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Abstract

We propose a method to quantify the complexity of conditional probability measures by a Hilbert space seminorm of the logarithm of

its density. The concept of reproducing kernel Hilbert spaces (RKHSs) is a flexible tool to define such a seminorm by choosing an

appropriate kernel. We present several examples with artificial data sets where our kernel-based complexity measure is consistent with

our intuitive understanding of complexity of densities.

The intention behind the complexity measure is to provide a new approach to inferring causal directions. The idea is that the

factorization of the joint probability measure Pðeffect; causeÞ into PðeffectjcauseÞPðcauseÞ leads typically to ‘‘simpler’’ and ‘‘smoother’’

terms than the factorization into PðcausejeffectÞPðeffectÞ. Since the conventional constraint-based approach of causal discovery is not

able to determine the causal direction between only two variables, our inference principle can in particular be useful when combined with

other existing methods.

We provide several simple examples with real-world data where the true causal directions indeed lead to simpler (conditional) densities.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

When visualizing the densities of some well-known
distributions like Gaussian or gamma distributions, for
instance, one would agree that the shape of the densities is
rather smooth. In contrast, a mixture of two Gaussian
functions, in particular when it is clearly bimodal, may be
considered less smooth. The same holds for the mixture of
two gamma distributions. Having observed a bimodal
density after large sampling, one would prefer to interpret
the observation as a mixture of two populations. It is
implausible to assume that a density with such a shape
stems from a homogeneous statistical ensemble. This shows
that common sense gives us an intuitive idea about which
densities should be considered natural and which ones
demand an additional explanation as being a mixture
of ‘‘more natural’’ and ‘‘smoother’’ distributions. Actually,
e front matter r 2008 Elsevier B.V. All rights reserved.
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there is a broad variety of applications where the detection
of mixtures is crucial for data analysis (see e.g. [4,5,7]). The
definition of complexity of densities proposed in the
current paper should, however, not merely be considered
as a method for detecting mixtures of distributions. The
main motivation behind it is to develop a tool for a new
causal inference principle based on empirical data by
quantifying smoothness of conditional densities.
Let us first sketch the basic idea of our causal inference

rule. Given a joint probability measure P on n random
variables X 1; . . . ;X n, all the conditional measures (the so-
called ‘‘Markov kernels’’) that appear in the factorization
of the joint measure

Pðx1; . . . ;xnÞ ¼ Pðx1ÞPðx2jx1Þ � � � Pðxnjx1; . . . ;xn�1Þ

will typically be ‘‘smoother’’ or ‘‘simpler’’, if the order of
the factorization X 1; . . . ;X n coincides with the causal
order, in the sense that there is no pair ðX i;X jÞ with ioj

such that X j is a cause of X i. We call this the principle of
plausible Markov kernels. Throughout the paper, we
assume that all joint probability measures are represented
by densities.
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This inference principle can be very useful, especially
where the conventional constraint-based causal learning
algorithms (e.g. [10,16,11]) fail. For example, when only
two dependent variables are measured, inferring the causal
direction between them is impossible with the conventional
approaches that are based on independence constraints.
Our inference rule can provide some hints even in such
cases about which causal direction should be preferred. We
do not intend to treat the problem of confounders in the
current paper and assume that there are no hidden
common causes in our setting.

A first attempt to formalize the principle of plausible
Markov kernels is to consider conditional probability
measures most plausible that maximize the conditional
entropy subject to simple constraints like the observed first
and second statistical moments. This has been proposed in
a conference paper [17]. For variables with R as range we
obtain linear interactions, while for variables with other
ranges we obtain conditional probabilities which are also
smooth in an intuitive sense. Our approach is supported by
positive results of experiments with real-world data on
continuous and discrete range.

