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1 Fisher Discriminant Analysis (FDA)

[subsumption] As discussed, high dimensional data are ubiques in real world problems
– but they are hard to handle. Effective ways to reduce the dimensionality are needed. We
have seen that PCA is the linear projection to a lower dimensional feature space that best
representas the data in a least-squares sense. In this lecture we will study Fisher (linear)
Discriminant Analysis (FDA) which determines a projection that best separates multi-
class data in a least-squares sense. Furthermore there is a close link to Linear Discriminant
Analysis (LDA) and Fisher Discriminant is related to (the forthcoming) Support Vector
Machines (SVMs).

[reference] Duda, Hart, Stork, “Pattern Classification” (2nd ed.), pp. 117.

Let be given d-dimensional data vectors

x1, . . . , xn ∈ R
d

which are devided into two subsets (classes) D1 and D2.

Missing Figure: Motivation of Fisher criterion – see separate sheet

Denoting the desired projection vector by w ∈ R
d the projected data points are

yk = w⊤xk (k = 1, . . . , n)

which are devided into two classes Y1 and Y2 according to

Yi := {w⊤x | x ∈ Di} (i = 1, 2).

We now need to formalize how well an arbitrary projection vector w separates the classes D1

and D2 to formulate an according optimization problem. One obvious measure of separation
is the distance of the projected sample means

m̃i =
1

ni

∑

y∈Yi

y =
1

ni

∑

x∈Di

w⊤x = w⊤mi
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where ni = |Di| = # of samples in class i and

mi =
1

ni

∑

x∈Di

x

is the mean of class i of the original data. The distance between the projected means is

|m̃1 − m̃2| = |w⊤(m1 − m2)|.

The problem here is that this quantity is sensitive to a mere scaling of w: For instance,
the vectors w1 and w2 = 2w1 define the same separation, but the distance of the projected
means is two times larger for w2. Since scaling of w has no meaning for the goodness of
the separation we could restrict the search for the best w to vectors of length 1. But we
will take a different approach here, since the distance between the projected means alone
is not a good measure of separation anyhow:

Missing Figure: Goodness-of-separation in projected data – see separate sheet

Although the distance between the projected means is the same, “case 2” represents a
much better separation, because the smaller variance within the (projected) classes leads
to a smaller overlap (= misclassification).
This observation leads to the refined approach of taking the ratio of the distance between
the means by the sum of within class variances (of the projected data) as optimization
criterion. The Fisher linear discriminant is defined as that vector w that maximizes

J(w) =
|m̃1 − m̃2|

2

s̃2
1 + s̃2

2

where

s̃i :=
∑

y∈Yi

(y − m̃i)
2 (i = 1, 2)

is the within-class scatter of class i. In order to actually determine the w that maximizes
J(w), we need to formulate J(w) explicitly as a function of w and determine the maximum.
We define the within-class scatter matrix

SW = S1 + S2 whereSi :=
∑

x∈Di

(x − mi)(x − mi)
⊤

and the between-class scatter matrix

SB := (m1 − m2)(m1 − m2)
⊤.

Using these definitions we can formulate J(w) as an explicit function of w in the following
way:
numerator:

|m̃1 − m̃2|
2 = (w⊤m1 − w⊤m2)

2

= (w⊤(m1 − m2))
2

= w⊤(m1 − m2)(m1 − m2)
⊤w

= w⊤SBw
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denominator:

s̃2
i =

∑

x∈Di

(w⊤x − w⊤mi)
2

=
∑

x∈Di

w⊤(x − mi)(x − mi)
⊤w

= w⊤Siw (i = 1, 2)

These calculations imply

J(w) =
w⊤SBw

w⊤SW w

In order to determine the w that maximizes J(w) we use the following theorem known
from linear algebra (it was probably already used in the lecture on PCA):

Theorem: 1 Let A ∈ R
m×m be a symmetric matrix. Then the function

f : R
m → R; x 7→ x⊤Ax

attains its maximum on the set {z ∈ R
m | ||z|| = 1} for an x ∈ R

m satisfying

∃λ ∈ R Ax = λx

(i.e., x is an Eigenvector of A).

