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A general definition of causahty is introduced and then specialized to become operational. By 
considering simple examples a numhcr ~4 ,I~\;I~I;I+x .tnd ;tlso ditliculties, with the definition 
arc discussed. Tests based on the JC~‘IIIIIIO~~ arc thou c~m\~dcrcd and the use of post-sample data 
emphasized, rather than relying on the same data to ht a model and use it to test causality. It is 
suggested that a Bayesian viewpoint should be taken in interpreting the results of these tests. 
Finally, the results of a study relating advertising and consumption are briefly presented. 

1. The problem and a definition 

Most statisticians meet the concept of causality early in their careers as, 
when discussing the interpretation of a correlation coefficient or a regression, 
most textbooks warn that an observed relationship does not allow one to say 
anything about causation between the variables. Of course this warning has 
much to recommend it, but consider the following special situation: suppose 
that X and Y are the only two random variables in the universe and that a 
strong correlation is observed between them. Further suppose that God, or 
an acceptable substitute, tells one that X does not cause Y leaving open the 
possibility of Y causing X. In the circumstances, the strong observed 
correlation might lead to acceptance of the proposition that Y does cause X. 
This possibility occurs because of the extra structure imposed on the 
situation by the knowledge that X does not cause Y. As will be seen, the way 
structure is imposed will be important in definitions of causality. 

The textbooks, having given a cautionary warning about causality, 
virtually never then go on with a positive statement of the form ‘the 
procedure to test for causality is.. .‘, although a few do say that causality can 
be detected from a properly conducted experiment. The obvious reason for 
the lack of such positive statements is that there is no generally accepted 
procedure for testing for causality, partially because of a lack of a definition 
of this concept that is universally liked. 



Attitudes towards causality differ widely, from the defeatist one that it is 
impossible to define causality, let alone test for it, to the populist viewpoint 
that everyone has their own personal definition and so it is unlikely that a 
generally acceptable definition exists. It is clearly a topic in which individual 
tastes predominate, and it would be improper to try to force research 
workers to accept a definition with which they feel uneasy. My own 
experience is that, unlike art, causality is a concept whose definition people 
know what they do not like but few know what they do like. It might 
therefore be helpful to present a definition that some of us appear to think 
has some acceptable features so that it can be publicly debated and 
compared with alternative definitions. 

For ease of exposition, a universe is considered in which all variables are 
measured just at prespecified time points at constant intervals r= 1,2,. 
When at time II, let all the knowledge in the universe available at that time 
be denoted R,, and denote by Q,,- Y, this information except the values taken 
by a variable x up to time II, where YI~Q,,. Q,, includes no variates measured 
at time points t>~, although it may well contain expectations or forecasts of 
such values. However, these expectations will simply be functions of R,,. R,, 
will certainly be multivariate and Y, could be, and both will be stochastic 
variables. To provide structure to the situation, the following axioms will be 
assumed to hold: 

Axiom A. The past and present may cause the future, but the future cannot 
cause the past. 

Asion B. Q,, contains no redundant information, so that if some variable 
Z,, is functionally related to one or more other variables, in a deterministic 
fashion, then Z,, should be excluded from Q,,. 

Thus, for example, if temperature is measured hourly at some location 
both in degrees Fahrenheit and degrees Centigrade, there is no point in 
including both of these variables in the universal information set. 

Suppose that we are interested in the proposition that the variable Y 
causes the variable X. At time 17, the value Xn+, will be, in general, a 
random variable and so can be characterized by probability statements of the 
form Prob (X,, , E A) for a set A. This suggests the following: 

Generd Definitiort. Y, is said to cause X,, , if 

Prob (X,, + 1 ~AIQ,)#Prob(X,+l eAl.Q,,-Y,) for some A. 

For causation to occur, the variable Y, needs to have some unique 
information about what value X,,, , will take in the immediate future. 



The ultimate objective is to produce an operational definition, which this 
is certainly not, by adding sufficient limitations. This process will be 
discussed in section 3, and the definition will also be defended there. In the 
following section some more general background material will be introduced 
which will, hopefully, make the defence a little easier. 

2. A variety of viewpoints on causality 

The obvious place to look for definitions of causality and discussions of 
the concept is the writings of philosophers on the topic, of which there have 
been plenty from Aristotle onwards. A useful discussion of parts of this 
literature can be found in Bunch (1963). I think that it is fair to say that the 
philosophers have not reached a consensus of opinion on the topic, have not 
found a definition that a majority can accept and, in particular, have not 
produced much that is useful to practising scientists. Most of the examples 
traditionally used by philosophers come from classical physics or chemistry, 
such as asking what causes the flame when a match is struck, or noting that 
applying heat to a metal rod causes it to become longer. Much of the 
literature attempts to discuss unique causes in deterministic situations, so 
that if A occurs then B must occur. Although most writers seem to agree 
with Axiom A, that causes must precede effects, even this is not universally 
accepted. Quite a few philosophers, at least in the past, seem to believe that 
causes and effects should be contiguous both in time and space, which 
undoubtedly reflects the pre-occupation with classical physics. Social 
scientists would surely want to consider the possibility that an event 
occurring in one part of the world could cause an event elsewhere at a later 
time. The philosophers are not constrained to look for operational 
definitions and can end up with asking questions of the ilk: ‘If two people at 
separate pianos each strike the same key at the same time and I hear a note, 
which person caused the note that I hear ? The answer to such questions is, 
of course: ‘Who cares?’ For an interesting discussion of the lack of usefulness 
of the philosophers’ contribution by a pair of lawyers. another group which 
clearly requires an operation definition of causation; see Hart and Honori 
(1959). They take the viewpoint that ‘the cause is a difference to the normal 
course which accounts for the difference in the outcome’. They also point out 
that legally this difference can be not doing something, ‘as the driver did not 
put on the brakes, the train crashed’. One interesting aspect of the 
philosophers’ contribution is that they often try to discuss what the term 
causality means in ‘common usage’, although they make no attempt to use 
common usage terms in their discussion. Rather than trying to decide what 
the public thinks they mean by such a difficult concept as causality, it may 
be preferable to try to influence common usage towards a sounder definition. 