A related causal inference rule was described by Kano
and Shimizu in [6]. They have observed that linear causal
relations between non-Gaussian distributed random vari-
ables induce joint probability measures which would
require non-linear cause–effect relations for causal hypoth-
eses that differ from the true causal order. Accordingly,
their inference principle [14,13] which is based on
independent component analysis (ICA) selects causal
hypotheses for which linear cause–effect relations are
sufficient whenever such hypotheses are possible for a
given probability measure. Unfortunately, the underlying
idea is only justified for causal structures of real-valued

variables since linear effects do not exist in the general case.
The main concern of this paper is to quantify complexity

of (conditional) densities in order to detect the asymmetry
between cause and effect. For this purpose, we propose to
measure the complexity by a Hilbert space seminorm of the
logarithm of the density. This function is an element of a
reproducing kernel Hilbert space (RKHS) and its semi-
norm can therefore be computed by kernel methods. In
contrast to common machine learning applications, the
complexity measure in this paper plays not only the role of
a regularizer, which is often used to avoid an overfitting of
describing finite data points. Rather it should be consid-
ered as an interesting quantity in its own right since it
provides hints on the causal direction. For this reason, it is
essential to choose a definition of complexity which is well-
behaved in some respects. This is described in the following
section.

2. Defining complexity measure by Hilbert space seminorms

Before we introduce the complexity measure for condi-

tional densities we define it for unconditional densities. Let
us ignore for the moment the sampling issue and assume
that the density PX of some random variable X (possibly
vectorial) is perfectly known. For the sake of convenience
and in order to avoid some technical problems, we shall
assume that the value set X of X is finite. We introduce a
complexity measure on the space of densities on X as
follows:

Definition 1 (Complexity of marginals). Let X be a
probability space, X be a random variable on X, and PX

a density on X. Furthermore, let H be a Hilbert space of
real-valued functions on X containing the set of constant
functions. Then we define the complexity of PX as

CðPX Þ:¼minfkfk2jf 2H with PX ðxÞ ¼ expðfðxÞ � ln zfÞg

with the partition function

zf:¼
X

x

expðfðxÞÞ.

Here k:k denotes a seminorm on H given by

kfk:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðf;fÞ

p
,

where B denotes a positive definite (but not necessarily
strictly positive) bilinear form B :H�H! R.

In the following we will use the following terminology:
we call two vectors v;w 2H orthogonal if Bðv;wÞ ¼ 0. For
a subspace V we define

V?:¼fwjBðw; vÞ ¼ 0 8v 2 Vg.

Since V and V? may have non-trivial intersection, we
avoid the term ‘‘orthogonal complement’’. The term
‘‘orthogonal’’ will always refer to the bilinear form B

unless something else is explicitly stated. An orthogonal
projection R is said to be an projection onto V? if RH �
V? and Rw ¼ w� v for some v 2 V that minimizes
kw� vk.
We have

CðPÞ ¼ kQðlnPÞk2, (1)

where Q denotes the projection onto 1?. This is due to
kfk ¼ kQðf� zf1Þk ¼ kQðlnPÞk.
We show the following lemma.

Lemma 1 (Additivity). Let H1 and H2 be spaces of

functions on X1 and X2, respectively. Furthermore, let C1

and C2 be complexity measures on the densities on X1 and

X2, respectively, defined by the corresponding seminorms in

H1 and H2. Assume that a complexity measure C on the

density on X is based on the seminorm of H:¼H1 �H2

that satisfies the embedding property ka� 1k ¼ kak ¼

k1� ak, where 1 denotes the function taking the constant

value 1. Then we have the following additivity rule: Let P be

defined by a product of densities P1 and P2, i.e., Pðx1;x2Þ ¼

P1ðx1ÞP2ðx2Þ for all x1 and x2. Then the complexity of the

product measure satisfies CðPÞ ¼ C1ðP1Þ þ C2ðP2Þ.

Proof. Let Q;Q1;Q2 denote the projections onto the space
of functions orthogonal to 1 for the spaces H;H1;H2,
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respectively. Then we have

kQðlnP1 � 1þ 1� lnP2Þk
2

¼ kQ1ðlnP1Þ � 1þ 1�Q2ðlnP2Þk
2

¼ kQ1ðlnP1Þk
2 þ kQ2ðlnP2Þk

2,

where the last equality is due to Pythagoras’ theorem after
taking into account that the vectors Q1ðlnP1Þ � 1 and 1�

Q2ðlnP2Þ are mutually orthogonal. &

Now we move to the definition of the complexity of
conditional probabilities:

Definition 2 (Complexity of conditionals). Let X and Y be
the respective value sets of random variables X and Y, and
PX ;Y be a joint density on X�Y. Let PY jX be the
corresponding conditional density. We define the complex-
ity of PY jX as

CðPY jX Þ:¼minfkfk2jf 2H with PY jX ðyjxÞ

¼ expðfðx; yÞ � ln zfðxÞÞg

with the partition function

zfðxÞ:¼
X

y

expðfðx; yÞÞ.

