Introduction to Optimization

Outline:

- Standard form optimization problem and terminology.
- Convex optimization problems.
- Lagrange duality.
- Optimization methods.

Optimization problem in standard form

$$\begin{array}{lll} \text{minimize} & f_0(\boldsymbol{x}) \\ \text{subject to} & f_i(\boldsymbol{x}) & \leq & 0 \ , & i = 1, \dots, m \\ & & h_i(\boldsymbol{x}) & = & 0 \ , & i = 1, \dots, p \end{array}$$

where

 $x \in \mathbb{R}^n$ is the **optimized vector** of variables.

 $f_0: \mathbb{R}^n \to \mathbb{R}$ is the **objective function**.

 $f_i: \mathbb{R}^n \to \mathbb{R}$ is the **inequality constraint** function.

 $h_i: \mathbb{R}^n \to \mathbb{R}$ is the **equality constraint** function.

Explicit constraints are $f_i(x) \le 0$ and $h_i(x) = 0$; unconstrained problem has no explicit constraints (i.e. m = p = 0).

Implicit constraint is $x \in D$ where D is a common domain of the objective function and constraint functions

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i.$$

Feasible set: contains points which satisfy implicit and explicit constraints

$$\mathcal{X}_{\text{feas}} = \mathcal{D} \cap \{ \boldsymbol{x} \mid f_i(\boldsymbol{x}) \leq 0, i = 1, \dots, m, h_j(\boldsymbol{x}) = 0, j = 1, \dots, n \}$$

Example: (minimal entropy discrete distribution)

minimize
$$-\sum_{i=1}^{n} x_i \log x_i$$

subject to $\sum_{i=1}^{n} x_i = 1$.

which has explicit constraint $\sum_{i=1}^{n} x_i = 1$, implicit constraints $x_i > 0$ and feasible set $\mathcal{X}_{\text{feas}} = \{ \boldsymbol{x} \mid \sum_{i=1}^{n} x_i = 1, x_i > 0, i = 1, \dots, n \}.$

LP problem		QP problem	
minimize	$egin{array}{c} c^T x \ \mathbf{A} \ m{x} \ - \ m{b} \end{array}$	minimize	$rac{1}{2} oldsymbol{x}^T \mathbf{H} oldsymbol{x} + oldsymbol{c}^T oldsymbol{x}$ $\mathbf{A} oldsymbol{x} = oldsymbol{b}$
Subject to	$egin{array}{rcl} \mathbf{A} oldsymbol{x} &=& oldsymbol{o} \ \mathbf{D} oldsymbol{x} &\leq& oldsymbol{q} \ \end{array}$	Subject to	$egin{array}{rcl} \mathbf{A} x &=& m{o} \ \mathbf{D} x &\leq& m{q} \end{array}$

where

 $x \in \mathbb{R}^n$ is a vector of optimized variables $c \in \mathbb{R}^n$, $b \in \mathbb{R}^p$, $q \in \mathbb{R}^m$ are vectors $\mathbf{A} \in \mathbb{R}^{p imes n}$, $\mathbf{D} \in \mathbb{R}^{m imes n}$, $\mathbf{H} \in \mathbb{R}^{n imes n}$ are matrices

Note that LP and QP can be always rewritten to a simpler form using the **slack variables trick:** the inequality constraints $\mathbf{D}x \leq q$ are replaced by equivalent constraints $\mathbf{D}x + \boldsymbol{\xi} = q$ and $\boldsymbol{\xi} \geq \mathbf{0}$.

(Globally) optimal value:

$$p^* = \inf\{f_0(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathcal{X}_{ ext{feas}}\}$$

• $p^* = \infty$ if the problem is infeasible, i.e., $\mathcal{X}_{\text{feas}} = \{\emptyset\}$.

• $p^* = -\infty$ if the problem is unbounded.

Optimal solutions: x is the optimal solution if it is feasible and $f(x) = p^*$; $\mathcal{X}_{opt} = \{x \mid f_0(x) = p^*, x \in \mathcal{X}_{feas}\}$ is the set of optimal solutions.

Locally optimal: x is locally optimal if there exist R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize} & f_0(\boldsymbol{y}) \\ \text{subject to} & \boldsymbol{y} \in \mathcal{X}_{\text{feas}} \cap \{ \boldsymbol{y} \mid \| \boldsymbol{x} - \boldsymbol{y} \| \leq R \} \end{array}$$

Convex sets

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if the line segment connecting any two points from \mathcal{X} lies in \mathcal{X} , i.e., for all $x_1, x_2 \in \mathcal{X}$ and all θ such that $0 \le \theta \le 1$ it holds

 $oldsymbol{x}_1(1- heta)+ hetaoldsymbol{x}_2\in\mathcal{X}$.