The philosophers and others have provided a variety of delinitions, but no 
attempt to review them will be made here, as most are of little relevance to 
statisticians. Once a definition has been presented, it is very easy for someone 
to say ‘but that is not what I mean by causation’. Such a remark has to be 
taken as a vote against the particular definition, but it is entirely destructive 
rather than constructive. To be constructive, the critic needs to continue and 
provide an alternative definition. What is surely required is a menu of 
definitions that can be discussed and criticized but at least defended by 
someone. Only by providing such a menu can a debate be undertaken 
which, hopefully, will result in one, or a few, definitions that can receive 
widespread support. I believe that definitions should be allowed to evolve 
due to debate rather than be judged solely on a truth or not scale. It is 
possible, as has been suggested, that everyone has their own definition so 
that no convergence will occur, but this outcome does seem to be unlikely. 

Before proceeding further, it is worthwhile asking if there is any need, or 
demand, for a testable definition of causality. It is worth noting that the 
Social Science Citation Index lists over 1000 papers with words such as 
causal, causation or causality in their titles, and in a recent live-year period 
the Science Citation Index lists over 3000 such articles. Papers mentioning 
such words in the body of the paper, not in the title, are vastly more 
numerous. There does therefore seem to be a need for a widely accepted 
definition. Statisticians already have methods for measuring relationships 
between variables, but causal relations may be thought of as being in some 
sense deeper than the ordinarily observed kind. Consider the following three 
time series: 

X,=number of patients entering a maternity hospital in day t, 
y =number of patients leaving the same hospital in day t, 
Z, =ice cream sales in the same city in day r. 

It seems very likely that the series X, is useful in forecasting x, and it is 
also possible that Z, may appear to be useful in forecasting x, as both 
variables contain seasonal components. However, most people would surely 
expect that if a more careful analysis was conducted, using perhaps longer 
data series, larger information sets including more explanatory variables or 
more sophisticated techniques, then the observed (forecasting) relationship 
between X, and x is likely to continue to be found, whereas that between Z, 
and I: may well disappear. The deeper relationship is a candidate for the title 
causal. There thus appears to be both a need. and a demand, for techniques 
to investigate causality. The possible uses of a causal relationship, if found, 
will be discussed below. 

It has been suggested that although such deeper relations need to be 
named, that name should not involve words like ‘cause’ or ‘causality’. as 
these words are too emotion-laden, involve too much preconception and 
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have too long a history. Alternative phrases such as ‘due to’, ‘temporally 
interrelated’, ‘temporally prior’ and ‘feedback free’ have been proposed, for 
example. To my mind, this suggestion reflects a basic misunderstanding 
about language and its use. Most of the components of a language are just a 
notation, with generally agreed meanings. If I use words such as ‘apple’ or 
‘fear’, I will not need to first define them, as it is understood that most 
people mean approximately the same thing by them. Occasionally, with 
unusual or technical words, such as ‘therm’ or temperature’, I might need to 
add a definition. If I start a piece of written work, or a lecture, by carefully 
defining something, then I can use this as a notation throughout, such as 
distribution, mean, or variance. If my definition is quite different from 
general usage, then I may be unpopular but will not be logically incorrect, 
as, for example, if I write cosx for what is usually denoted by x3. As 
causation has no generally accepted definition, this criticism cannot apply. 
Provided I define what I personally mean by causation, I can use the term. I 
could, if I so wish, replace the word cause throughout my lecture by some 
other words, such as ‘oshkosh’ or ‘snerd’, but what would be gained? It is 
like saying that whenever I use x, you would prefer me to use 2. If others 
wanted to refer to my definition, they can just call it ‘Granger causality’ to 
distinguish it from alternative definitions. There already exist many papers in 
economics which do just that, some of which are referenced later, and no 
misunderstanding occurs. If it is later observed that which is called ‘Granger 
causality’ is identical to the definition introduced by some earlier writer, then 
the name should be altered. In fact, I would be very surprised if the 
definition to be discussed in the next section has not been suggested many 
times in the past. Part of the delinition was certainly proposed by Norbert 
Wiener (1958). It would not be a telling argument to appeal to ‘common 
usage’ in connection with the words cause or causality, as statisticians 
continually use words in ways different from common usage, examples being 
mean, variance, moments, probable, significant, normal, regression and 
distribution. 

These remarks made so far in this section are designed to defuse certain 
criticisms that can be made of what is to follow. My experience suggests that 
I will be unsuccessful in this aim. 

When discussing deterministic causation, philosophers distinguish two 
cases : 

(a) Necessity - if A occurs, then B must occur. 
(b) Sufficiency - if I observe B did occur, this means that A must have 

occurred. 

For example, if one has a metal rod, then event A might be that one heats 
the rod and event B is that the rod expands. Although causality is defined 
for pairs of sequences, or functions, obeying axiom A in parts of 



mathematical science, any statistician or any worker dealing with data 
generated by an animal body, a person’s behavior, part of an economy or an 
atmosphere, for example, will not be happy with these deterministic 
definitions. Rather than saying ‘If A occurs, then B must occur’, they would 
probably be happier with statements such as ‘If A occurs, then the 
probability of B occurring increases (or changes)‘. For example, if a person 
smokes, he does not necessarily get cancer, but he does increase the 
probability of cancer. If a person goes sailing, he does not necessarily get 
wet, but he does increase the probability of getting wet. It is therefore 
important for a useful definition to deal with stochastic events or processes. 
It is interesting to note that the advent of quantum physics had a big impact 
on the philosophical writings about causality. which had relied heavily on 
classical physics for examples. Bertrand Russell, in particular, dramatically 
changed his views of causality at that time. 

There have, of course, been several attempts to introduce probabilistic 
theories of causality. A particularly convincing attempt, well worth reading, 
is that by Suppes (1970). One of his definitions is: 

An event B,. (occurring at time t’) is a prima facie cause of the event A, if 
and only if (i) t’<t, (ii) Prob(B,.)>O, and (iii) Prob(A, 1 B,.)>P(A,). 

One might observe a large African population. for example, and hnd that the 
probability of not getting cholera is 0.91 but that of those inoculated against 
the disease, the probability of not getting cholera is 0.98. If A, is not getting 
cholera and B, is inoculation. then the evidence suggests that ‘inoculation is a 
Suppes prima facie cause of not getting cholera’. Note that, by replacing A 
and B with their complements, the same evidence is also likely to lead to the 
conclusion ‘not having inoculation is a Suppes prima facie cause of getting 
cholera’. There is obvious arbitrariness in practice in defining an event. If the 
inequality in (iii) is reversed, Suppes talks of negative causation. Nevertheless, 
for probabilistic events, rather than variables or processes, the discussion by 
Suppes is very useful and is certainly potentially applicable to a series of 
properly conducted random experiments. 