Similarly to the reformulation of Definition 1 in Eq. (1),
the definition of the complexity of a conditional density can
also be given in a more explicit form:

CðPY jX Þ ¼ kðid�Q2ÞðlnPY jX Þk
2, (2)

where ‘‘id’’ denotes the identity map and Q2 is as in the
proof of Lemma 1. Under the assumptions of Definition 2,
we have:

Lemma 2 (Consistency). Let X and Y be stochastically

independent with respect to the joint density P, i.e.,
PY jX ¼ PY . Let C be a complexity measure based on a

seminorm in H ¼HX �HY satisfying the embedding

property in Lemma 1. Then we have CðPY jX Þ ¼ C2ðPY Þ.

Proof. Let f be some function on X�Y such that
PY jX ðyjxÞ ¼ expðfðx; yÞ � ln zfðxÞÞ ¼ PY ðyÞ. We choose
an arbitrary value y0 and set f ðxÞ:¼fðx; y0Þ � lnPY ðy0Þ

and gðyÞ:¼ lnPY ðyÞ. Then we have fðx; yÞ ¼ f ðxÞ þ gðyÞ.
Thus

kðid�Q2ÞðfÞk
2 ¼ kðid�Q2Þðf � 1þ 1� gÞk2 ¼ kQ2ðgÞk

2.

Therefore, we conclude CðPY jX Þ ¼ C2ðPY Þ. &

Lemma 2 is essential, if one intends to compare the
complexity of marginal densities to that of conditional
densities. The following causal inference principle stands
behind such a comparison: having factorized a joint density
PX ;Y into PY jX PX and PX jY PY based on both possible
hypothetical causal orders, one calculates the sums of the
complexities CðPY jX Þ þ CðPX Þ and CðPX jY Þ þ CðPY Þ with
respect to the different hypotheses. The intention is to
consider the sums as the ‘‘total complexity’’ of the causal
models X ! Y and X  Y , respectively, and to prefer the
causal direction that corresponds to the smaller total
complexity. For doing so, it is crucial to make CðPY Þ and
CðPY jX Þ comparable. An essential property of the complex-
ity measure is that we have

CðPY jX Þ þ CðPX ÞaCðPX jY Þ þ CðPY Þ

in the generic case. The following lemma provides some
deeper understanding why this is the case.

Lemma 3 (Relation to complexity of partition functio-

n). Under the assumptions of Definition 2, the following

inequalities hold:

CðPX ;Y ÞXCðPY jX Þ þ CðPX Þ þ CðRÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðPX ÞCðRÞ

p
,

CðPX ;Y ÞpCðPY jX Þ þ CðPX Þ þ CðRÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðPX ÞCðRÞ

p
,

where R is the following measure on X: Set RðxÞ:¼c � zf ðxÞ

with an appropriate normalization factor c and the partition

function

zf ðxÞ ¼
X

y

expðf ðx; yÞÞ

which is derived from f :¼ðid�Q2ÞðlnPY jX Þ.

Proof. Write

PðyjxÞ ¼ expðf ðx; yÞ � ln zf ðxÞÞ,

where f satisfies by definition ðid�Q2Þðf Þ ¼ f . Further-
more, we set

PðxÞ ¼ expðgðxÞ � ln zÞ

with Q1ðgÞ ¼ g and normalization constant z. We observe
that f is orthogonal to all functions that depend only on x

since the latter have the form h� 1 (where h is an arbitrary
function). We have

lnPX ;Y ¼ lnPX þ lnPY jX ¼ ð� ln zf þ gÞ � 1þ f � ln z.

Due to the above remarks we have f ? ð� ln zf þ gÞ � 1.
To compute the complexity of PX ;Y , we observe

CðPX ;Y Þ ¼ kQðf þ ð� ln zf þ gÞ � 1þ ln z ð1� 1ÞÞk2

¼ kf þQ1ð� ln zf þ gÞ � 1k2.

