Size: 3430
Comment:
|
Size: 9746
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 12: | Line 12: |
=== Inhalt === | [[https://www.isis.tu-berlin.de/course/view.php?id=5789|All information can be found in the ISIS course]] |
Line 14: | Line 14: |
In diesem Seminar wird eine Auswahl klassischer Themen aus dem Bereich des Maschinellen Lernens behandelt. Die Spannbreite der Themen umfasst unüberwachten Lernverfahren (Dimensionsreduktion, Blinde Quellentrennung, Clustering, etc.), Klassifikations- und Regressionsalgorithmen (SVMs, Neuronale Netze, etc.) und Methoden zur Modellselektion. === Voraussetzungen === Wir empfehlen den Besuch der Vorlesung "Maschinelles Lernen I". === Ablauf === * Die Vorbesprechung findet am 16.11.2011 statt. * Die Teilnehmer wählen bis Mitte Januar ein Thema in Absprache mit dem Betreuer (siehe Themenliste). * Das Seminar findet als Blockveranstaltung am Ende des Semester statt (Termin wird noch bekanntgegeben). === Vorträge === Jeder Vortrag soll 35 Minuten (+ 10 Minuten Diskussion) dauern. Der Vortrag kann wahlweise auf Deutsch oder Englisch gehalten werden. Ein guter Vortrag führt kurz in das jeweilige Thema ein, stellt die Problemstellung dar und beschreibt zusammenfassend relevante Arbeiten und Lösungen. === Leistungsnachweis === Das Seminar ist Wahlpflichtbestandteil des Master-Module "Maschinelles Lernen 1". Bachelor-Studenten können diese Master-Module auf Antrag ebenfalls belegen. Die erfolgreiche Teilnahme am Seminar ist Voraussetzung für die Modul-Prüfung. === Themen === Die Vorträge sollen jeweils 35 Minuten (+ 10 Minuten Diskussion) dauern. Wir legen Wert auf diese Zeitvorgabe und werden Vorträge bei deutlicher Überschreitung abbrechen. |
=== Topics (tentative) === |
Line 42: | Line 17: |
|| [[http://www.idsia.ch/NNcourse/intro.html|Introduction to Neural Networks (IDSIA)]] || [[mailto:g.montavon@mailbox.tu-berlin.de|Gregoire Montavon]] || || || [[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.6483|An Introduction to Boosting and Leveraging]] || Mikio Braun || || || PCA, CCA, and Kernel PCA[[http://www.face-rec.org/algorithms/Kernel/kernelPCA_scholkopf.pdf|The original kPCA paper (TR version)]] || Felix Bießmann || || || [[http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/|ICA tutorial]] || Frank Meinecke || || || Predicting Structured Objects with Support Vector Machines [[http://www.yisongyue.com/publications/cacm2009_structsvm.pdf|PDF_short]] [[http://www.jmlr.org/papers/volume6/tsochantaridis05a/tsochantaridis05a.pdf|PDF_long]] || [[mailto:mkloft@cs.tu-berlin.de|Marius Kloft]], [[mailto:goernitz@cs.tu-berlin.de|Nico Görnitz]] || || || [[attachment:lect_notes_ol.pdf|Lecture Notes on Online Learning]] || [[mailto:mkloft@cs.tu-berlin.de|Marius Kloft]] || || |
|| Nonlinear Dimensionality Reduction by Locally Linear Embedding [[http://www.sciencemag.org/content/vol290/issue5500/|link]] <<BR>> Roweis, S. T. and Saul, L. K., 2000 || || || || Gaussian Processes - A Replacement for Supervised Neural Networks? [[ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gp.ps.gz|link]] <<BR>> MacKay, D. J. C., 1997 || || || || Factor Graphs and the Sum-Product Algorithm [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.1570&rep=rep1&type=pdf|link]] <<BR>> Kschischang, , Frey, and Loeliger, , 2001 || || || || Gaussian Processes in Machine Learning [[http://dx.doi.org/10.1007/978-3-540-28650-9_4|link]] <<BR>> Rasmussen, C. E., 2003 || || || || A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.2084&rep=rep1&type=pdf|link]] <<BR>> Rabiner, L. R., 1989 || || || || Decoding by Linear Programming [[http://arxiv.org/pdf/math/0502327|link]] <<BR>> Candes, and Tao, , 2005 || || || || Self-organizing formation of topologically correct feature maps <<BR>> Kohonen, T., 1982 || || || || Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.7436&rep=rep1&type=pdf|link]] <<BR>> Friedman, J., Hastie, T. and Tibshirani, R., 2000 || || || || Expectation Propagation for approximate Bayesian inference [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.1319&rep=rep1&type=pdf|link]] <<BR>> Minka, T. P., 2001 || || || || A new look at the statistical model identification [[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1100705|link]] <<BR>> Akaike, H., 1974 || || || || Error Correction via Linear Programming [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.2255&rep=rep1&type=pdf|link]] <<BR>> Candes, , Rudelson, , Tao, and Vershynin, , 2005 || || || || A Global Geometric Framework for Nonlinear Dimensionality Reduction [[http://isomap.stanford.edu/|link]] <<BR>> Tenenbaum, J. B., de