Differences between revisions 1 and 28 (spanning 27 versions)
Revision 1 as of 2011-07-13 10:39:06
Size: 53
Editor: PaulBuenau
Comment:
Revision 28 as of 2011-09-19 15:57:13
Size: 6429
Editor: PaulBuenau
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
Describe Main/WS11_SeminarClassicalTopicsInML here. == Block-Seminar "Classical Topics in Machine Learning" ==

=== Termine und Informationen ===

||'''Erster Termin für Themenvergabe'''|| Mittwoch, 16.11.2011, 10:00-12:00 Uhr, Raum FR 6046 ||
||'''Verantwortlich'''|| [[http://ml.cs.tu-berlin.de/en/klaus/index.html|Prof. Dr. Klaus-Robert Müller]] ||
||'''Ansprechtpartner(in)'''|| [[http://www.user.tu-berlin.de/paulbuenau/| Paul von Bünau]]||
||'''Sprechzeiten'''|| Nach Vereinbarung||
||'''Sprache'''|| Englisch ||
||'''Anrechenbarkeit''|| Wahlpflicht LV im Modul Maschinelles Lernen I (Informatik M.Sc.) ||

=== Inhalt ===

In diesem Seminar wird eine Auswahl klassischer Themen aus dem Bereich des Maschinellen Lernens
behandelt. Die Spannbreite der Themen umfasst unüberwachten Lernverfahren (Dimensionsreduktion,
Blinde Quellentrennung, Clustering, etc.), Klassifikations- und Regressionsalgorithmen
(SVMs, Neuronale Netze, etc.) und Methoden zur Modellselektion.

=== Voraussetzungen ===

Wir empfehlen den Besuch der Vorlesung "Maschinelles Lernen I".

=== Ablauf ===

   * Die Vorbesprechung findet am 16.11.2011 statt.
   * Die Teilnehmer wählen bis Mitte Januar ein Thema in Absprache mit dem Betreuer (siehe Themenliste).
   * Das Seminar findet als Blockveranstaltung am Ende des Semester statt (Termin wird noch bekanntgegeben).

=== Vorträge ===

Jeder Vortrag soll 35 Minuten (+ 10 Minuten Diskussion) dauern. Der Vortrag kann wahlweise auf Deutsch oder Englisch gehalten werden. Ein guter Vortrag führt kurz in das jeweilige Thema ein, stellt die Problemstellung dar und beschreibt zusammenfassend relevante Arbeiten und Lösungen.

=== Leistungsnachweis ===

Das Seminar ist Wahlpflichtbestandteil des Master-Module "Maschinelles Lernen 1". Bachelor-Studenten können diese Master-Module auf Antrag ebenfalls belegen. Die erfolgreiche Teilnahme am Seminar ist Voraussetzung für die Modul-Prüfung.

=== Themen ===

Die Vorträge sollen jeweils 35 Minuten (+ 10 Minuten Diskussion) dauern. Wir legen Wert auf diese Zeitvorgabe und werden Vorträge bei deutlicher Überschreitung abbrechen.