Since the projected term is still orthogonal to f (note that it
is a function that depends only on x) we have

CðPX ;Y Þ ¼ kf k
2 þ kQ1ð� ln zf þ gÞk2

¼ kf k2 þ kQ1ðln zf Þ þ gk2. (3)

By elementary geometry we obtain

kQ1ð� ln zf Þ þ gk2XkQ1ðln zf Þk
2 þ kgk2 � 2kQ1ðln zf Þk kgk,

kQ1ð� ln zf Þ þ gk2pkQ1ðln zf Þk
2 þ kgk2 þ 2kQ1ðln zf Þkkgk.

Having CðRÞ ¼ kQ1ðln zf Þk
2, we finally conclude

CðPX ;Y ÞXCðPY jX Þ þ CðPX Þ þ CðRÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðPX ÞCðRÞ

p
,

CðPX ;Y ÞpCðPY jX Þ þ CðPX Þ þ CðRÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðPX ÞCðRÞ

p
: &
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Note that in high dimensional spaces the angle between
two vectors is typically close to 90�. Therefore, it is likely
that the vectors Q1ðln zf Þ and g in Eq. (3) satisfy
Bðln zf ; gÞ � 0. We then have

CðPX ;Y Þ � CðPY jX Þ þ CðPX Þ þ CðRÞ.

In other words, the complexity of the joint density is
typically the sum of the complexities of the conditional
densities and the complexity of a measure defined by the
partition function. The basic idea behind our inference rule
is that simple causal mechanism may generate conditional
densities PY jX which are simple up to a rather complex

X-dependent normalization constant, i.e., the partition
function. Note that the joint density could be complex
even when PX is simple due to the additional complexity of
the partition function.
3. Calculation of seminorm using kernel methods

We have shifted the problem of defining the complexity
of density into the definition of seminorms. We will rewrite
our definition such that seminorms can be calculated in an
implicit way. With the so-called ‘‘kernel trick’’ different
seminorms can be chosen by simply replacing the kernel
(see [12,2]).

Let k1; k2 : ðX�YÞ � ðX�YÞ ! R be positive definite
symmetric kernels and X�Y the probability space under
consideration. Let Hj for j ¼ 1; 2 be the Hilbert spaces
given by the completion of the spans of the functions
kjððx; yÞ; :Þ with the inner product

hkjððx; yÞ; :Þ; kjððx
0; y0Þ; :Þi ¼ kjððx; yÞ; ðx

0; y0ÞÞ. (4)

Hilbert spaces defined this way are usually referred
to as RKHS. We assume that H2 is a subspace of H1.
The vector f in Definitions 1 and 2 can be approxi-
mated by

fðx; yÞ:¼
Xn

j¼1

cjkððxj ; yjÞ; ðx; yÞÞ

¼
Xn

j¼1

cjkððxj ; yjÞ; :Þ; kððx; yÞ; :Þ

* +
(5)

with appropriate coefficients cj and points ðxj ; yjÞ.
We define our seminorm by

kfk:¼kRðfÞkH1
,

where R is the projector onto the subspace orthogonal to
H2 with respect to the inner product in H1. The idea of
using such a seminorm is that the spaceH2 contains simple
functions (for instance polynomials of low degree) that
should not contribute to the complexity measure at all.1
1This corresponds to the use of conditionally positive definite kernels in

semiparametric models [15,19].
Let PY jX be a conditional density, given by

PY jX ðyjxÞ ¼ exp
Xn

j¼1

c
ð1Þ
j k1ððxj ; yjÞ; ðx; yÞÞ

 

þ
Xn

j¼1

c
ð2Þ
j k2ððxj ; yjÞ; ðx; yÞÞ � ln zcðxÞ

!
(6)

with the appropriate partition function zcðxÞ. The complex-
ity CðPY jX Þ is then defined by the minimum of

Xn

j;j0¼1

c
ð1Þ
j c
ð1Þ
j0

k1ððxj ; yjÞ; ðxj0 ; yj0 ÞÞ,

i.e., the square of the norm of the shortest component in
H1, see Eq. (4), over all vectors c:¼ðcð1Þ1 ; . . . ; c

ð1Þ
n ; c

ð2Þ
1 ;