Convex functions

A function $f \in \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is convex and for all x_1 , $x_2 \in \operatorname{dom} f$ and all θ such that $0 \le \theta \le 1$ it holds $f(x_1(1-\theta) + x_2\theta) \le f(x_1)(1-\theta) + f(x_2)\theta$.

Convex function

Non-convex function

First and Second order conditions on convexity

First-order condition: Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, i.e., gradient $\nabla f(\boldsymbol{x}) \in \mathbb{R}^n$ exists at each point $\boldsymbol{x} \in \operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is convex and

Second-order condition: Suppose that f twice differentiable, i.e., the Hessian matrix of second derivatives $\nabla^2 f(x)$ exists at each point $x \in \operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^2 f(x)$ is positive semi-definite for all $x \in \operatorname{dom} f$. The optimization problem is convex if the objective function $f_0(x)$ is convex and the feasible set $\mathcal{X}_{\text{feas}}$ is convex.

- In particular, the problem is convex if f_0, f_1, \ldots, f_m are convex and the equality constraints h_i are affine, i.e., $h_i(\boldsymbol{x}) = \boldsymbol{a}_i^T \boldsymbol{x} b_i = 0$.
- The **standard form** of the convex optimization problem

$$\begin{array}{lll} \mbox{minimize} & f_0({m x}) \\ \mbox{subject to} & f_i({m x}) & \leq & 0 \ , & i=1,\ldots,m \\ & {m A}{m x} & = & {m x} \end{array}$$

- Basic property of the convex problems: Any locally optimal solution is globally optimal ⇒ greatly simplifies optimization.
 - We can use **descent methods**: iteratively move in a descent direction until we reach the optimum.
 - For non-convex problems we can get stuck in a local optimum; it is difficult to identify whether the attained optimum is local or global.

10

- **Linear Programming** is a convex problem since the objective is a convex function, the equality functions are affine, the inequality constraints define a convex set.
- **Quadratic Programming** is a convex problem if and only if the matrix **H** is positively semi-definite;

Recall the Second-order condition and notice that for QP the Hessian matrix $\nabla^2 f(\boldsymbol{x}) = \mathbf{H}$.

Suppose that f_0 is differentiable. Then a vector $m{x}$ is the optimal solution if and only if it is feasible $m{x}\in\mathcal{X}_{ ext{feas}}$ and

 $\nabla f_0(\boldsymbol{x})^T(\boldsymbol{y}-\boldsymbol{x}) \geq 0$ for all $\boldsymbol{y} \in \mathcal{X}_{\text{feas}}$.

How to see this?

• Recall the definition of the directional derivative

$$f'_0(\boldsymbol{x};\boldsymbol{\delta}) = \lim_{h \to 0_+} \frac{f_0(\boldsymbol{x}+h\boldsymbol{\delta})}{h} = \nabla f_0(\boldsymbol{x})^T \boldsymbol{\delta} \ .$$

The sign of $f'_0(x; \delta)$ determines whether f_0 increases or decreases when we move from x in the direction δ .

- Moving from a feasible point x along a feasible direction $\delta=y-x$, $y\in\mathcal{X}_{ ext{feas}}$ by sufficiently small step produces a feasible point.
- A vector x is optimal iff there is no feasible direction which decreases the objective function, i.e., for each $y \in \mathcal{X}_{\mathrm{feas}}$ moving along $\delta = y x$ increases the objective so that

$$f'_0(\boldsymbol{x};\boldsymbol{\delta}) \ge 0 \quad \Rightarrow \quad \nabla f_0(\boldsymbol{x})^T \boldsymbol{\delta} \ge 0 \quad \Rightarrow \nabla f_0(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) \ge 0 \;.$$

What are we going to do?

• For the optimized problem (called primal in this context) we derive a dual optimization problem.

What is it good for?

- Optimality certificate. Primal objective function is an upper bound and the dual objective function is a lower bound on the optimal value ⇒ theoretically justified stopping conditions for optimization.
- **Simplifies optimization**. The dual problem can be of lesser complexity; in some cases the primal solution can be easily obtained from the dual solution.
- New insight. The dual problem can bring a new insight to the problem (e.g. Max-flow/Min-cut problems from graph theory are dual, or Maximum-likelihood/Minimum-entropy density estimation problems are dual).

