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Why Bayesian networks?

• Probability theory as calculus for uncertainty, information, couplings
and evidence

• Bayesian networks are a generic tool for representing probability
distributions and inference with coupled random variables.

⇒ Information Processing can be viewed as inference or message
passing in Bayesian networks.

• Many concrete algorithms can be derived/explained in terms of
Bayesian networks (or other graphical models) (e.g., Hidden Markov
Models, Gaussian Processes, Conditional Random Fields...)

• Applications: spam filtering, structured output prediction, natural
language understanding, signal processing, planning, reinforcement
learning...
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Recap: Probability Theory
• a random variable X assigns probabilities P (X =x) ∈ R to values x ∈ dom(X)

• probability distribution ↔ table (vector) of probabilities for each value
(normalization:

P
X P (X) = 1)

• joint distribution P (X, Y ) ↔ table (matrix) of probabilities

• definition: marginal P (X) =
P

Y P (X, Y ) (summing along columns/rows)

• definition: conditional P (X|Y ) = P (X,Y )
P (Y )

(normalizing each column);
implication: P (X, Y ) = P (X|Y ) P (Y ) = P (Y |X) P (X)

• Chain rule: P (X1, .., Xn) =
Qn

i=1 P (Xi|X1, .., Xi-1)

• Bayes rule:

P (X|Y ) =
P (Y |X)

P (Y )
P (X) , posterior =

likelihood
evidence

prior
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Bayesian Network example
(Heckermann 1995)

P(G=empty|B=good,F=not empty)=0.04

P(G=empty|B=good,F=empty)=0.97

P(G=empty|B=bad,F=not empty)=0.10

P(G=empty|B=bad,F=empty)=0.99

P(T=no|B=good)=0.03

P(T=no|B=bad)=0.98

P(S=no|T=yes,F=not empty)=0.01

P(S=no|T=yes,F=empty)=0.92

P(S=no|T=no,Fnot empty)=1.00

P(S=no|T=no,F=empty)=1.00

Fuel

Gauge

Battery

TurnOver Start

P(B=bad) =0.02 P(F=empty)=0.05

⇐⇒ P (S, T,G, F,B) = P (S|T, F ) P (T |B) P (G|F,B) P (F ) P (B)

as compared to the general chain rule:

P (S, T, G, F, B) = P (S|T, G, F, B) P (T |G, F, B) P (G|F, B) P (F |B) P (B)
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Bayesian Network example - 2
The Bayesian Network is a graphical notation that says that the joint
can be written as:

P (S, T,G, F,B) = P (S|T, F ) P (T |B) P (G|F,B) P (F ) P (B)

• table sizes: LHS = 25 RHS = 23 + 22 + 23 + 2 + 2

• what is the probability of:
P (B = good, T = no,G = empty, F = notempty, S = no) ?
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Bayesian Network example - 3
The Bayesian Network is a graphical notation that says that the joint
can be written as:

P (S, T,G, F,B) = P (S|T, F ) P (T |B) P (G|F,B) P (F ) P (B)

• table sizes: LHS = 25 RHS = 23 + 22 + 23 + 2 + 2

• what is the probability of:
P (B = good, T = no,G = empty, F = notempty, S = no) ?

=P (S = no |T = no, F = not empty) · P (T = no |B = good)

· P (G = empty|F = not empty, B = good)

· P (F = not empty) · P (B = good)

=1.0 · 0.03 · 0.04 · 0.98 · 0.95

≈ 0.0011
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Independence
• definition: X is independent of Y iff:

P (X|Y ) = P (X)

for all possible values x ∈ dom(X) and y ∈ dom(Y )

• in terms of the joint: X independent of Y iff:

P (X,Y ) = P (X) P (Y )

• X independent of Y ⇐⇒ Y independent of X

• a set of variables X1, .., Xn is independent iff

P (X1, .., Xn) =
n∏

i=1

P (Xi)
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Independence

Example:

Toothache = true Toothache = false

Cavity = true 0.04 0.06

Cavity = false 0.01 0.89

• is T independent from C ?
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Independence - 2

Example:

Toothache = true Toothache = false

Cavity = true 0.04 0.06

Cavity = false 0.01 0.89

• is T independent from C ?
P (C = t) = 0.04 + 0.06 = 0.1
P (T = t) = 0.04 + 0.01 = 0.05
P (C = t, T = t) = 0.04
P (C = t) · P (T = t) = 0.1 ∗ 0.05 = 0.005
→ P (C = t, T = t) 6= P (C = t) · P (T = t)
→ T and C are dependent.
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Conditional Independence

• definition: X is conditionally independent of Y given Z iff

P (X|Y,Z) = P (X|Z)

for all x ∈ dom(X), y ∈ dom(Y ), z ∈ dom(Z)
Intuition: Given Z, additional knowledge about Y does not change the
probability of X.