. . . ; cð2Þn Þ 2 R2n for which Eq. (6) holds. The vector with
coefficients k1ððxj ; yjÞ; ðx; yÞÞ, j ¼ 1; . . . ; n and k2ððxj ; yjÞ;
ðx; yÞÞ, j ¼ 1; . . . ; n can be interpreted as the vector of
sufficient statistics of an exponential model.
The framework introduced can also be considered as a

method of density estimation with kernel methods. To
make this method tractable in practice, there are some
issues of implementation to be addressed. The choice of
kernels k1 and k2 will be discussed in the next section.
Given k1 and k2 described in the next section, our remarks
above specified the choice of points ðxj ; yjÞ for j ¼ 1; . . . ; n
in the range. Our experiments show that the seminorm is
not sensitive against the choice of n, if n is not too small
and the points ðxj ; yjÞ are somewhat evenly distributed over
the whole range. The results of all our experiments in this
paper are based on the choice of n ¼ 7 for unconditional
(one-dimensional) cases and n ¼ 49 for conditional (two-
dimensional) cases. The seven points for each dimension
are chosen equidistantly in percentile over the whole
observed range. For a binary range, n ¼ 2.
To ensure that the embedding property ka� 1k ¼ kak ¼

k1� ak is satisfied we proceed as follows. We choose the
kernel k1 as the product

k1ððxj ; yjÞ; ðxj0 ; yj0 ÞÞ ¼ k
ð1Þ
X ðxj ;xj0 Þk

ð2Þ
Y ðyj ; yj0 Þ.

Thus, the corresponding RKHSs have the form
H2:¼H

X
2 �HY

2 and H1:¼H
X
1 �HY

1 . We choose the
kernels k

ð2Þ
X and k

ð2Þ
Y and the domains X;Y such that HX

2

and HY
2 contain the constant functions and normalize k

ð1Þ
X

and k
ð1Þ
Y such that the constant functions 1 on X and Y

satisfy k1kHX
1
¼ 1 and k1kHY

1
¼ 1, respectively.

To this end, we define the matrix KX :¼k
ð1Þ
X ðxj ;xj0 Þ and

calculate its inverse K�1X . Let c:¼ðK�1X Þ1 be the vector of
coefficients of the constant function 1. This yields the
normalization condition hc jKX ci ¼ 1, i.e., the sum of all
entries of K�1X are 1. The same procedure is also applied to
k
ð1Þ
Y . The seminorm of a� 1 is given by the Hilbert space

norm of its component in ðHX
2 �HY

2 Þ
?. Let RX and RY be

the orthogonal projections onto ðHX
2 Þ
? and ðHY

2 Þ
?,

respectively. Due to RY ð1Þ ¼ 0 the relevant component of
a� 1 is given by RX ðaÞ � 1. The Hilbert space norm of this
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function is given by kRX ðaÞkHX
1
which coincides with the

seminorm of a. Similar arguments apply to 1� a.

4. Estimating densities from finite data with kernels

To calculate the complexity of a density we first use
regularized maximum likelihood estimation to fit the
observed data points using exponential models. A general
framework for applying the kernel approach to exponential
families can be found in [3]. Without regularizer, the
method works as follows. Introducing the map c : X�
Y!H1 with

cðx; yÞ:¼k1ðð:; :Þ; ðx; yÞÞ

we define the family of conditional densities PfðyjxÞ ¼

expðhfjcðx; yÞi � ln zfðxÞÞ. For N observed data points
ðxi; yiÞ, the maximum likelihood estimation selects f by

max
f2H1

1

N

XN

i¼1

ðhfjcðxi; yiÞi � ln zfðxiÞÞ

( )
. (7)

In order to avoid overfitting we include a regularizer

max
f2H1

1

N

XN

i¼1

ðhfjcðxi; yiÞi � ln zfðxiÞÞ � �kfk

( )
. (8)

The regularizer, the norm itself and not its square
(as opposed to our complexity measure) is in agreement
with the choice in [1]. The authors of [1] propose to use a
value of � that is proportional to 1=

ffiffiffiffiffi
N
p

. In our experi-
ments, we chose � ¼ 1=

ffiffiffiffiffi
N
p

. Note, as an aside, that the
regularized maximum likelihood estimation for uncondi-
tional densities can also be interpreted as maximizing the
entropy of the density subject to the expectations of
cðX ;Y Þ coinciding with the observed means of cðX ;Y Þ up
to an error of � (see [1]).