Good (1961, 1962) has a somewhat similar definition, although he 
effectively hides it amongst 24 assumptions and 17 theorems combined with 
very little interpretation. If E and F are two events with F occurring before 
E, then he says that there is a tendency for F to cause E, given some state of 
the universe, if Prob (E 1 F)> Prob (E 1 not F). It would be a lengthy task to 
critically discuss and compare such definitions, and so I will not attempt it at 
this time. 

At the very start of this paper, the case where random variables X and Y 
are correlated, but God tells you that causation in one direction is 
impossible, was briefly discussed. Virtually all definitions of causality require 
some imposed structure, such as that provided here by God. In many 
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definitions, Axiom A provides this structure, but not all dehnitions follow this 
route. The causality concepts discussed by Simon, Wold and Blalock [see 
Blalock (1964)] and others do not require Axiom A but do presume special 
knowledge about the structure of relations between two or more variables. 
Given this structure, the possibility of causal relationships can then be 
discussed, usually in terms of the vanishing or not of correlation or partial 
correlation coefficients. Because these definitions require a number of 
assumptions about structure to be true. they will be called conditional 
causation definitions. If the assumptions are correct, or can be accepted as 
being correct, these definitions may have some value. However. if the 
assumptions are somewhat doubtful, these definitions do not prove to be 
useful. Sims (1977) has discussed the Simon and Wold approach and found it 
not operational in practice. Certainly there has been little use made of these 
definitions in recent years, at least in economics. The ‘path analysis’ of Sewell 
Wright (1964) has similarities with the Wold and Simon approach, but he 
does state that he would prefer to use his analysis together with Axiom A, 
which would bring it nearer to the definition discussed in the next section. 
The full question of priority in these matters is a complex one and, I think, 
need not detain us here. 

The question of whether any real statement can be made about causality 
based just on statistical data is clearly an important one. Naturally, as a 
statistician, I think that proper statements can be made, if they are carefully 
phrased. The link between smoking and cancer provides an example. So far 
the only convincing link has been a statistical one, but it is now generally 
accepted. The real question for most people is not ‘Does smoking cause 
cancer?’ but rather ‘How does smoking cause cancer?’ Before the 
accumulation of statistical evidence, people could be thought of as having 
subjective, personal probabilities that the statement Smoking causes cancer, 
in a statistical sense’ is true. Since the evidence has been presented, for most 
people these subjective probabilities have greatly increased and may well be 
near one. The weight-of-evidence is certainly in favor of this causality. 
Smoking is certainly a prima facie cause of cancer and is probably more than 
that, in the opinion of the majority. A decision, such as for an individual to 
stop smoking or for a government to ban it, could be a wrong one, but 
statisticians are used to making decisions under uncertainty and realize that 
when properly based on the statistical evidence can be wrong but are usually 
correct. 

There is one problem with the statistical approach which was pointed out 
by the philosopher Hume as applying to any testing procedure. It is always 
possible that the evidence from the past may be irrelevant, as causation can 
change from the past to the future. It is therefore necessary to introduce: 

Axiom C. All causal relationships remain constant in direction throughout 
time. 



The strength, and lags, of these relationships may change. but causal laws 
are not allowed to change from positive strength to zero, or go from zero to 
positive strength, through time. This axiom is, of course, central to the 
applicability of all scientific laws and so is generally accepted, even though it 
is not necessarily true. 

3. An operational definition 

The general definition introduced above is not operational, in that it 
cannot be used with actual data. To become operational, a number of 
constraints need to be introduced. To do this, it is convenient to first l-e-state 
the general definition. Suppose that one is interested in the possibility that a 
vector series y causes another vector X,. Let .I, be an information set 
available at time II. consisting of terms of the vector series Z,, i.e., 

Jr, : Z,, -j, jz0. 

J,, is said to be a proper information set with respect to X, if X, is included 
within Z,. Further, suppose that Z, does not include any components of x, 
so that the intersection of Z, and y is zero. Further. define 

J:,:Z,-j, Y,-j? jz0. 

so that J:, is the information set J, plus the values in past and present k;. 
Denote by FW,,. 1 ) ,, 1 h J t e conditional distribution function of X,, r given 

J,, so that this distribution has mean E[X, + , 1 J,,]. The notation using other 
information sets is obvious. These expressions are used in the following 
definitions: 

Dgfinition 1. Y, does not cause X,, r with respect to J;, if 

FW,+, IJ,,)=W,,+, IJ2. 

so that the extra information in J;, has not affected the conditional 
distribution. A necessary condition is that 

ax,, + I I J,,l = ECX,, + I I41 

Dgffirlitiorl 2. If J;, = Q,,, the universal information set, and if 

then Y, is said to cause X, + r . 



then Y, is said to be a primer jucie cN1Ise of Xn+, with respect to the 
information set JL. 

4, + , (4 I= ax,, + I I 41 -ax,, + I I J,,l 

is identically zero. 

Lkfittition 5. If a,+ ,(Q,) is not zero, then y, is said to cLlll.se X,,+ , irt Inecl/t. 

Defirlifiorl 6. If iI,, + , (J:,) is not identically zero, then Y, is said to be a prirrnr 
,jLcie c01l.se in ~net/li of X,, , with respect to J:,. 

Definition 2 is equivalent to the general definition introduced in the first 
section, which was discussed in Granger and Newbold (1977). If a less 
general information set than the universal set is available, Jr, then a prima 
facie cause can occur. as in Definitions 1 and 3. These definitions can be 
strengthened by adding phrases such as ‘almost surely’. or ‘except on sets of 
measure zero’ at appropriate points, but as these will not help 
towards the eventual aim of an operational definition capable of being tested. 
such niceties are ignored. 