Lagrangian

Primal optimization problem in standard form

$$\begin{array}{llll} \mbox{minimize} & f_0(\boldsymbol{x}) \\ \mbox{subject to} & f_i(\boldsymbol{x}) & \leq & 0 \ , & i = 1, \dots, m \\ & & h_j(\boldsymbol{x}) & = & 0 \ , & j = 1, \dots, p \end{array}$$

where ${\cal D}$ is the problem domain, p^{\ast} is the optimal value.

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with domain $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p h_i \nu_i$$

- sum of objective function plus weighted sum of constraint functions
- λ_i is Lagrange multiplier associated with $f_i(\boldsymbol{x}) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(\boldsymbol{x}) = 0$

Lagrange dual function

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

=
$$\inf_{\boldsymbol{x} \in \mathcal{D}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x}) \right)$$

- g(λ, ν) is a concave function since it is point-wise infimum of convex functions of (λ, ν); note that it holds in general even for non-convex primal problems.
- For many important problem $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ has an analytical form.

• We start form the primal LP problem

$$egin{array}{ccc} {\sf minimize} & oldsymbol{c}^T oldsymbol{x} \ {\sf subject to} & oldsymbol{A} oldsymbol{x} &= oldsymbol{b} \ {f D} oldsymbol{x} &\leq oldsymbol{q} \ \end{array}$$

• We form the Lagrangian (using matrix notation for brevity)

$$egin{aligned} L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u}) &= f_0(oldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(oldsymbol{x}) + \sum_{i=1}^p h_i
u_i \ &= oldsymbol{c}^T oldsymbol{x} + oldsymbol{\lambda}^T (oldsymbol{D}oldsymbol{x} - oldsymbol{q}) + oldsymbol{
u}^T (oldsymbol{A}oldsymbol{x} - oldsymbol{b}) \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T (oldsymbol{A}oldsymbol{x} - oldsymbol{b}) \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{q} - oldsymbol{
u}^T oldsymbol{b} \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{q} - oldsymbol{
u}^T oldsymbol{b} \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{q} - oldsymbol{
u}^T oldsymbol{b} \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{a} \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{a} \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{a} \ &= (oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^T oldsymbol{
u})^T oldsymbol{a} \ &= (oldsymbol{v} + oldsymbol{A}^T oldsymbol{a} + oldsymbol{A}^T oldsymbol{a} + oldsymbol{D}^T oldsymbol{a} + oldsymbol{A}^T oldsymbol{a} + oldsymbol{A}^T oldsymbol{a} \ &= (oldsymbol{a} + oldsymbol{A}^T oldsymbol{a} + oldsymbol{a} + oldsymbol{A}^T oldsymbol{A} + oldsymbol{$$

• We get the Lagrange dual function by minimizing w.r.t primal variables $g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\boldsymbol{\lambda}^T \boldsymbol{q} - \boldsymbol{\nu}^T \boldsymbol{b} & \text{if } \boldsymbol{c} + \mathbf{D}^T \boldsymbol{\lambda} + \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \\ -\infty & \text{otherwise} \end{cases}$

Weak duality

Weak duality: If $\lambda \geq 0$ and $x \in \mathcal{X}_{\text{feas}}$ then $f_0(x) \geq g(\lambda, \nu)$, i.e. the Lagrange dual function is a lower bound on the primal objective. In particular, it lower bounds the optimal value $p^* \geq g(\lambda, \nu)$, $\forall \lambda \geq 0$, $\forall \nu$.

To see this recall the Lagrangian

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p h_i \nu_i$$

and notice that for $x \in \mathcal{X}_{ ext{feas}}$ we have:

1.
$$f_i(\boldsymbol{x}) \leq 0$$
 and thus $\sum_i \lambda_i f(\boldsymbol{x}) \leq 0$ since $\lambda_i \geq 0$,
2. $h_i(\boldsymbol{x}) = 0$ and thus $\sum_i \nu_i h_i(\boldsymbol{x}) = 0$,

therefore

$$f_0(\boldsymbol{x}) \ge f_0(\boldsymbol{x}) + \underbrace{\sum_{i=1}^m \lambda_i f_i(\boldsymbol{x})}_{\leq 0} + \underbrace{\sum_{i=1}^p h_i \nu_i}_{=0} = L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \ge \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \ .$$

Note that the **weak duality holds in general** regardless the primal problem is convex or not.

Dual problem

Dual problem

 $\begin{array}{ll} \mathsf{maximize} & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mathsf{subject to} & \boldsymbol{\lambda} \geq 0 \end{array}$

where we optimize w.r.t $\boldsymbol{\lambda} \in \mathbb{R}^m$, $\boldsymbol{\nu} \in \mathbb{R}^p$; the optimal value denoted by d^* .