For the sake of numerical stability, we normalize the
observed data for X ;Y , respectively. The data are linearly
transformed such that the points 	1 of the normalized data
have the same percentiles as 	3 of a standard normal
distribution, respectively. Thus the normalized data points
with continuous range will be located mostly in the interval
½�1; 1
. A normalized binary variable then takes values 	1.
We choose a discretization of 0:1 to count the relative
frequencies and calculate the sum in optimization. For the
experiments described in the next section we use a sum of
the Gaussian kernel

ksððx; yÞ; ðx
0; y0ÞÞ ¼ exp �

kðx; yÞ � ðx0; y0Þk2

2s2

� �

to define the space H1 and a polynomial kernel

ka;b; ~a; ~bððx; yÞ; ðx
0; y0ÞÞ ¼

hx � x0i

a
þ b

� �
hy � y0i

~a
þ ~b

� �2

to define H2. The additional scaling parameters a; b; ~a; ~b
are used to ensure a numerically stable training. We choose
a; b; ~a; ~b so that the entries of ka;b; ~a; ~b take the value between
½�1; 1
. Since the normalized data have the value mostly
between �1 and 1, we choose a ¼ ~a ¼ 2 and b ¼ ~b ¼ 1
2
, if

x; y are one-dimensional. The formulation of both kernels
for the unconditional case is straightforward. Assuming
that the range of random variables is compact, the space
H2 (induced by a Gaussian kernel) contains the space H1

(induced by a polynomial kernel).
The idea behind the choice of kernels is the following: if

x and y are one-dimensional, the second kernel induces a
space of functions spanned by the monomials
1;x;xy;xy2; y; y2. We consider these as sufficiently smooth
such that they should not contribute to the complexity
measure. In particular, we can then obtain Gaussian
distributions whose expectations and variance changes
linearly with the given variable X. The Gaussian kernel and
the polynomial kernel induces, on the one hand, enough
flexibility to fit various global and local structure of
density. On the other hand, the density estimated this way
is smooth. For a discussion of smoothing properties of
Gaussian and polynomial kernels we refer to [8,15].
Our experience suggests that we have to learn appro-

priate values s for the Gaussian kernel by optimizing
Eq. (8), otherwise we could not obtain reasonable fits.
Clearly, we cannot directly compare the complexity values
corresponding to kernels with different values for s.
However, we may define the complexity by the minimum
over all seminorms squared within some given family of
RKHSs. Denoting by Hi the Hilbert space given by the
kernel ki we may define CðPÞ by CðPÞ:¼inf i2IfCiðPÞg,
where Ci refers to the complexity measure defined by the
seminorm in Hi. In order to ensure additivity with respect
to product measures in product spaces for the redefined C

we need to define a family of spaces by H
ð1Þ
i �H

ð2Þ
j and

optimize over all pairs ði; jÞ. Due to a combinatorial
explosion such an optimization will only be feasible for a
small set I and few tensor components. In the experiments
described in the next section we have therefore used the
same s for the Hilbert spaces for X and Y.
If we run the optimization procedure in Eq. (8) over all

Hilbert spaces (i.e., all reasonable values s) the procedure
will choose the vector f from the Hilbert space that leads
to the smallest norm among all those that yield the same
value in the non-regularized optimization given by Eq. (7).
We shall therefore consider the optimum of Eq. (8) over all
kernels taken from a given family as an estimation of the
minimal norm of the density over all Hilbert spaces under
consideration. Since the optimization problem with s is no
longer convex, one should choose the start value of s
properly. In our experiments we chose 200 equidistant
starting values in the range ð0; 2

3
Þ. The value which leads to

the maximum of Eq. (8) will then be taken as the start value
of a subsequent optimization via gradient descent.

5. Experiments with simulated and real-world data

Some simulated experiments show the intuitive meaning
of our complexity measure, while the real-world examples
show that this complexity measure could be helpful for
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inferring the causal direction between two variables,
because we assume that stochastic dependences between
cause and effect which are generated by a natural causal
mechanism should typically lead to comparably simple

expressions for PðcauseÞ and PðeffectjcauseÞ but not
necessarily generate simple expressions for PðeffectÞ and
PðcausejeffectÞ.