If, rather than discussing the whole distribution of X,,+ , . one is content 
with just point forecasts using a least squares criterion. then the final three 
definitions become relevant. To ask for causality in mean is much less 
stringent than asking for full causality, but does provide a definition much 
nearer to being operational. If one wishes to use some criterion other than 
least squares. this can be done, but point forecasts will be made much more 
difficult to obtain. Definition 6 can be rephrased: Let a’(X (J,,) be the 
variance of the one-step forecast error of X,, +, given J,,, and similarly for 
a’(X IJ,, Y)Ea’(X IJ:), then Y is a prima facie cause of X, with respect to 
J’. if a’(X 1 J,,. Y) < a’(X 1 J,,). Thus knowledge of Y, increases one’s ability to 
forecast X,, + , , in a least squares sense. This corresponds to a definition 
hinted at by Wiener (1958). introduced specifically in Granger (1964) and 
Granger and Hatanaka (1964) re-introduced in Granger (1969). amplified 
and applied by Sims (1972, 1977) and then used by numerous authors since. 
including Black (1978). Williams, Goodhart and Gowland (1976) Skoog 
(1976), Sargent (1976) Mehra (1977). Gordon (1977) Feige and Pearce 
(1976a. b), Ciccolo (1978). and Caines, Sethi and Brotherton (1977). 



However, it should be said that some of the recent writers on this topic, 
because they have not looked at the original papers, have evolved somewhat 
unclear and incorrect forms of this definition. It is rather like the party game 
where a phrase or rumor is whispered around the room, ending up quite 
differently from how it started. 

In this newer formulation, Axiom B becomes: 

Axiom B’. F[Y, IJ,,] is not a singular distribution, so that is not that of a 
variable taking only a constant value. This implies that Y, is not 
deterministically related to the contents of J,. 

If purely time-series techniques are used to generate one-step forecasts, 
these forecasts will usually be linear functions of the information set because 
of the present state of the art, although some progress in the use of certain 
non-linear models is occurring: see for instance, Granger and Andersen 
(1978) and Swamy and Tinsley (1980). However, if forecasts are made from 
reduced form equations derived from a, possible non-linear, structural 
econometric model, then the contents of the information set may be utilized 
non-linearly. The definitions discussed here do not require that only linear 
models are used, although most of the actual applications so far and much of 
the theoretical discussions have concentrated on the linear case. If the 
available information in J, is used only linearly, then it may be possible to 
observe that Y, is a linear prima facie cause in mean of X,, i with respect to 
JA and with the available modelling and forecasting techniques this provides 
the operational definition that is being sought. For the remainder of this 
paper the phrase ‘linear prima facie cause’ will be replaced simply by ‘cause’ 
for convenience, unless a more general case is being considered. The 
definition as given relates a pair of vectors, Y, and X,, i, but the usual case 
will be concerned with just a pair of individual series, Y, and X,, i. Further, 
to actually model data it will usually be necessary to either assume that the 
series are stationary or belong to some simple class of models with time- 
varying parameters. Again, this is not strictly necessary for the definition but 
is required for practical implementation. 

There are a number of important implications of the definition of cause 
here developed. If, for example, it is found that x causes X,, , with 
respect to some information set, then this implies no restrictions on whether 
or not X, causes Y,, i ; this second causation may occur but need not. If 
both causations occur, one may say that there is feedback between the two 
series X, and x. A simple example is 

x,=4+)7- *r I:=q,+E,-I, 

where E,,~I, are a pair of independent white noise series. Further, if there are 



three series X,, x and Z, and it is observed that X causes Y and Y causes Z, 
then it is not necessarily true that X causes Z, although it can occur. 

Esmple 1. x, = E,, k; = E, - , + q,, z, = q, - , 3 

where again E,, rl, are independent white noises. There are four information 
sets that need to be considered: J,,(X, Y) - consisting of past and present 
Xnmj, Y-j (jzO), and similarly, J,(X,Z), J,,(YZ), and J,(X, YZ) - 
consisting of past and present Xnmj, Y,- j, Z,- j (j 2 0). Then clearly X causes 
Y with respect to either J,,(X, Y) or J,,(X, Y,Z), Y causes Z with respect to 
J,,( Y,Z) and to J,,(X, Y,Z), but X does not cause Z with respect to J,(X,Z) 
but it does cause Z with respect to J,(X, Y,Z). This last result occurs 
because Z, + , is completely predetermined from Y,- j, x,-j (jz 0) but not 
from just Y,-j (jz0). The importance of stating the information set being 
utilized is well illustrated by this example. A further example shows a 
different situation: 

Estrruple 2. X,=E,+q, Y=E,-,, Z,=E,-2+lI,, 

where E,,v, and (u, are three independent white noises. Here X causes Z in 
J,(X,Z) but not in J,(X, Y,Z). 

One thing that is immediately clear from the definition is that if Y, causes 
x,, -t 1 9 then Yh=rr(B)Y,, causes XL+,=b(B)X,,+, if o(B) and b(B) are each 
one-sided filters of the form cr(B)=Cj’=, , (I.@. However, if two-sided filters are 
used, as occurs for example in some seasonal adjustment procedures, then 
causality can obviously be lost because Axiom A is disrupted. 

The use of proper information sets, that is, sets including the past and 
present values of the series to be forecast X,, does have the following 
important implication: it is impossible to find a cause for a series that is self- 
deterministic, that is, a series that can be forecast without error from its own 
past. The basic idea of the causal definition being discussed is that 
knowledge of the causal variable helps forecast the variable being caused. If a 
variable is perfectly forecastable from its own past, clearly no other variable 
can improve matters. 

Estrrqde 3. X,=z+bt+c.t2 and y=(lX,+,. 

Then the following three equations generate X, exactly, without error, i.e.: 

X,=r+bt+rr2, X,=cl-‘I,-,, X,=2X,-,-X,ez+2c, 

so that at first sight X, is ‘caused’ by time, or by k;- ,, or by its own past. If 
all three equations fit equally well, that is perfectly, it is clear that no kind of 
data analysis can distinguish between them. It is therefore obvious that in 
this circumstance a statistical test for causality is impossible, unless some 
extra structure is imposed on the situation. It may be noted that causality 



tests can be made with variables that contain deterministic components, as 
proved formally by Hosoya (1977). but with this definition one cannot say 
that the deterministic component of one variable causes the deterministic 
component of another variable. 

4. Some difficulties 

Virtually any sophisticated statistical procedure has some problems 
associated with it, and there is every reason that this will be true also with 
any operational definition of causality. These difficulties can either be 
intrinsic to the definition itself or be associated with its practical 
implementation. 