Silva, V. and Langford, J. C., 2000 || || || || An Introduction to MCMC for Machine Learning [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.7133&rep=rep1&type=pdf|link]] <<BR>> Andrieu, , de Freitas, , Doucet, and Jordan, , 2003 || || || || Perspectives on Sparse Bayesian Learning [[http://books.nips.cc/papers/files/nips16/NIPS2003_AA32.pdf|link]] <<BR>> Wipf, D. P., Palmer, J. A. and Rao, B. D., 2003 || || || || Induction of decision trees [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3624&rep=rep1&type=pdf|link]] <<BR>> Quinlan, R., 1986 || || || || A Fast Learning Algorithm for Deep Belief Nets [[http://neco.mitpress.org/cgi/content/abstract/18/7/1527|link]] <<BR>> Hinton, G. E., Osindero, S. and Teh, Y. W., 2006 || || || || How to Use Expert Advice [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.7476&rep=rep1&type=pdf|link]] <<BR>> Cesa-Bianchi, , Freund, , Haussler, , Helmbold, , Schapire, and Warmuth, , 1997 || || || || A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants [[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2557|link]] <<BR>> Neal, R. and Hinton, G., 1998 || || || || Probabilistic Inference using Markov Chain Monte Carlo Methods [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.9055&rep=rep1&type=pdf|link]] <<BR>> Neal, R. M., 1993 || || || || Model Selection Using the Minimum Description Length Principle [[http://www.amstat.org/publications/tas/Bryant.htm|link]] <<BR>> Bryant, P. G. and Cordero-Brana, O. I., 2000 || || || || Hierarchical Mixtures of Experts and the EM Algorithm [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7391&rep=rep1&type=pdf|link]] <<BR>> Jordan, M. I. and Jacobs, R. A., 1994 || || || || Gaussian Processes in Reinforcement Learning [[http://books.nips.cc/papers/files/nips16/NIPS2003_CN01.pdf|link]] <<BR>> Rasmussen, C. E. and Kuss, M., 2003 || || || || An introduction to variational methods for graphical models [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4999&rep=rep1&type=pdf|link]] <<BR>> Jordan, M. I., Ghahramani, Z. and Jaakkola, T. S., 1999 || || || |
Line 49: | Line 41: |
|| Rasmussen, C. E. and Kuss, M. ''Gaussian Processes in Reinforcement Learning'' , 2003 || || || || Jordan, M. I., Ghahramani, Z. and Jaakkola, T. S. ''An introduction to variational methods for graphical models'', 1999 || || || |
|| Ensemble learning <<BR>> Induction of decision trees. Quinlan, R., 1986 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3624&rep=rep1&type=pdf|link]] Hierarchical Mixtures of Experts and the EM Algorithm. Jordan, M. I. and Jacobs, R. A., 1994 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7391&rep=rep1&type=pdf|link]] || || || || Spectral clustering <<BR>> A tutorial on spectral clustering. Von Luxburg, U., 2007 [[http://www.stanford.edu/class/ee378B/papers/luxburg-spectral.pdf|link]] || || || || Expectation propagation <<BR>> Expectation Propagation for approximate Bayesian inference. Minka, T. P., 2001 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.1319&rep=rep1&type=pdf|link]] || || || || Hidden Markov Models (HMM) <<BR>> A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Rabiner, L. R., 1989 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.2084&rep=rep1&type=pdf|link]] A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Baum, L., Petrie, T., Soules, G. and Weiss, N., 1970 || || || || Variational methods <<BR>> An introduction to variational methods for graphical models. Jordan, M. I., Ghahramani, Z. and Jaakkola, T. S., 1999 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4999&rep=rep1&type=pdf|link]] || || || || Learning bounds <<BR>> Tutorial on practical prediction theory for classification. Langford, J., 2006 [[http://jmlr.csail.mit.edu/papers/volume6/langford05a/langford05a.pdf|link]] || || || || Manifold learning <<BR>> Laplacian eigenmaps for dimensionality reduction and data representation. Belkin, M. and Niyogi, P., 2003 || || || || Locally Linear Embedding (LLE) <<BR>> Nonlinear Dimensionality Reduction by Locally Linear Embedding. Roweis, S. T. and Saul, L. K., 2000 [[http://www.sciencemag.org/content/vol290/issue5500/|link]] || || || || Random forests <<BR>> Random forests. Breiman, L., 2001 || || || || Compressed sensing <<BR>> Decoding by Linear Programming. Candes, and Tao, , 2005 [[http://arxiv.org/pdf/math/0502327|link]] Error Correction via Linear Programming. Candes, , Rudelson, , Tao, and Vershynin, , 2005 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.2255&rep=rep1&type=pdf|link]] || || || || Minimum description length (MDL) <<BR>> Model