
Introduction to Optimization

Outline:

• Standard form optimization problem and terminology.

• Convex optimization problems.

• Lagrange duality.

• Optimization methods.



Optimization problem 1

Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0 , i = 1, . . . ,m

hi(x) = 0 , i = 1, . . . , p

where

x ∈ Rn is the optimized vector of variables.

f0: Rn → R is the objective function.

fi: Rn → R is the inequality constraint function.

hi: Rn → R is the equality constraint function.



Explicit/implicit constraints 2

Explicit constraints are fi(x) ≤ 0 and hi(x) = 0; unconstrained problem
has no explicit constrains (i.e. m = p = 0).

Implicit constraint is x ∈ D where D is a common domain of the objective

function and constraint functions

D =
m⋂

i=0

dom fi ∩
p⋂

i=1

domhi .

Feasible set: contains points which satisfy implicit and explicit constraints

Xfeas = D ∩ {x | fi(x) ≤ 0 , i = 1, . . . ,m , hj(x) = 0 , j = 1 . . . , n}

Example: (minimal entropy discrete distribution)

minimize −
∑n

i=1 xi log xi

subject to
∑n

i=1 xi = 1 .

which has explicit constraint
∑n

i=1 xi = 1, implicit constraints xi > 0 and

feasible set Xfeas = {x |
∑n

i=1 xi = 1 , xi > 0, i = 1, . . . .n}.



Example: Linear Programming and Quadratic Programming 3

LP problem QP problem

minimize cTx minimize 1
2x

THx + cTx

subject to Ax = b subject to Ax = b

Dx ≤ q Dx ≤ q

where

x ∈ Rn is a vector of optimized variables

c ∈ Rn, b ∈ Rp, q ∈ Rm are vectors

A ∈ Rp×n, D ∈ Rm×n, H ∈ Rn×n are matrices

Note that LP and QP can be always rewritten to a simpler form using the

slack variables trick: the inequality constraints Dx ≤ q are replaced by

equivalent constraints Dx + ξ = q and ξ ≥ 0.



Optimal and locally optimal solution 4

(Globally) optimal value:

p∗ = inf{f0(x) | x ∈ Xfeas}

• p∗ = ∞ if the problem is infeasible, i.e., Xfeas = {∅}.

• p∗ = −∞ if the problem is unbounded.

Optimal solutions: x is the optimal solution if it is feasible and f(x) = p∗;

Xopt = {x | f0(x) = p∗ ,x ∈ Xfeas} is the set of optimal solutions.

Locally optimal: x is locally optimal if there exist R > 0 such that x is

optimal for

minimize f0(y)
subject to y ∈ Xfeas ∩ {y | ‖x− y‖ ≤ R}



Example: Optimal and locally optimal solution 5

xx∗globalx∗local

Xfeas

p∗

f0(x)



Convex sets 6

A set X ⊆ Rn is convex if the line segment connecting any

two points from X lies in X , i.e., for all x1,x2 ∈ X and all θ

such that 0 ≤ θ ≤ 1 it holds

x1(1− θ) + θx2 ∈ X .

Convex set Non-convex set

x1

x2
x1

x2



Convex functions 7

A function f ∈ Rn → R is convex if dom f is convex and for

all x1, x2 ∈ dom f and all θ such that 0 ≤ θ ≤ 1 it holds

f(x1(1− θ) + x2θ) ≤ f(x1)(1− θ) + f(x2)θ .

Convex function Non-convex function

x1 x2

f(x1)

f(x2)

f(x)

f(x1)(1− θ) + f(x2)θ



First and Second order conditions on convexity 8

First-order condition: Suppose that f : Rn → R is differentiable, i.e.,

gradient ∇f(x) ∈ Rn exists at each point x ∈ dom f . Then f is convex

if and only if dom f is convex and

f(x) ≤ f(x′) +∇f(x′)T (x− x′) , ∀x,x′ ∈ X .

f(x′)

f(x′) +∇f(x′)(x− x′)

f(x)

x′

Second-order condition: Suppose that f twice differentiable, i.e., the

Hessian matrix of second derivatives ∇2f(x) exists at each point

x ∈ dom f . Then f is convex if and only if dom f is convex and

∇2f(x) is positive semi-definite for all x ∈ dom f .



Convex optimization problem 9

The optimization problem is convex if the objective function

f0(x) is convex and the feasible set Xfeas is convex.

• In particular, the problem is convex if f0, f1, . . . , fm are convex and the

equality constraints hi are affine, i.e., hi(x) = aT
i x− bi = 0.

• The standard form of the convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = x

• Basic property of the convex problems: Any locally optimal solution is

globally optimal ⇒ greatly simplifies optimization.

• We can use descent methods: iteratively move in a descent

direction until we reach the optimum.

• For non-convex problems we can get stuck in a local optimum; it

is difficult to identify whether the attained optimum is local or global.



