with a diamond-like causal
structure. We took w ∼ U(−3, 3), x = w2 + nx with nx ∼ U(−1, 1), y =
4
√
|w|+ny with ny ∼ U(−1, 1), z = 2 sinx+2 sin y+nz with nz ∼ U(−1, 1).

We sampled 500 (w, x, y, z) tuples from the model and applied the algorithm
described in Section 4 in order to reconstruct the DAG structure. The simplest
DAG that was consistent with the data (with significance level 0.05 for each
test) turned out to be precisely the true causal structure. All five other DAGs for
which the true DAG is a subgraph were also consistent with the data.

w

x y

z

Real-world data. Of particular empirical interest is how well the proposed method performs on
real world datasets for which the assumptions of our method might only hold approximately. Due
to space constraints we only discuss three real world datasets here.

The first dataset, the “Old Faithful” dataset [17] contains data about the duration of an eruption and
the time interval between subsequent eruptions of the Old Faithful geyser in Yellowstone National
Park, USA. Our method obtains a p-value of 0.5 for the (forward) model “current duration causes
next interval length” and a p-value of 4.4 × 10−9 for the (backward) model “next interval length
causes current duration”. Thus, we accept the model where the time interval between the current
and the next eruption is a function of the duration of the current eruption, but reject the reverse
model. This is in line with the chronological ordering of these events. Figure 3 illustrates the data,
the forward and backward fit and the residuals for both fits. Note that for the forward model, the
residuals seem to be independent of the duration, whereas for the backward model, the residuals are
clearly dependent on the interval length. Time-shifting the data by one time step, we obtain for the
(forward) model “current interval length causes next duration” a p-value smaller than 10−15 and for
the (backward) model “next duration causes current interval length” we get a p-value of 1.8× 10−8.
Hence, our simple nonlinear model with independent additive noise is not consistent with the data
in either direction.

The second dataset, the “Abalone” dataset from the UCI ML repository [18], contains measurements
of the number of rings in the shell of abalone (a group of shellfish), which indicate their age, and the
length of the shell. Figure 4 shows the results for a subsample of 500 datapoints. The correct model
“age causes length” leads to a p-value of 0.19, while the reverse model “length causes age” comes
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Figure 3: The Old Faithful Geyser data: (a) forward fit corresponding to “current duration causes
next interval length”; (b) residuals for forward fit; (c) backward fit corresponding to “next interval
length causes current duration”; (d) residuals for backward fit.
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Figure 4: Abalone data: (a) forward fit corresponding to “age (rings) causes length”; (b) residuals for
forward fit; (c) backward fit corresponding to “length causes age (rings)”; (d) residuals for backward
fit.
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Figure 5: Altitude–temperature data. (a) forward fit corresponding to “altitude causes temperature”;
(b) residuals for forward fit; (c) backward fit corresponding to “temperature causes altitude”; (d)
residuals for backward fit.

with p < 10−15. This is in accordance with our intuition. Note that our method favors the correct
direction although the assumption of independent additive noise is only approximately correct here;
indeed, the variance of the length is dependent on age.

Finally, we assay the method on a simple example involving two observed variables: The altitude
above sea level (in meters) and the local yearly average outdoor temperature in centigrade, for 349
weather stations in Germany, collected over the time period of 1961–1990 [19]. The correct model
“altitude causes temperature” leads to p = 0.017, while “temperature causes altitude” can clearly be
rejected (p = 8 × 10−15), in agreement with common understanding of causality in this case. The
results are shown in Figure 5.

6 Conclusions

In this paper, we have shown that the linear–non-Gaussian causal discovery framework can be gen-
eralized to admit nonlinear functional dependencies as long as the noise on the variables remains
additive. In this approach nonlinear relationships are in fact helpful rather than a hindrance, as they
tend to break the symmetry between the variables and allow the correct causal directions to be iden-
tified. Although there exist special cases which admit reverse models we have shown that in the
generic case the model is identifiable. We have illustrated our method on both simulated and real
world datasets.
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A Proof of Theorem 1
Set

π(x, y) := log p(x, y) = ν(y − f(x)) + ξ(x) , (5)
and ν̃ := log pñ, η := log py . If eq. (3) holds, then π(x, y) = ν̃(x− g(y)) + η(y) , implying

∂2π

∂x∂y
= −ν̃′′(x− g(y))g′(y) and

∂2π

∂x2
= ν̃′′(x− g(y)) .