|| '''Paper(s)''' || '''Betreuer''' || '''Vortragender''' ||
|| Nonlinear Dimensionality Reduction by Locally Linear Embedding [[http://www.sciencemag.org/content/vol290/issue5500/|link]] <<BR>> Roweis, S. T. and Saul, L. K., 2000 || || ||
|| Gaussian Processes - A Replacement for Supervised Neural Networks? [[ftp://wol.ra.phy.cam.ac.uk/pub/mackay/gp.ps.gz|link]] <<BR>> MacKay, D. J. C., 1997 || || ||
|| Factor Graphs and the Sum-Product Algorithm [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.1570&rep=rep1&type=pdf|link]] <<BR>> Kschischang, , Frey, and Loeliger, , 2001 || || ||
|| Gaussian Processes in Machine Learning [[http://dx.doi.org/10.1007/978-3-540-28650-9_4|link]] <<BR>> Rasmussen, C. E., 2003 || || ||
|| A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.2084&rep=rep1&type=pdf|link]] <<BR>> Rabiner, L. R., 1989 || || ||
|| Decoding by Linear Programming [[http://arxiv.org/pdf/math/0502327|link]] <<BR>> Candes, and Tao, , 2005 || || ||
|| Self-organizing formation of topologically correct feature maps <<BR>> Kohonen, T., 1982 || || ||
|| Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.7436&rep=rep1&type=pdf|link]] <<BR>> Friedman, J., Hastie, T. and Tibshirani, R., 2000 || || ||
|| Expectation Propagation for approximate Bayesian inference [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.1319&rep=rep1&type=pdf|link]] <<BR>> Minka, T. P., 2001 || || ||
|| A new look at the statistical model identification [[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1100705|link]] <<BR>> Akaike, H., 1974 || || ||
|| Error Correction via Linear Programming [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.2255&rep=rep1&type=pdf|link]] <<BR>> Candes, , Rudelson, , Tao, and Vershynin, , 2005 || || ||
|| A Global Geometric Framework for Nonlinear Dimensionality Reduction [[http://isomap.stanford.edu/|link]] <<BR>> Tenenbaum, J. B., de Silva, V. and Langford, J. C., 2000 || || ||
|| An Introduction to MCMC for Machine Learning [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.7133&rep=rep1&type=pdf|link]] <<BR>> Andrieu, , de Freitas, , Doucet, and Jordan, , 2003 || || ||
|| Perspectives on Sparse Bayesian Learning [[http://books.nips.cc/papers/files/nips16/NIPS2003_AA32.pdf|link]] <<BR>> Wipf, D. P., Palmer, J. A. and Rao, B. D., 2003 || || ||
|| Induction of decision trees [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.3624&rep=rep1&type=pdf|link]] <<BR>> Quinlan, R., 1986 || || ||
|| A Fast Learning Algorithm for Deep Belief Nets [[http://neco.mitpress.org/cgi/content/abstract/18/7/1527|link]] <<BR>> Hinton, G. E., Osindero, S. and Teh, Y. W., 2006 || || ||
|| How to Use Expert Advice [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.7476&rep=rep1&type=pdf|link]] <<BR>> Cesa-Bianchi, , Freund, , Haussler, , Helmbold, , Schapire, and Warmuth, , 1997 || || ||
|| A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants [[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2557|link]] <<BR>> Neal, R. and Hinton, G., 1998 || || ||
|| Probabilistic Inference using Markov Chain Monte Carlo Methods [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.9055&rep=rep1&type=pdf|link]] <<BR>> Neal, R. M., 1993 || || ||
|| Model Selection Using the Minimum Description Length Principle [[http://www.amstat.org/publications/tas/Bryant.htm|link]] <<BR>> Bryant, P. G. and Cordero-Brana, O. I., 2000 || || ||
|| Hierarchical Mixtures of Experts and the EM Algorithm [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7391&rep=rep1&type=pdf|link]] <<BR>> Jordan, M. I. and Jacobs, R. A., 1994 || || ||
|| Gaussian Processes in Reinforcement Learning [[http://books.nips.cc/papers/files/nips16/NIPS2003_CN01.pdf|link]] <<BR>> Rasmussen, C. E. and Kuss, M., 2003 || || ||
|| An introduction to variational methods for graphical models [[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4999&rep=rep1&type=pdf|link]] <<BR>> Jordan, M. I., Ghahramani, Z. and Jaakkola, T. S., 1999 || || ||

Block-Seminar "Classical Topics in Machine Learning"

Termine und Informationen

Erster Termin für Themenvergabe

Mittwoch, 16.11.2011, 10:00-12:00 Uhr, Raum FR 6046

Verantwortlich

Prof. Dr. Klaus-Robert Müller

Ansprechtpartner(in)

Paul von Bünau

Sprechzeiten

Nach Vereinbarung

Sprache

Englisch

Anrechenbarkeit

Wahlpflicht LV im Modul Maschinelles Lernen I (Informatik M.Sc.)

Inhalt

In diesem Seminar wird eine Auswahl klassischer Themen aus dem Bereich des Maschinellen Lernens behandelt. Die Spannbreite der Themen umfasst unüberwachten Lernverfahren (Dimensionsreduktion, Blinde Quellentrennung, Clustering, etc.), Klassifikations- und Regressionsalgorithmen (SVMs, Neuronale Netze, etc.) und Methoden zur Modellselektion.