Example: Linear Programming and Quadratic Programming 10

LP problem QP problem

minimize cTx minimize 1
2x

THx + cTx

subject to Ax = b subject to Ax = b

Dx ≤ q Dx ≤ q

Linear Programming is a convex problem since the objective is a convex

function, the equality functions are affine, the inequality constraints

define a convex set.

Quadratic Programming is a convex problem if and only if the matrix H is

positively semi-definite;

Recall the Second-order condition and notice that for QP the Hessian

matrix ∇2f(x) = H.



Optimality conditions for convex problems 11

Suppose that f0 is differentiable. Then a vector x is the optimal

solution if and only if it is feasible x ∈ Xfeas and

∇f0(x)T (y − x) ≥ 0 for all y ∈ Xfeas .

How to see this?

• Recall the definition of the directional derivative

f ′0(x; δ) = lim
h→0+

f0(x + hδ)
h

= ∇f0(x)Tδ .

The sign of f ′0(x; δ) determines whether f0 increases or decreases when

we move from x in the direction δ.

• Moving from a feasible point x along a feasible direction δ = y − x,

y ∈ Xfeas by sufficiently small step produces a feasible point.

• A vector x is optimal iff there is no feasible direction which decreases the

objective function, i.e., for each y ∈ Xfeas moving along δ = y − x

increases the objective so that

f ′0(x; δ) ≥ 0 ⇒ ∇f0(x)Tδ ≥ 0 ⇒ ∇f0(x)T (y − x) ≥ 0 .



Lagrangian duality 12

What are we going to do?

• For the optimized problem (called primal in this context) we derive a

dual optimization problem.

What is it good for?

• Optimality certificate. Primal objective function is an upper bound

and the dual objective function is a lower bound on the optimal
value ⇒ theoretically justified stopping conditions for optimization.

• Simplifies optimization. The dual problem can be of lesser

complexity; in some cases the primal solution can be easily obtained

from the dual solution.

• New insight. The dual problem can bring a new insight to the

problem (e.g. Max-flow/Min-cut problems from graph theory are

dual, or Maximum-likelihood/Minimum-entropy density estimation

problems are dual).



Lagrangian 13

Primal optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0 , i = 1, . . . ,m

hj(x) = 0 , j = 1, . . . , p

where D is the problem domain, p∗ is the optimal value.

Lagrangian: L: Rn × Rm × Rp → R with domain domL = D × Rm × Rp

L(x,λ,ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

hiνi

• sum of objective function plus weighted sum of constraint functions

• λi is Lagrange multiplier associated with fi(x) ≤ 0

• νi is Lagrange multiplier associated with hi(x) = 0



Lagrange dual function 14

Lagrange dual function g: Rm × Rp → R

g(λ,ν) = inf
x∈D

L(x,λ,ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +
p∑

i=1

νihi(x)

)

• g(λ,ν) is a concave function since it is point-wise infimum of convex

functions of (λ,ν); note that it holds in general even for non-convex

primal problems.

• For many important problem g(λ,ν) has an analytical form.



Example: Lagrange dual function for LP problem 15

• We start form the primal LP problem

minimize cTx

subject to Ax = b

Dx ≤ q

• We form the Lagrangian (using matrix notation for brevity)

L(x,λ,ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

hiνi

= cTx + λT (Dx− q) + νT (Ax− b)

= (c + DTλ + ATν)Tx− λTq − νTb

• We get the Lagrange dual function by minimizing w.r.t primal variables

g(λ,ν) = inf
x

L(x,λ,ν) =
{
−λTq − νTb if c + DTλ + ATν = 0
−∞ otherwise



Weak duality 16

Weak duality: If λ ≥ 0 and x ∈ Xfeas then f0(x) ≥ g(λ,ν), i.e. the

Lagrange dual function is a lower bound on the primal objective. In

particular, it lower bounds the optimal value p∗ ≥ g(λ,ν), ∀λ ≥ 0, ∀ν.

To see this recall the Lagrangian

L(x,λ,ν) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

hiνi

and notice that for x ∈ Xfeas we have:

1. fi(x) ≤ 0 and thus
∑

i λif(x) ≤ 0 since λi ≥ 0,

2. hi(x) = 0 and thus
∑

i νihi(x) = 0,

therefore

f0(x) ≥ f0(x) +
m∑

i=1

λifi(x)︸ ︷︷ ︸
≤0

+
p∑

i=1

hiνi︸ ︷︷ ︸
=0

= L(x,λ,ν) ≥ inf
x∈D

L(x,λ,ν) .

Note that the weak duality holds in general regardless the primal problem

is convex or not.



Dual problem 17

Dual problem

maximize g(λ,ν)
subject to λ ≥ 0

where we optimize w.r.t λ ∈ Rm, ν ∈ Rp; the optimal value denoted by d∗.

• Solving the dual problem ≈ finding the best lower bound d∗ on primal
optimal value p∗ which can be obtained from the Lagrangian.

• Duality gap is the difference between the primal and the dual optimal

values p∗ − d∗ ≥ 0, i.e., it determines the tightness of the lower bound.