Some of the difficulties will arise because of data inadequacies. One 
obvious problem arises when the data is gathered insufficiently frequently. 
Suppose that a change in wood prices causes a change in furniture prices one 
week later. but prices are only recorded monthly; then the true causal 
relationship will appear to be instantaneous. It is perhaps worth defining 
‘prima facie apparent instantaneous causality in mean’. henceforth 
instantaneous causality, between X,, , and Y,+ , with respect to J;, if 

ECX,+, IJ,,~,+1l#ECX,,+,IJ,,l. 

Although the phrase ‘instantaneous causality’ is somewhat useful on 
occasions, the concept is a weak one, partly because Axiom A is not being 
applied and because, at least in the linear case, it is not possible to 
differentiate between instantaneous causation of X by Y of Y by X or of 
feedback between X and Y as simple examples show. If extra structure is 
imposed, it may be possible to distinguish between these possibilities, as will 
be discussed below. If one totally accepts Axiom A. then instantaneous 
causality will either occur because of the data collection problem just 
mentioned or because both series have a common cause which is not 
included in the information set Ji being used. 

The problem of missing variables, and consequential mis-interpretation of 
one’s results, is a familiar one in those parts of statistics which consider 
relationships between variables. A simple example of apparent causation due 
to a common cause is: 

E.wmple 4. z, =q,, X,=r/-,+6,, y=‘l,-r+c,, 

where E,, q, and S, are independent white noises. Here Z, is causing both X, 
and x with respect to information sets J,,(X,Z), J,,(X,Z) and J,(X, Y,Z), but 
X, is causing x in J,,(X, Y) but not J,,(X, Y,Z). 

This apparent causation of Y by X in J,,(X, Y) may be thought of as 
spurious because it vanishes when the information set is expanded, 



something one would not expect with a true cause. Sims (1977) has studied 
the system 

y=c(B)Z,+E,, x,=d(fw,+‘I,, 

and found that it is unlikely to give rise to a spurious one-way causation 
between X and Y based on J,(X, Y), although presumably a feedback 
relationship between X and Y is more likely to be found. 

An important case where missing variables can lead to misleading 
interpretations is when one variable is measured with an error having time 
structure. The following example illustrates the difficulty: 

Estrmple 5. X,=q,, yI=s,, z, = x, + E, + pz, - , ) 

where ~7, and 6, are white noises with correlation (II,, S,)=O, t # s, but this 
correlation equals i. when r=s and c, is a white noise independent of iI, and 
6,. Z, may be thought of as X, with an MA(I) measurement error. There is 
no causation between X, and Y apart from instantaneous causation. As Z, is 
the sum of a white noise and an MA(l) term, it will be MA(l), so that there 
exists a constant 0 with 101 < 1 and a white noise series e, so that 

Z,=(l +OB)e,. 

It follows that 

e, = ( 1 + BB ) - ’ 11, + ( 1 + UB ) - ’ (c, + /jE, - , ). 

The one-step forecast of Z,, i using Znmj (jz0) is just Oe, with error e,,. i, 
but this error is a function of qn- j UzO) which is correlated with 6,-j UzO) 
which is equal to YIej. It thus follows that the Yn-j will help forecast Z,,. ,, 
so that apparently Y, causes Z,,+ , with respect to J,,( Y,Z), but this would 
not be the case if X,,-j were observable, so that J,,(X, Y.Z) could be 
considered. This result is at first sight quite worrying, as in many disciplines, 
such as economics, variables are almost inevitably observed with error. so 
that .Y, - the missing variable - will always be missing. However, as the 
results of Sims (1977) and Newbold (1978) show, by no means does the 
addition of measurement error to variables necessarily produce spurious 
causations, as the error has to have particular time-series structure compared 
to the original series. Nevertheless, the possibility of mis-leading results 
occurring from a common type of situation has to be kept in mind when 
interpreting results. 

Another situation which needs care in interpretation is when the time that 
a variable is recorded is different from the time at which the event occurred 
that led to the variable’s value. For example, March unemployment figures 
in New York City and New York State may not become known to the 
public until April 1 and April 15, respectively. The values must be associated 



342 

with March, not the time of their release, otherwise spurious causation may 
well occur. A further example of this problem is the relationship between 
lightning and thunder. As the lightning is usually observed before the 
thunder, because light travels faster than sound, it might seem that lightning 
causes thunder. However, both are manifestations of what is essentially the 
same event, and if the observations are placed at the time of the original 
electrical discharge, the spurious causation disappears. If one is being 
pedantic, the light-producing part of the discharge does occur before the 
sound-producing part, but both lightning and thunder do have a common 
cause. 

A further interpretation problem can arise because of Axiom B. Suppose 
one has three variables which are related through some linear identity, such 
as 

Work force = Unemployed + Employed. 

It is clear that all three variables cannot be in the information set to be used, 
but it is not necessarily obvious which one should be excluded. If, for 
example, total consumption is caused by size of work force, but this latter 
variable is excluded, one may expect to find that numbers of both 
unemployed and employed appear to cause consumption. Once one is aware 
of such interpretational difficulties, it is not difficult to invent strategies for 
analyzing them, such as excluding different variables and repeating the 
analysis, or by testing equality of certain coefficients in the model, for 
example. 

One apparently serious problem of interpretation, which is suggested by 
the thunder and lightning example, arises from the idea of a leading 
indicator. Suppose that X causes both Y and Z, but that the causal lag is 
shown from X to Y, then from X to Z. If now X is not observed, Y will 
appear to cause Z. Example 4 shows such a situation. The search for such 
leading indicators occurs in various fields. In economics, for example, the 
Bureau of the Census publishes a list of such indicators, plus an index, which 
are supposed to help indicate when the economy is about to experience a 
down-turn or an up-turn. A number of possible leading indicators for 
earthquakes are also being considered, an example being unusual animal 
behavior. If leading indicators are included in an information set, tests may 
well indicate prima facie causality. In most cases this will be just another 
example of the missing variable problem. Sometimes the missing variable will 
be available and, when added to the information set, the leading indicator 
will no longer appear to cause. In other cases the missing variable is not 
observable and, when this occurs, it will not always be obvious whether a 
variable is a cause or merely a leading indicator. This relates to the question 
of how to interpret the outcomes of the causality tests, which are discussed in 
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the next section, given that the information sets used in practice will always 
be limited in extent. One way of viewing the test results is as an informal 
Bayesian. A person may start with a prior belief, or probability, that X 
causes Y, say, and then use the test results to alter this probability, if the test 
is viewed as being relevant. If the causality definition being invoked by the 
test is not liked, then the probability need not change. Once more, the purely 
personal aspect of the attitude towards causality is seen to be of real 
importance. For some cases, such as whether changes in animal behavior 
causes earthquakes, the prior probability will start at zero and .will remain 
there despite any test results, so these changes will still be relevant leading 
indicators, but will not be thought of as causes. Surely no one believes that a 
lot of cows jumping up and down will trigger an earthquake. On the other 
hand, one may have a prior probability that smoking is a cause of heart 
failure, and, after an appropriate and well-conducted test, this probability 
may be changed, depending on the results of the test. 