Voraussetzungen

Wir empfehlen den Besuch der Vorlesung "Maschinelles Lernen I".

Ablauf

  • Die Vorbesprechung findet am 16.11.2011 statt.
  • Die Teilnehmer wählen bis Mitte Januar ein Thema in Absprache mit dem Betreuer (siehe Themenliste).
  • Das Seminar findet als Blockveranstaltung am Ende des Semester statt (Termin wird noch bekanntgegeben).

Vorträge

Jeder Vortrag soll 35 Minuten (+ 10 Minuten Diskussion) dauern. Der Vortrag kann wahlweise auf Deutsch oder Englisch gehalten werden. Ein guter Vortrag führt kurz in das jeweilige Thema ein, stellt die Problemstellung dar und beschreibt zusammenfassend relevante Arbeiten und Lösungen.

Leistungsnachweis

Das Seminar ist Wahlpflichtbestandteil des Master-Module "Maschinelles Lernen 1". Bachelor-Studenten können diese Master-Module auf Antrag ebenfalls belegen. Die erfolgreiche Teilnahme am Seminar ist Voraussetzung für die Modul-Prüfung.

Themen

Die Vorträge sollen jeweils 35 Minuten (+ 10 Minuten Diskussion) dauern. Wir legen Wert auf diese Zeitvorgabe und werden Vorträge bei deutlicher Überschreitung abbrechen.

Paper(s)

Betreuer

Vortragender

Nonlinear Dimensionality Reduction by Locally Linear Embedding link
Roweis, S. T. and Saul, L. K., 2000

Gaussian Processes - A Replacement for Supervised Neural Networks? link
MacKay, D. J. C., 1997

Factor Graphs and the Sum-Product Algorithm link
Kschischang, , Frey, and Loeliger, , 2001

Gaussian Processes in Machine Learning link
Rasmussen, C. E., 2003

A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition link
Rabiner, L. R., 1989

Decoding by Linear Programming link
Candes, and Tao, , 2005

Self-organizing formation of topologically correct feature maps
Kohonen, T., 1982

Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting link
Friedman, J., Hastie, T. and Tibshirani, R., 2000

Expectation Propagation for approximate Bayesian inference link
Minka, T. P., 2001

A new look at the statistical model identification link
Akaike, H., 1974

Error Correction via Linear Programming link
Candes, , Rudelson, , Tao, and Vershynin, , 2005

A Global Geometric Framework for Nonlinear Dimensionality Reduction link
Tenenbaum, J. B., de Silva, V. and Langford, J. C., 2000

An Introduction to MCMC for Machine Learning link
Andrieu, , de Freitas, , Doucet, and Jordan, , 2003

Perspectives on Sparse Bayesian Learning link
Wipf, D. P., Palmer, J. A. and Rao, B. D., 2003

Induction of decision trees link
Quinlan, R., 1986

A Fast Learning Algorithm for Deep Belief Nets link
Hinton, G. E., Osindero, S. and Teh, Y. W., 2006

How to Use Expert Advice link
Cesa-Bianchi, , Freund, , Haussler, , Helmbold, , Schapire, and Warmuth, , 1997

A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants link
Neal, R. and Hinton, G., 1998

Probabilistic Inference using Markov Chain Monte Carlo Methods link
Neal, R. M., 1993

Model Selection Using the Minimum Description Length Principle link
Bryant, P. G. and Cordero-Brana, O. I., 2000

Hierarchical Mixtures of Experts and the EM Algorithm link
Jordan, M. I. and Jacobs, R. A., 1994

Gaussian Processes in Reinforcement Learning link
Rasmussen, C. E. and Kuss, M., 2003

An introduction to variational methods for graphical models link
Jordan, M. I., Ghahramani, Z. and Jaakkola, T. S., 1999

IDA Wiki: Main/WS11_SeminarClassicalTopicsInML (last edited 2011-11-15 20:00:46 by PaulBuenau)