• The dual problem is always convex since g(λ,ν) is a concave function

regardless the primal problem is convex or not.

• (λ,ν) are dual feasible if λ ≥ 0 and g(λ,ν) > − inf, i.e. for dual

feasible points we have non-trivial lower bound.

It usually helps if the constraint g(λ,ν) > − inf is expressed explicitly in

the dual problem.



Example: Lagrange dual problem for LP problem 18

The primal LP problem

minimize cTx

subject to Ax = b

Dx ≤ q

with the Lagrange dual function

g(λ,ν) =
{
−λTq − νTb if c + DTλ + ATν = 0
−∞ otherwise

The dual problem reads
maximize g(λ,ν)
subject to λ ≥ 0

Making the constraint g(λ,ν) > − inf explicit, i.e., c + DTλ + ATν = 0,

we get the dual LP problem

maximize −λTq − νTb

subject to λ ≥ 0
c + DTλ + ATν = 0



Strong duality 19

Strong duality holds if the duality gap is zero, i.e., p∗ = d∗ and the

Lagrangian lower bound is tight.

When does it happen?

• It does not hold in general.

• It holds if the primal problem is convex and the Slater’s condition
(also called constraint qualification) holds:

Slater’s condition holds if there exists a strictly feasible point, i.e., there

exists x ∈ Xfeas such that fi(x) < 0, i = 1, . . . ,m; note that this

condition is very mild.

• There also exist non-convex problems for which the strong duality holds.



Karush-Kuhn-Tucker optimality conditions 20

A triplet (x,λ,ν) satisfy the Karush-Kuhn-Tucker conditions if:

∂L(x,λ,ν)
∂x

= 0 partial derivative of L w.r.t x vanishes

∂L(x,λ,ν)
∂λ

≤ 0 implies fi(x) ≤ 0, i = 1, . . . ,m

∂L(x,λ,ν)
∂ν

= 0 implies hi(x) = 0, i = 1, . . . , p.

λ ≥ 0 duality constraint holds

λifi(x) = 0, i = 1, . . . ,m so called complementary slackness

• If strong duality holds then KKT conditions are necessary for

(x,λ,ν) to be optimal.

• If primal problem is convex and Slater’s condition holds then KKT
conditions are necessary and sufficient for (x,λ,ν) to be optimal.



Example: KKT optimality conditions for LP problem 21

The primal LP problem

minimize cTx

subject to Ax = b

Dx ≤ q

with the Lagrangian

L(x,λ,ν) = cTx + λT (Dx− q) + νT (Ax− b)

The KKT conditions read:

∂L(x,λ,ν)
∂x

= 0 ⇒ c + DTλ + ATν = 0
∂L(x,λ,ν)

∂λ
≤ 0 ⇒ Dx− q ≤ 0

∂L(x,λ,ν)
∂ν

= 0 ⇒ Ax− b = 0

λ ≥ 0 ⇒ λ ≥ 0
λifi(x) = 0, i = 1, . . . ,m ⇒ λT (Dx− q) = 0



Descent method for unconstrained problems 22

Let us consider an unconstrained convex problem

minimize f(x)

General descent method:

Initialization: set x ∈ dom f .

repeat
1. Determine a descent dirrection δ.

2. Line-search: find a step size t = argmint′>0 f(x + t′δ).
3. Update x := x + tδ.

until stopping condition is satisfied.

• It generates a sequence of x(1),x(2), . . . such that f(x(k)) > f(x(k+1)).
• For f differentiable, a vector δ is a descent direction if

f ′(x; δ) = lim
h→0+

f(x + hδ)
h

= ∇f(x)Tδ < 0

e.g., gradient descent methods use δ = −∇f(x).



Newton methods for equality constrained problems 23

Let us consider equality constrained convex problem

minimize f(x)
subject to Ax = b

• Using the KKT optimality conditions, x ∈ dom f is optimal iff there

exist ν such that

Ax = b , ∇f(x) + ATν = 0 .

• For a convex quadratic function f(x) =
1
2
xTHx + cTx the KKT

conditions lead to an efficiently solvable set of linear equations:

Ax = b , Hx + c + ATν = 0 .

• Newton method is applicable for a general twice differentiable

function f(x): it iteratively approximates f(x) by a quadratic function

f̂(x) =
1
2
(x− x′)∇2f(x′)(x− x′) +∇f(x′)T (x− x′) + f(x′)

and solves the KKT conditions for the approximation f̂(x).



Barrier methods for a general constrained problem 24

Let us consider equality constrained convex problem

minimize f0(x)
subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = b

• Constraints fi(x) ≤ 0 can be made implicit using the barrier function

φi(x) =
{

0 if fi(x) ≤ 0
∞ if fi(x) > 0

i.e., we can equivalently optimized equality constraint problem

minimize f0(x) +
∑m

i=1 φi(x)
subject to Ax = b

• Functions φi(x) are approximated by a differentiable convex functions

φ̂i(x) = −1
t
log(−fi(x)) ,

which for high t well approximates the step barrier function φi(x).
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