5.1. Unconditional densities

We have sampled 1000 data points from various
distributions, as shown in Fig. 1. The underlying density
P1 follows a standard normal distribution; P2;P3;P4;P5

are various mixtures of 2 Gaussians; P6;P7;P8 are mixtures
of 3, 4, 5 Gaussians, respectively. P9 is a mixture of a
Gaussian and a gamma distribution. P10 follows a single
gamma distribution and P11;P12 are mixtures of 2, 3
gamma distributions, respectively. As expected, we see that
the complexity of a single Gaussian is 0. A single gamma
distribution has a very small complexity value. The
measure increases as the number of components increases.
This holds even for the unimodal mixture P2;P11;P12.
Moreover, we have examined the smoothness (complexity)
of a real-world temperature data set2 with 9162 entries. The
estimated density (see Fig. 2) has a complexity of 0:0265,
which suggests that the density of temperatures is more
complex than a single normal or gamma distribution. We
observe slightly larger complexity values for a gamma
distribution than for a Gaussian. We do not want to
speculate whether this property is desirable.

5.2. Conditional densities

If we define a density on a binary variable X and a
continuous variable Y by

PðyÞ ¼ 0:5PðyjX ¼ x1Þ þ 0:5Pðy jX ¼ x2Þ,

where both conditionals PðyjX ¼ xiÞ are Gaussian, the
total complexity of the model X ! Y is zero since the
kernel k2 induces such a density. Note that due to our
choice of kernel the complexity of the density of a binary
variable is always 0. We checked on randomly generated
data with 1000 points whether this result is also obtained in
finite sampling. We furthermore confirmed that the model
X ! Y was also preferred when the conditional PðY jX ¼

x2Þ was the gamma distribution and PðY jX ¼ x1Þ was a
Gaussian. In a similar way, we defined joint densities on X

and Y corresponding to the mixture models P2;P3;P4;P9

in Fig. 1 by using a binary variable X to indicate which one
of the two pure ensembles is taken. The complexity values
in Table 1 show that we indeed obtained the expected
results.

Since the causal inference problem was the motivation
for the construction of our complexity measure, its
2Daily average temperatures from 1979 through 2004, Furtwangen,

Germany.
performance with respect to some real-world data is the
best criterion for judging whether it seems appropriate or
not. To this end, we performed experiments with data
sets from the Current Population Survey (CPS) 2001 on
the relation between sex (binary variable) and income
(continuous variable) in the US.3 Statistical methods show
that income and gender are indeed correlated. Common
sense tells us that we can exclude that the personal income
influences the gender, whereas the reverse causal direction
makes sense. We found that the density of the income
marginalized over both genders is more complex than the
density for both genders separately.
First we intended to check to what extent the complexity

measure recognizes mixtures as more complex. We found

CðP
IncomejSex¼‘‘male’’ÞoCðPIncomeÞ,

and the same for P
IncomejSex¼‘‘female0

0 . Note that left side of
the inequality can also be considered as the complexity of
an unconditional density since we assigned a specific value
to the conditioning variable.
However, to check the performance of our causal

inference principle we have to compute the total complexity
of both hypothetical causal directions. Using one sub-
sample of 10% of the data points from 13; 803 entries,
we found the following complexity values: CðPSexÞ ¼

0:0000, CðPIncomejSexÞ ¼ 0:4632, CðPIncomeÞ ¼ 0:6725, and
CðPSexjIncomeÞ ¼ 0:0000, i.e., the sum of the first two values
(corresponding to the true causal direction) is indeed
smaller that the sum of the last two.
Using the same data set, we consider another example

where a continuous variable causally influences a binary
variable. We examine the continuous variable ‘‘Age’’ and
the binary variable marriage status (short ‘‘M-Status’’, it
takes the two values: ‘‘never married’’ or ‘‘married, widowed,
divorced or separated’’). A 10% subsample leads to
the following results: CðPAgeÞ ¼ 0:0023, CðPM-StatusjAgeÞ ¼

0:0012, CðPM-StatusÞ ¼ 0:0000, CðPAgejM-StatusÞ ¼ 0:0164.
The sum of the first two values (corresponding to the true
causal direction) is smaller than the sum of the last two.
Our causal inference rule would then favor the causal
hypothesis that the age should be a cause of marriage
status of a person, not vice versa.
We repeated these experiments using different subsam-

ples of 10% of the whole data set. All subsamples yielded
the same result with regarding to both causal hypotheses.
However, the complexity values were slightly different for
different samples. Therefore, we should not overrate the
meaning of the absolute value of the complexity measure.
Its relevance consists rather in allowing us to compare

complexity values for different causal directions.
The third example that we tested is a data set of

handwritten numerals [9] containing PCA components of
the pixel vectors for the symbols ‘‘0’’–‘‘9’’. We considered
the symbols ‘‘0’’ and ‘‘1’’ and interpreted them as the
3The data were transcribed by D. Freedman of UC Berkeley and are

available online at http://www.stat.berkeley.edu/�census/.