One very important aspect of forming these prior probabilities will be the 
availability, or otherwise, of some convincing theory for the causal situation 
being considered. If there exists, for example, some piece of economic theory 
that one strongly believes to be true, this could certainly influence, or even 
fully determine, one’s belief about a causal relationship. In what is at present 
the only carefully thought out critical discussion of what has been called 
Granger causality, Zellner (1978) strongly proposes that causality should 
only be considered in the context of some accepted theory. He states: 
‘Perhaps a more satisfactory position would be to define causality, as Feige 
and others have, in terms of predictability according to well thought out 
economic laws.’ In terms of the General Definition, or Definition 2, this 
approach adds nothing, as these definitions assume total knowledge of all 
relevant distribution functions. Any true or correct law or theory is simply 
an observed constraint that is found to apply to these distribution functions, 
and so knowledge of it does not add to the assumed available information 
set. However, when trying to make the definition more operative, the use of 
some theory may well be helpful, depending on the quality of the theory and 
on its nature. For example, if the theory simply tells one that certain 
variables need to be included in the information set to be utilized, that is 
extremely useful. It is also helpful to be told that certain variables can be 
safely omitted from the information set, as this will greatly simplify the data 
analysis. However, these would be rather vague theories and, I suspect, are 
not what Zellner had in mind. If the theory is much more specific, such as 
‘interest changes do not cause changes in production’ or ‘money supply 
changes do cause changes in prices’, then, if true, analysis of other possible 
causes would again be simplified. But such theories may be precisely what 
the causality test is designed to verify. To impose any theory, one has 
conditional causality testing and, like all such situations, if the theory is 



correct it is helpful to use it, if it is incorrect one may well be worse off by its 
use. This is certainly true of any causality test that is conditional on the 
truth of some very specific theory. Whereas in many fields there may be 
theories, specific or not, that are generally accepted as being true, such 
theories are much more difficult to find in economics. It is interesting to note 
that Zellner in his paper never gives a single example of what he would 
consider to be a ‘well thought out economic theory’ nor even of a specific 
theory or law that is generally accepted by the majority of economists. 
Again, one returns to the personal belief aspect of causality testing; an 
individual may strongly believe some theory and is happy to test causality 
conditional on this theory, whereas someone else would not want to do that. 
One obvious place where a good theory would be particularly useful would 
be where extra structure is required to resolve causal directions in what 
appears to be instantaneous causality/feedback. For example, if sufficient 
structure can be put on a model to ensure identifiability - in the 
econometrician’s sense of having a unique model - then a conditional 
causal test can be constructed. This is very much in the spirit of the Simon 
and Wold approach to causality, which is very well summarized in Zellner’s 
article. However, it must be emphasized that only conditional causality can 
result. and this is potentially very much weaker than the unconditional 
causality definition discussed earlier. 

The definitions of causation introduced in the previous section admittedly 
have a number of arbitrary aspects, some of which are potentially removable, 
others perhaps not. The data is assumed to be measurable on a cardinal 
scale, whereas actual data often occurs on different scales. If the data is 
intrinsically ordinal. I consider that it may be difficult to use these 
definitions, because of the lack of suitable distribution functions. However, it 
may be possible to build and evaluate forecasting models for such data. and 
so one aspect of the definitions will go through. With attribute data, without 
any natural order to the categories, the general definition remains unstable, 
but clearly the ‘causality in mean’ definitions are not relevant. This type of 
data is much nearer to the situation of one event causing another that was 
discussed by Suppes (1970) and Good (1961/62) and may often occur as the 
outcome of designed experiments. To be relevant to statisticians, a sequence 
of experiments will be required, as there seems to be no possibility of 
investigating causal relationships between unique events using statistical 
procedures. 

A further arbitrary feature of the definitions is the use of one-step forecasts 
rather than h-step for any h. It is usually by no means clear what is the 
natural length of the step, and the pragmatic procedure is to use just the 
data period of the publicly available data, which can lead to the apparent 
instantaneous causation problem mentioned above. In the bivariate 
information set case, where one asks if Y causes X with respect to J,(X, Y), 



Pierce (1975) has shown that if Y causes X using an h-step forecasting 
criterion, with h> 1, then it will necessarily be found that Y causes X with a 
one-step criterion. However. this does not seem to be true in the multivariate 
case : 

Exunzple 6. X,=.5,, y=&,-z+qr, Z,=r:,-,+(I,. 

where I:,. !I,, 0, are independent zero-mean, white noise series. 

Here Z,, causes X,,, , with respect to J,(X,Z) and J,(X, Y,Z), Y, causes 
X ,,+Z with respect to J,,(X, Y) and J,(X, Y,Z), Y, (or Y,-,) causes X,,+, with 
respect to J,,(X, Y) but not with respect to J,(X, Y,Z). Although some 
justification can be made that one-step forecasts are the most natural to 
consider, it will remain an arbitrary aspect of the definitions. 

It is, on occasion, possible to distinguish between different types of causes 
by considering alternative information sets. For example, one might call Y a 
primary cause of X, if tests show this to be so for J,(X, Y), J,,(X, Y,Z) and 
for all other information sets containing X and Y and any other series. A 
secondary cause might be one such that X causes Z in J,,(X, Y.Z) but not in 
J,,(X,Z), as illustrated in example one above. This example shows that X 
can cause Z, according to the definition, even though X and Z are 
statistically independent, provided that X can add further information to the 
primary cause, which in Example 1 is Y. The existence of such secondary 
causes may be upsetting to some readers, and so it might be relevant to alter 
the basic definition to deal only with primary causes. However, I personally 
would not. at this time, wish to emphasize such a change. 

Most of the problems and difficulties discussed in this section relate not to 
the basic definition but with making it operational, in my opinion. Some are 
inherent to any statistical study using an incomplete or finite data set. Many 
of the difficulties become considerably reduced in inportance once care is 
taken with interpretation of test results. 