Selection Using the Minimum Description Length Principle. Bryant, P. G. and Cordero-Brana, O. I., 2000 [[http://www.amstat.org/publications/tas/Bryant.htm|link]] || || || || Markov Chain Monte Carlo (MCMC) <<BR>> An Introduction to MCMC for Machine Learning. Andrieu, , de Freitas, , Doucet, and Jordan, , 2003 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.7133&rep=rep1&type=pdf|link]] Probabilistic Inference using Markov Chain Monte Carlo Methods. Neal, R. M., 1993 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.9055&rep=rep1&type=pdf|link]] || || || || Gaussian processes <<BR>> Gaussian Processes - A Replacement for Supervised Neural Networks?. MacKay, D. J. C., 1997 [[ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gp.ps.gz|link]] Gaussian Processes in Machine Learning. Rasmussen, C. E., 2003 [[http://dx.doi.org/10.1007/978-3-540-28650-9_4|link]] || || || || Deep belief networks <<BR>> A Fast Learning Algorithm for Deep Belief Nets. Hinton, G. E., Osindero, S. and Teh, Y. W., 2006 [[http://neco.mitpress.org/cgi/content/abstract/18/7/1527|link]] || || || || Boosting <<BR>> Experiments with a new boosting algorithm. Freund, Y. and Schapire, R., 1996 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.4143&rep=rep1&type=pdf|link]] Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting. Friedman, J., Hastie, T. and Tibshirani, R., 2000 [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.7436&rep=rep1&type=pdf|link]] || || || || Expectation Maximization (EM) <<BR>> Maximum likelihood from incomplete data via the EM algorithm. Dempster, A., Laird, N. and Rubin, D., 1977 A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants. Neal, R. and Hinton, G., 1998 [[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2557|link]] || || || || Message passing <<BR>> Factor Graphs and the Sum-Product Algorithm. Kschischang, , Frey, and Loeliger, , 2001 || || || || Model selection <<BR>> A new look at the statistical model identification. Akaike, H., 1974 [[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1100705|link]] || || || || Kalman filters <<BR>> A new approach to linear filtering and prediction problems. Kalman, R. and others, , 1960 || || || |
Block-Seminar "Classical Topics in Machine Learning"
Termine und Informationen
Erster Termin für Themenvergabe |
Mittwoch, 16.11.2011, 10:00-12:00 Uhr, Raum FR 6046 |
Verantwortlich |
|
Ansprechtpartner(in) |
|
Sprechzeiten |
Nach Vereinbarung |
Sprache |
Englisch |
Anrechenbarkeit |
Wahlpflicht LV im Modul Maschinelles Lernen I (Informatik M.Sc.) |
All information can be found in the ISIS course
Topics (tentative)
Paper(s) |
Betreuer |
Vortragender |
Nonlinear Dimensionality Reduction by Locally Linear Embedding link |
|
|
Gaussian Processes - A Replacement for Supervised Neural Networks? link |
|
|
Factor Graphs and the Sum-Product Algorithm link |
|
|
Gaussian Processes in Machine Learning link |
|
|
A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition link |
|
|
Decoding by Linear Programming link |
|
|
Self-organizing formation of topologically correct feature maps |
|
|
Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting link |
|
|
Expectation Propagation for approximate Bayesian inference link |
|
|
A new look at the statistical model identification link |
|
|
Error Correction via Linear Programming link |
|
|
A Global Geometric Framework for Nonlinear Dimensionality Reduction link |
|
|
An Introduction to MCMC for Machine Learning link |
|
|
Perspectives on Sparse Bayesian Learning link |
|
|
Induction of decision trees link |
|
|
A Fast Learning Algorithm for Deep Belief Nets link |
|
|
How to Use Expert Advice link |
|
|
A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants link |
|
|
Probabilistic Inference using Markov Chain Monte Carlo Methods link |
|
|
Model Selection Using the Minimum Description Length Principle link |
|
|
Hierarchical Mixtures of Experts and the EM Algorithm link |
|
|
Gaussian Processes in Reinforcement Learning link |
|
|
An introduction to variational methods for graphical models link |
|
|
Ensemble learning |
|
|
Spectral clustering |
|
|
Expectation propagation |
|
|
Hidden Markov Models (HMM) |
|
|
Variational methods |
|
|
Learning bounds |
|
|
Manifold learning |
|
|
Locally Linear Embedding (LLE) |
|
|
Random forests |
|
|
Compressed sensing |
|
|
Minimum description length (MDL) |
|
|
Markov Chain Monte Carlo (MCMC) |
|
|
Gaussian processes |
|
|
Deep belief networks |
|
|
Boosting |
|
|
Expectation Maximization (EM) |
|
|
Message passing |
|
|
Model selection |
|
|
Kalman filters |
|
|