We conclude
∂

∂x

(
∂2π/∂x2

∂2π/(∂x∂y)

)
= 0 . (6)

Using eq. (5) we obtain
∂2π

∂x∂y
= −ν′′(y − f(x))f ′(x) , (7)

and
∂2π

∂x2
=

∂

∂x
(−ν′(y − f(x))f ′(x) + ξ′(x)) = ν′′(f ′)2 − ν′f ′′ + ξ′′ , (8)

where we have dropped the arguments for convenience. Combining eqs. (7) and (8) yields

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
= −2f ′′ +

ν′f ′′′

ν′′f ′
− ξ′′′ 1

ν′′f ′
+
ν′ν′′′f ′′

(ν′′)2
− ν′(f ′′)2

ν′′(f ′)2
− ξ′′ ν

′′′

(ν′′)2
+ ξ′′

f ′′

ν′′(f ′)2
.

Due to eq. (6) this expression must vanish and we obtain DE (4) by term reordering. Given f, ν, we
obtain for every fixed y a linear inhomogeneous DE for ξ:

ξ′′′(x) = ξ′′(x)G(x, y) +H(x, y) , (9)
where G and H are defined by

G := −ν
′′′f ′

ν′′
+
f ′′

f ′
and H := −2ν′′f ′′f ′ + ν′f ′′′ +

ν′ν′′′f ′′f ′

ν′′
− ν′(f ′′)2

f ′
.

Setting z := ξ′′ we have z′(x) = z(x)G(x, y) +H(x, y) . Given that such a function z exists, it is
given by

z(x) = z(x0)e
R x

x0
G(x̃,y)dx̃ +

∫ x

x0

e
R x

x0
G(x̃,y)dx̃−

R x̂
x0
G(x̄,y)dx̄

H(x̂, y)dx̂ . (10)

Let y be fixed such that ν′′(y−f(x)f ′(x)) 6= 0 holds for almost all x. Then z is determined by z(x0)
since we can extend eq. (10) to the remaining points. The set of all functions ξ satisfying the linear
inhomogenous DE (9) is a 3-dimensional affine space: Once we have fixed ξ(x0), ξ′(x0), ξ′′(x0) for
some arbitrary point x0, ξ is completely determined. Given fixed f and ν, the set of all ξ admitting
a backward model is contained in this subspace. �

B Proof of Corollary 1

Substituting ν′′′ = 0 into the definitions of G and H (see Appendix A), we obtain

G =
f ′′

f ′
and H = −2ν′′f ′′f ′ + ν′f ′′′ − ν′(f ′′)2

f ′
.

Substituting this and ξ′′′ = 0 into (9), we obtain the equation 0 = ξ′′ f
′′

f ′ −2ν′′f ′′f ′+ν′f ′′′− ν′(f ′′)2

f ′ .

Now, since ν′′′ = 0, ν′ is a linear function. Without loss of generality, we can assume ν′ to have
a root α, that is, ν′(α) = 0. Then, restricting ourselves to the submanifold {(x, y) ∈ R2 : y =
f(x) + α} on which ν′ = 0, we have 0 = f ′′

(
ξ′′

f ′ − 2ν′′f ′
)
, so either f ′′ = 0 or (f ′)2 = ξ′′

2ν′′

which means f ′ is constant. In either case, f is linear. �



C Proof of Corollary 2

Since f is linear, we know that f ′′′ = f ′′ = 0. Plugging this into (4) yields for all (x, y) such that
ν′′
(
y − f(x)

)
6= 0:

ξ′′′(x) = −ξ′′(x)f ′(x)
ν′′′
(
y − f(x)

)
ν′′
(
y − f(x)

) . (11)

We will show that ν′′′ = c1ν
′′. Assume this is not the case. Then there are a, b, such that

ν′′(a), ν′′(b) 6= 0 and ν′′′(a)
ν′′(a) 6=

ν′′′(b)
ν′′(b) . Setting y = f(x) + a and y = f(x) + b this would

imply ξ′′(x) = 0 for all x. This is a contradiction, because exp(c2x + c3) can never be pro-
portional to a density. Therefore we have ν′′′ = c1ν

′′. Note that because of the same reason as
above, ν′′ cannot be constantly zero. Only two solutions to this equation are left: the non-trivial
one ν′′(z) = c4 exp(c1z), is not possible, because exp

(
c4
c21

exp(c1z)
)

cannot be a density. Thus
the trivial solution c1 = 0 must be valid and we conclude that ν′′′ ≡ 0. This implies ξ′′′ ≡ 0 and
means that both ε and x are normally distributed. It further follows that y is normally distributed as
well. Because x is the sum of two independent random variables (g(y) and ε̃), Cramér’s theorem
[20] tells us that g(y) and ε̃ are normally distributed, too. But because of Corollary 1, the Gaussian
distributions of y and ε̃ imply that g has to be linear. �
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