In the following section a brief discussion of actual test procedures is 
presented, and in the final section some further important interpretational 
questions are considered, such as the relevance of control variables and the 
meaning of exogeneity. 

5. Test procedures 

There has been a lot of thought given in recent years to the question of 
how the above definitions can be actually tested. although the major 
attention has been given to the case of whether X causes Y with respect to 
J,,(X, Y), that is, just the two-variable case. Although most empirical studies 
have considered this case, it is probably not a particularly important one in 
economics, as it is easy to suggest relevant missing variables. It is clear that 



more attention is needed on how to utilize bigger information sets. As the 
two-variable case has been well summarized recently by Pierce and Haugh 
(1977) only a few of the more important aspects will be discussed here. To 
give some structure to the discussion, consider the pair of zero-mean, jointly 
stationary series x,, J,, which are purely non-deterministic. 

The moving-average, or Wold, representation can be denoted, following 
Pierce and Haugh, by 

where each tiij(B) is a power-series, possibly infinite in length, in the 
backward operator B and (a,, b,)’ is a two-element white noise vector, with 
zero correlation between N, and b,, except possibly when t=s. Assuming that 
the moving average matrix operator is invertible, the corresponding 
autoregressive model can be denoted by 

Rather than considering models for the actual series, one can equally well 
consider relationships between prewhitened series. If the filters F(B)x, = a, 
and G(B)J.,=v, produce a pair of series u, and u, that are individually white 
noises, then moving average and autoregressive models will exist of the form 

and 

(3) 

(4) 

There are obviously relationships between the various operators, as described 
by Pierce and Haugh. 

Denote the correlation between 11,~~ and 11, by p,,.(k) and consider the 
regression 

I  

L’, = C (Ujll, -  j + 1;3 
(5) 

j= -  I 

where p,,,.(k) = (oJc~,)Q~. Similarly, one can consider the regression 

y, = V(B)x, +h,. (6) 



Here V(E)=(F(B)/G(B))o(B) and ,f;,/l, are residuals which are uncorrelated 
with tl,- j,xr- j, respectively, but are not necessarily white noises. Using this 
notation, Pierce and Haugh (1977) prove the following two theorems, 
amongst others: 

Theorem 1. Instantaneous (prima,facie) causality (in mean) exists if and only 
lf the following equiaalent conditions hold: 

(i) at least one ofcov (a,, b,),;)(O),/?(O) in (4) are non-zero, or 

(ii) at least one ofcov (a,, b,), H(O), C(0) in (2) are non-zero. 

In their 1977 paper, Pierce and Haugh had further conditions, such as 
p,,,.(O)#O or to,#O, but Price (1979) and Pierce and Haugh (1979) show that 
these conditions are not necessarily correct when there is feedback between x 
and ~3. 

Theorem 2. ~9 is not II (prima fitcie) cause (in mean) of x if and only if the 
,following equiwlent conditions hold: 

(1) $12(B) [equivalentl~~ e,,(B)] can be chosen zero. 
(2) e,,(B) is either 0 or a r’or7smt. 

(3) I),~(B) is either. 0 0~ proportior7tr/ to tjI 1 (B). 

(4) r/;.=O(j<O) in (6). 
(5) /j(E) is either 0 or a constant. 
(6) H(B) is either 0 or proporrional to A(B). 
(7) p,,,.(k)=O, or equirrrlentl~~ wk =0 (k <O). 

If any of these conditions do not hold, then y will be a prima facie cause of x 
in mean with respect to J”(x, J,). (1) and (4) were pointed out by Sims (1972), 
the first part of (6) was mentioned in Granger (1969), and that of (7) was 
emphasized in Granger and Newbold (1977). Multivariate generalizations of 
these conditions, concerning the possibility that the vector y may cause the 
vector x, have been discussed by Caines and Chan (1975) and elsewhere. 
Because of this variety of equivalent conditions, there are clearly numerous 
statistical tests that can be devised based on these conditions. The 
performance of these tests needs further investigation, either using statistical 
theory or Monte Carlo study, especially as some are suspected to be 
occasionally biased or to be lacking in power. 

My own experience has largely been with the autoregressive form (2), first 
fitting the bivariate model with H(B) constrained to be zero and then re- 
fitting without this constraint, to see if a significant decrease in the variance 
of the residual for the x, equation can be achieved. This experience, using 
both simulated and actual data as, for example, in Chiang (1978), suggests 
that misleading results do not occur but that the power is not particularly 



satisfactory. However these tests are not of considerable importance for two 
basic reasons: (i) they deal only with the bivariate case, whereas the more 
important applications are likely to involve more variables; and (ii) they are 
not properly based on the definitions presented above. This latter point 
arises because these definitions are explicitly based on the extra forecasting 
ability schieved from one information set over another, whereas the 
equivalent conditions given in Theorem 2, for example, make no mention of 
forecasts. This makes no difference for populations, as the definition of non- 
causation in mean and the conditions in Theorem 2 are then equivalent. 
However, if only a finite sample is available, as will always occur in practice, 
the equivalence disappears. Suppose that a sample is used to model the 
relationship between s, and y, in the autoregressive form (2) and the estimate 
of H(B) is found to be significantly different from zero. Then the result is 
essentially saying that if this fact were known at the start of the sample, it 
could have been used to improve forecasts of x,. This is quite different from 
actually producing improved forecasts. It is generally accepted that to find a 
model that apparently fits better than another is much easier than to find 
one that forecasts better. Thus tests based on the ‘equivalent conditions’ in 
Theorem 2 are just tests of goodness of fit, whereas the original definition 
requires evidence of improved forecasts. To satisfy this requirement, 
alternative models, based on different information, can be identified and 
estimated using the first part of the sample and then their respective 
forecasting abilities compared on the later part of the sample. The best way 
to actually test for differences in ‘post-sample’ forecasting ability and the 
optimum way to divide the sample into a modelling part and a forecast 
evaluation part need further investigation, but at least a test that is in 
sympathy with the basis of the definition would result. 

An application of these ideas, in a two-variable case, is provided by 
Ashley, Granger and Schmalensee (1979), who consider possible causal 
relationships between aggregate advertising expenditures and consumption 
spending. They use a five-step procedure: 

(i) Using a block of data, which is called the sample, each series is 
prewhitened by building ARIMA models, to get LI,, u, as above. 