Since J(w) = J(αw) for any α ∈ R
6=0 we can restrict the search for the optimal w to those

satisfying w⊤SW w = 1, i.e., we regard the problem

max
w

w⊤SBw s.t. w⊤SWw = 1 (1)

Note that the scatter matrices SW and SB are symmetric. While SB is (at most) of rank
1, SW may have full rank d if n > d. From now on we assume SW to be invertible. If
this is not the case, one needs regularization which is the topic of a later lecture. Defining
x := S

1/2
W w implies w = S

−1/2
W x and x⊤x = 1 (if S

1/2
W is symmetric, which is possible) such

that eqn. (1) becomes equivalent to

max
x

x⊤S
−1/2
W SBS

−1/2
W x s.t. x⊤x = 1

for which we know by above theorem, the solution satisfies

∃λ ∈ R S
−1/2
W SBS

−1/2
W x = λx

Multiplying by S
1/2
W from the left yields

SBS
1/2
W x = λS

1/2
W x

= λS
1/2
W S

1/2
W S

−1/2
W x

where we inserted the identity matrix in the form S
1/2
W S

−1/2
W . Now we substitute back x =

S
1/2
W w and obtain

SBw = λSW w (2)
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So far we have shown that the w which maximizes J(w) satisfies above equation for some
λ ∈ R. Equation (2) is known as generalized Eigenvalue problem. There are good ways to
solve it for general matrices but in our case we can obtain a much simpler solution. Due
to the special form of SB the vector SBw has always the same direction as m1 − m2: An
arbitray vector x ∈ R

d which is perpendicular to m1 − m2 is also perpendicular to SBw

which can be seen as follows: 〈x, m1 − m2〉 = 0 implies

〈x, SBw〉 = 〈x, (m1 − m2)(m1 − m2)
⊤w〉

= (m1 − m2)
⊤w〈x, m1 − m2〉

= 0 (3)

That means there exists an α ∈ R such that

SBw = α(m1 − m2)

holds for the w that maximizes J(w). Plugging this into equation (2) we obtain

w =
1

λ
S−1

W SBw

=
α

λ
S−1

W (m1 − m2)

Since the scaling of w is irrelevant for the value of J(w), we can conclude that (also)

w := S−1
W (m1 − m2) maximizes J(w)

[final remark] Since the within-class scatter matrix is proportional to the sample co-
variance matrix, it is obvious that the Fisher discriminant vector w is equivalent to the
projection vector of Linear Discriminant Analysis.

2 Least Squares Regression (LSR)

[subsumption] Having discussed some basic classification methods, we will introduce now
the regression problem and investigate its simplest case of linear regression with minimum
squared error as optimization criterion. It will turn out that it is linked closely to Fisher
Discriminant (and also to linear perceptrons).

[reference] Duda, Hart, Stork, “Pattern Classification” (2nd ed.), pp. 240.

Given input vectors x1, . . . , xn ∈ R
d and output values y1, . . . , yn ∈ R the problem of linear

regression is to find w ∈ R
d and b ∈ R such that the outputs of the linear regression

function

ŷk = w⊤xk + b (k = 1, . . . , n)

fit well the true outputs yk. The goodness-of-fit is most often measured as least squared
error:

n
∑

k=1

(yk − ŷk)
2
. (4)
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In order to determine the optimal solution (w; b) in this sense, we will introduce some
notions:

X =







x⊤
1 1
...

...
x⊤

n 1






∈ R

n×(d+1)

y = (y1, . . . , yn)
⊤ ∈ R

n

v =
(

w
b

)

∈ R
d+1

Using these notions minimizing eq. (4) with respect to w and b is equivalent to

min
v

||Xv − y||2. (5)

We determine the minimum of this error function by setting the gradient to zero:

∂

∂v
||Xv − y||2 = 2X⊤(Xv − y)

!
= 0

⇔ 2X⊤Xv − 2X⊤y = 0

⇔ X⊤Xv = X⊤y (6)

If X⊤X is invertible, the last equation is equivalent to

v = (X⊤X)−1X⊤y

The quantity X† := (X⊤X)−1X⊤ is called pseudo-inverse of X. It can also be defined in
the (rare) case that X⊤X is singular such that X†y is the least squares solution. Since the
Hessian

∂2

∂2v
||Xv − y||2 = 2X⊤X

is positive semi-definite, the found extreme at v is a minimum.