• in terms of the joint:

P (X,Y, Z) = P (X,Y |Z) P (Z) = P (X|Z) P (Y |Z) P (Z)

Nota bene: conditional independence 6→ independence
independence 6→ conditional independence
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Bayesian Networks
1st model:

P (Z, Y,X) =
P (Z|Y,X) P (Y |X) P (X)

X Y

Z

2nd model:

P (Z, Y,X) =
P (Z|X) P (Y |X) P (X)

X Y

Z

• Bayesian network is a graphical notation of (in)dependence
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Inference

• Assume a Bayesian net with random variables Y1:k, E1:m, H1:m

• definition: inference is the problem to compute

P (Y1:k |E1:m) =
P (Y1:k, E1:m)
P (E1:m)

∝
∑
H1:n

P (Y1:k, E1:m, H1:n)

Y1:n = variables of interest for which to compute a-posteriori
E1:m = evidence variables (observed values)
H1:n = hidden variables (don’t care about)
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Inference in Bayes Nets
(Heckermann 1995)

P(G=empty|B=good,F=not empty)=0.04

P(G=empty|B=good,F=empty)=0.97

P(G=empty|B=bad,F=not empty)=0.10

P(G=empty|B=bad,F=empty)=0.99

P(T=no|B=good)=0.03

P(T=no|B=bad)=0.98

P(S=no|T=yes,F=not empty)=0.01

P(S=no|T=yes,F=empty)=0.92

P(S=no|T=no,Fnot empty)=1.00

P(S=no|T=no,F=empty)=1.00

Fuel

Gauge

Battery

TurnOver Start

P(B=bad) =0.02 P(F=empty)=0.05

• What is P (F = not empty |S = no) ?
Variable of interest F , observed variable S, hidden variables G, B, T

• What is P (B = bad, F = empty |T = no)?
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Inference in Bayes Nets - 2

• 2 fundamental operations for information processing

1) multiplication of probability distributions to fuse (independent)
information

2) summation (elimination) of variables to compute marginals
elimination ≡ “summing out variables”
(eliminate Y from P (X, Y |Z) means to compute P (X|Z) =

P
Y P (X, Y |Z))

• Inference methods exploit (conditional) independencies.
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Inference in Bayes Nets - 3

• If Bayesian net is a tree:
– to compute a single marginal (single inference query like
P (B|S = no)): Variable Elimination
– to compute all marginals (e.g., compute P (B|S = no) and
P (F |S = no) and P (G|S = no) and P (T |S = no)): Message Passing
(Belief Propagation)
inference in time linear in the number of nodes; messages are passed up and

down the tree; all the necessary computations can be carried out locally

• If Bayesian net is not a tree:
– exact method: clustering (grouping) of nodes to yield a tree of cliques
(junction tree)
– approximate methods: sampling, loopy belief propagation, varational
methods
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Extended Example

Watson Holmes

P(W=yes|R=yes)=1.0

P(W=yes|R=no)=0.2 P(H=yes|R=yes,S=yes)=1.0

P(H=yes|R=yes,S=no)=1.0

P(H=yes|R=no,S=yes)=0.9

P(H=yes|R=no,S=no)=0.0

Rain

P(R=yes)=0.2

Sprinkler

P(S=yes)=0.1

⇐⇒ P (H,W,S,R) = P (H|S,R) P (W |R) P (S) P (R)
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Extended Example - 2

• Mr. Holmes lives in Berlin. One morning when Holmes leaves his
house, he realizes that his grass is wet. Is it due to rain, or has he
forgotten to turn off his sprinkler?

• Calculate P (R|H), P (S|H) and compare these values to the prior
probabilities (P (H) = 0.272, P (R|H) ≈ 0.735, P (S|H) ≈ 0.338)

• Calculate P (R,S|H). R and S are marginally independent, but
conditionally dependent. (For instance, in case Holmes’ grass is wet, the

probability for rain sinks when we additionally know that the sprinkler was on.)

(P (R,S|H) = 0.0735 > 0.02 = P (R,S))

• Holmes checks Watson’s grass, and finds it is also wet. Calculate
P (R|H,W ), P (S|H,W ).
→ As Watson’s grass is also wet, Holmes’ grass is most probably wet
due to the common cause rain – thus, the posterior for the sprinkler
decreases. This effect is called explaining away.
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Learning in Bayesian Networks

• General problem: learning probability models

– learning conditional probability tables (parameters); easier

Especially easy if all variables are observed, otherwise can use
EM

Maximize likelihood of data (see next slide)

– learning structure; harder

Can try out a number of different structures, but there can be a
huge number of structures to search through
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Maximum Likelihood

• Very simple Bayesian net with two binary variables: X → Y

• Given n input-output pairs (x1, y1), . . . , (xn, yn)

• Goal: estimate parameters θ (specifying P (X) and P (Y |X))

• For points generated independently and identically distributed (iid), the
likelihood of the data is

L(θ) =
n∏

i=1

p(xi|yi; θ).

• Maximum likelihood chooses θ to maximize L (and thus L)

• Here (all data observed): ML estimates are relative frequencies

• Generalizes to larger Bayesian nets

• In case of hidden variables: Expectation-Maximization (EM)

19/20



Conclusions

• Bayesian nets model probability distributions using a graphical notation
to specify (in)dependencies among the random variables.

• Complex generative models

• Inference methods to query a-posteriori probabilities given observed
variables

• Applications: spam filtering, structured output prediction, natural
language understanding, signal processing, planning, reinforcement
learning...

• Later lecture: more on learning (maximum likelihood)

• Later lecture: hidden variables
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