(ii) The cross-correlations p,,,.(k) are examined to see if there is evidence of 
possible causal relationships. 

(iii) For each indicated possible causal relationship, a model is built on these 
residuals II,, D,. If a one-way cause is suggested, the transfer function 
methods of Box and Jenkins (1970) may be utilized, but if a two-way 
causality appears to be present, the method for modelling this situation 
suggested in Granger and Newbold (1977) can be used. 



(iv) The models in stages (i) and (iii) are then put together to suggest a 
model for the original data, in differenced form where necessary. This 
model is estimated, insignificant terms dropped and a final model 
achieved. 

(v) The forecasting ability, in terms of mean-squared one-step forecast error, 
of the bivariate model and the single series ARIMA model. are then 
compared using post-sample data. If the bivariate model forecasts 
significantly better. then evidence of causation is found. 

These stages are somewhat biased against finding causation, as, if in stage 
(ii) no evidence of causes is found, then no bivariate models will be 
constructed. The separation of the modelling period and the evaluation 
period does prevent evidence for spurious causation occurring because of 
data mining. However, a weakness is that if an important structural change 
occurs between the sample and the post-sample, the test will lose power. The 
relevance of Axiom C is evident. Ashley, Granger and Schmalensee, using 
quarterly data, find evidence that consumption causes advertising, but that 
advertising does not cause consumption except instantaneously. These results 
agree with parts of the advertising literature that find advertising expenditure 
is determined by management from previous sales figures and that 
advertising has little or no long-memory ability. On the other hand, these 
results might well be the opposite of the pre-conceptions of many economists, 
which illustrates both the relevance of performing a test and also of not 
relying on some partly formed theory. 

6. Discussion and conclusions 

The definition of causation proposed and defended above essentially says 
that X,, , will consist of a part that can be explained by some proper 
information set, excluding Y,- j (j 20) plus an unexplained part. If the Y,- j 
can be used to partly forecast the unexplained part of X,, ,, then Y is said to 
be a prima facie cause of X. It is clear that in practice the quality of the 
answer one gets from a test is related to the sophistication of the analysis 
used in deciding what is explained and by what. The definition also relies 
very heavily on Axiom A, that the future cannot cause the past, as using the 
‘arrow of time’ imposes the structure necessary for the definition to hold. It 
also means that the definition does emphasize forecasting. If one does not 
accept Axiom A, the rest of the work connected with the definition becomes 
irrelevant. It is important to realize that the truth of Axiom A cannot be 
tested using the methods discussed in this paper. I should point out that the 
work by physicists on ‘time-reversibility’ does not seem to contradict Axiom 
A, as a careful reading of the review article by Overseth (1967) will show. 
Because of the way the definition is framed, and the tests based on it are 



organized, it is only appropriate for use with sequences of data. It cannot say 
anything about unique events or contribute to topics such as whether there 
exists an ultimate or first cause. Such topics have to remain the province of 
philosophers and theologians. In interpreting the test results it has been 
suggested above that one thinks in terms of changing personal beliefs about 
whether Y causes X. There is nothing essentially new in this suggestion, as it 
is certainly what occurs in practice. The definition and tests based on it 
provide a way to organize the available data in such a way that some 
workers will feel is appropriate for them to need to possibly change their 
prior probabilities. I leave to others the discussion of the effect of this 
procedure, and of the whole causation testing methodology on scientific 
methodology. 

Some of the economists writing about what is called Granger causality 
have related this concept to the more familiar one of exogeneity; see, for 
example, Sims (1977) and Geweke (1978). When econometric models are 
constructed it is usual to divide variables into exogenous (Z) and 
endogenous (Y), and it is assumed that components of Z may cause 
components of Y but not vice versa. There is thus assumed to be a one-way 
causal relationship from Z to Y. For estimation and econometric 
identification purposes, it is important that this classification be correct as 
questions of efficiency, model uniqueness and model specification are 
concerned. Tests for exogeneity are with respect not only to the information 
set used but also to the division of variables picked. One may find, for 
instance. that Z minus W is exogenous to Y plus W, for some variable W. It 
is also possible that missing variables can disrupt the exogenous 
interpretation, as when Z is exogenous to Y but not to some extended Y. The 
possibility of ‘instantaneous causality’ obviously greatly complicates the 
problem of how to test for exogeneity. Some of these problems have been 
discussed elsewhere [Granger (1980)] and so will not be followed up here. 
Some variables are such that prior beliefs will be strong that they are 
exogenous: an example is that weather is probably exogenous to the 
economy. However, other variables have often been considered to be 
exogenous yet need to be tested, the best examples being the control 
variables. One can argue that a government controlled interest rate is in fact 
partly determined by previous movements elsewhere in the economy, and so 
is not strictly exogenous. The true exogenous part of such a variable is that 
which cannot be forecast from other variables and its own past, and it 
follows that it is only this part that has any policy impact. The theory of 
rational expectations, currently attracting a lot of attention in economics, is 
relevant here but its discussion is not really appropriate. 

The effect of the presence of control variables. on causal relationships was 
considered by Sims (1977). It is certainly possible that the actions of a 
controller can lead to what appears to be a causal relationship between two 



variables. Equally, it is possible that two variables that would be ‘causally 
related if no controls were used, would seem to be unrelated in the presence 
of a control. It is also worth pointing out that controlability is a much 
deeper property than causality, in my opinion, although some writers have 
confused the two concepts. If Y causes X, it does not necessarily mean that Y 
can be used to control X. An example is if one observes that the editorial 
recommendations of the New York Times about which candidates to 
support causes some voters to change their votes. However, if one started 
controlling these editorials, and this became known, the previously observed 
causality may well disappear. The reason is clearly that the structure has 
been altered by changing a previously uncontrolled variable to one that is 
controlled. If causation is found between a controlled variable and something 
else, this could be useful in deciding how to control, provided movements are 
kept near those observed in the past. It seems quite possible that some 
variables used in the past by governments to control may be so ineffectual 
that causation will not be found, so testing is worthwhile. The relationship 
between control, causation and the recent rational expectations literature is 
potentially an interesting one, but is too large a topic to be considered here. 

There is clearly much more discussion required of this and other 
definitions and more experience required with the various methods of testing 
that have been suggested. It is my personal belief that the topic is of 
sufficient importance, and of interest, to justify further work in this field. 
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