http://www.stat.berkeley.edu/census/
http://www.stat.berkeley.edu/census/
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Table 1

Complexity of conditional densities in binary mixture models

P2 P3 P4 P9

PiðY jX ¼ x1Þ Nð�1; 1Þ Nð�2; 1Þ Nð�3; 1Þ Nð8; 1Þ
PiðY jX ¼ x2Þ Nð1; 4Þ Nð2; 4Þ Nð3; 4Þ Gð9; 0:5Þ
CðPX Þ 0:0000 0:0000 0:0000 0:0000
CðPY jX Þ 0:0000 0:0000 0:0000 0:0004
CðPY Þ 0:1724 0:1332 0:4320 0:1415
CðPX jY Þ 0:0234 0:0000 0:0000 0:0000

X. Sun et al. / Neurocomputing 71 (2008) 1248–12561254
values of a binary random variable X. For each symbol
there are 200 instances. We chose a PCA coefficient as a
continuous random variable Y. We assume that X is the
cause of Y because the person first had the intention to
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write the digit ‘‘1’’ or ‘‘0’’ and wrote it afterward. Hence the
PCA coefficient Y is the effect.

We applied our inference rule to several coefficients.
Their correlation with X attained, among others, the values
r ¼ 0:8661, �0:8079, 0:3233, 0:5674, 0:1086, �0:0601,
�0:2547. For the cases with strong correlations we
obtained results that were consistent with the ground
truth, i.e., CðPX Þ þ CðPY jX ÞoCðPY Þ þ CðPX jY Þ. When the
correlation coefficient was 0:3 or smaller, we have also
observed several failures of the causal inference rule since
CðPY Þ and CðPY jX Þ are extremely small for these cases.
This is because a density is hard to recognize as a mixture
of two distributions if they are not sufficiently different.

6. Conclusions

We have presented a method to estimate the complexity
of unconditional and conditional probability measures
from finite samples. The complexity measure is based on an
RKHS seminorm of the logarithm of the density. Experi-
ments with real-world and toy data sets show that mixtures
of two simple distributions like Gaussians and gamma
distributions are recognized as more complex than the pure
distributions. This confirmed that the complexity values are
related to our intuitive understanding of smoothness.

Moreover, the total complexity of the true causal
hypothesis X ! Y given by the sum of the complexity of
PðX Þ and the complexity of PðY jX Þ was in most cases of
our real-world experiments smaller than that of the
erroneous model X  Y . However, the relevance of the
absolute value of complexity should not be overrated.

Every causal inference method is based on some kind of
simplicity principle, which cannot be proved in principle. A
final judgment on the performance of such methods
requires a large number of examples from real-life data.
Although the results obtained so far seem promising, we do
not claim that our simplicity principle (which allows a
space of functions spanned by certain simple monomials) is
universally valid, since one can surely not expect that all
real-world causal relationships exhibit the properties that
we assumed. Different applications may require different
complexity measures, but the kernel method seems to be
quite flexible for designing appropriate measures by
replacing the kernels k1 and k2.

The method presented here is computationally rather
expensive. The optimization in Eq. (8) requires calculating
the partition function. Due to the small size of our
probability space (e.g. variables with binary range) this
was nevertheless feasible. Evaluating conditionals with
general continuous ranges or with more than two random
variables seems (from the current perspective) to be feasible
only after a coarse discretization. However, as we have
shown, the tractable cases already lead to some interesting
insights. They provide hints on the causal directions
between only two variables (either discrete or continuous)
where conventional constraint-based approaches as well as
approaches using independent component analysis fail.
Due to the disadvantage that our method becomes
computationally intractable for many variables we propose
to apply conventional constraint-based approaches like the
IC-algorithm (as well as a new algorithm using kernel-
based independence tests [18]) to obtain partial informa-
tion on the causal directions and apply methods of the type
presented here to gain information on the causal directions
that remained unspecified.
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