Linear regression can also be used for classification if the output values yk are taken as the
labels of the classification problem. We will show in the follwing that for a proper choice
of y Least Squares Regression (LSR) leads to the same solution as Fisher Discriminant
Analysis. We use the same notions as in Sec. 1 (Fisher Discriminant) and start with the
linear regression problem of mapping samples x ∈ D1 to n

n1

and samples x ∈ D2 to − n
n2

:
Let X1 be the d × n1 matrix whose columns are the elements of D1 and X2 the matrix of
elements of D2. (The ordering of the columns in X1 and X2 is irrelevant.) Let 1Im be the
column vector of m ones. Then our regression problem (5) is given by

X =

(

X⊤
1 1In1

X⊤
2 1In2

)

and y =

( n
n1

· 1In1

− n
n2

· 1In2

)

According to eqn. (6) the LSR solution satisfies

X⊤X
(

w
b

)

= X⊤y

⇔

(

X1 X2

1I⊤n1
1I⊤n2

)(

X⊤
1 1In1

X⊤
2 1In2

)(

w

b

)

=

(

X1 X2

1I⊤n1
1I⊤n2

)( n
n1

· 1In1

− n
n2

· 1In2

)

⇔

(

X1X
⊤
1 + X2X

⊤
2 X11In1

+ X21In2

1I⊤n1
X⊤

1 + 1I⊤n2
X⊤

2 1I⊤n1
1In1

+ 1I⊤n2
1In2

)(

w

b

)

=

(

n
(

1
n1

X11In1
− 1

n2

X21In2

)

n
n1

n1 −
n
n2

n2

)
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and due to Xi1Ini
= nimi we can continue

⇔

(

SW + n1m1m
⊤
1 + n2m2m

⊤
2 n1m1 + n2m2

n1m
⊤
1 + n2m

⊤
2 n1n2

)(

w

b

)

=

(

n(m1 − m2)
0

)

(7)

The second equation calculates to

(n1m
⊤
1 + n2m

⊤
2 )w + nb = 0 ⇔ b = −m⊤w

where m = 1
n

∑

x = 1
n
(n1m1 + n2m2) is the mean of all samples x ∈ D1 ∪ D2. We plug

b = −m⊤w into the first equation of (7) to get

(

SW + n1m1m
⊤
1 + n2m2m

⊤
2 − n1m1m

⊤ − n2m2m
⊤
)

w = n(m1 − m2)

Since

n1m1m
⊤ = n1m1

1
n
(n1m

⊤
1 + n2m

⊤
2 ) =

n2

1

n
m1m

⊤
1 + n1n2

n
m1m

⊤
2

(analog for n2m2m
⊤) and

n1 =
n1(n1 + n2)

n1 + n2
=

n2
1 + n1n2

n

we can continue
(

1
n
SW + n1

n
m1m

⊤
1 + n2

n
m2m

⊤
2 −

n2

1

n2 m1m
⊤
1 − n1n2

n2 m1m
⊤
2 −

n2

2

n2 m2m
⊤
1 − n1n2

n2 m2m
⊤
2

)

w

= m1 − m2

⇔
(

1
n
SW + n1n2

n
(m1 − m2)(m1 − m2)

⊤
)

w = m1 − m2

⇔
(

1
n
SW + n1n2

n
SB

)

w = m1 − m2

As we have seen in FDA, eq. (3), SBw is always (i.e., for all w) in the direction of m1−m2.
So we can find an α ∈ R such that

SBw = α(m1 − m2)

We obtain

1
n
SW w + n1n2

n
α(m1 − m2) = m1 − m2

⇔ 1
n
SW w = (m1 − m2)

(

1 − n1n2

n
α
)

⇔w = n
(

1 − n1n2

n
α
)

S−1
W w

which is identical to the solution of Fisher’s linear discriminant, except for the irrelevant
scaling factor n(1 − n1n2

n
α).
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