- Solving the dual problem \approx finding the best lower bound d^* on primal optimal value p^* which can be obtained from the Lagrangian.
- **Duality gap** is the difference between the primal and the dual optimal values $p^* d^* \ge 0$, i.e., it determines the tightness of the lower bound.
- The dual problem is always convex since g(λ, ν) is a concave function regardless the primal problem is convex or not.
- (λ, ν) are dual feasible if λ ≥ 0 and g(λ, ν) > inf, i.e. for dual feasible points we have non-trivial lower bound.
 It usually helps if the constraint g(λ, ν) > inf is expressed explicitly in the dual problem.

The primal LP problem

$$egin{array}{ccc} {\sf minimize} & {m c}^T {m x} \ {\sf subject to} & {m A} {m x} &= {m b} \ {m D} {m x} &\leq {m q} \end{array}$$

with the Lagrange dual function

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\boldsymbol{\lambda}^T \boldsymbol{q} - \boldsymbol{\nu}^T \boldsymbol{b} & \text{if } \boldsymbol{c} + \mathbf{D}^T \boldsymbol{\lambda} + \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \\ -\infty & \text{otherwise} \end{cases}$$

The dual problem reads

 $\begin{array}{ll} \text{maximize} & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \text{subject to} & \boldsymbol{\lambda} \geq 0 \end{array}$

Making the constraint $g(\lambda, \nu) > -\inf$ explicit, i.e., $c + D^T \lambda + A^T \nu = 0$, we get the **dual LP problem**

 $\begin{array}{lll} \mathsf{maximize} & - \boldsymbol{\lambda}^T \boldsymbol{q} - \boldsymbol{\nu}^T \boldsymbol{b} \\ \mathsf{subject to} & \boldsymbol{\lambda} & \geq & 0 \\ \boldsymbol{c} + \mathbf{D}^T \boldsymbol{\lambda} + \mathbf{A}^T \boldsymbol{\nu} & = & \mathbf{0} \end{array}$

Strong duality holds if the duality gap is zero, i.e., $p^* = d^*$ and the Lagrangian lower bound is tight.

When does it happen?

- It does not hold in general.
- It holds if the primal problem is convex and the Slater's condition (also called constraint qualification) holds:
 Slater's condition holds if there exists a strictly feasible point, i.e., there exists *x* ∈ X_{feas} such that *f_i(x) < 0*, *i = 1,...,m*; note that this condition is very mild.
- There also exist non-convex problems for which the strong duality holds.

A triplet $(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ satisfy the Karush-Kuhn-Tucker conditions if:

 $rac{\partial L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})}{\partialoldsymbol{\lambda}}\leq oldsymbol{0}$

implies $f_i(\boldsymbol{x}) \leq 0$, $i = 1, \ldots, m$

 $\frac{\partial L(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\nu})}{\partial \boldsymbol{\nu}} = \boldsymbol{0}$

implies $h_i(x) = 0$, i = 1, ..., p.

 $oldsymbol{\lambda} \geq \mathbf{0}$ duality constraint holds

 $\lambda_i f_i(\boldsymbol{x}) = 0$, $i = 1, \dots, m$ so called complementary slackness

- If strong duality holds then KKT conditions are necessary for $({m x}, {m \lambda}, {m
 u})$ to be optimal.
- If primal problem is convex and Slater's condition holds then KKT conditions are necessary and sufficient for (x, λ, ν) to be optimal.

The primal LP problem

$$egin{array}{ccc} {\sf minimize} & {m c}^T {m x} \ {\sf subject to} & {m A} {m x} &= {m b} \ {m D} {m x} &\leq {m q} \end{array}$$

with the Lagrangian

 $\partial T(\mathbf{r}, \mathbf{r})$

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\lambda}^T (\mathbf{D} \boldsymbol{x} - \boldsymbol{q}) + \boldsymbol{\nu}^T (\mathbf{A} \boldsymbol{x} - \boldsymbol{b})$$

The KKT conditions read:

$$egin{array}{ll} rac{\partial L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})}{\partialoldsymbol{x}} = oldsymbol{0} & \Rightarrow & oldsymbol{c} + oldsymbol{D}^Toldsymbol{\lambda} + oldsymbol{A}^Toldsymbol{
u} = oldsymbol{0} & \Rightarrow & oldsymbol{D}oldsymbol{x} - oldsymbol{q} \leq oldsymbol{0} & \Rightarrow & oldsymbol{D}oldsymbol{x} - oldsymbol{d} = oldsymbol{0} & \Rightarrow & oldsymbol{D}oldsymbol{x} - oldsymbol{b} = oldsymbol{0} & \Rightarrow & oldsymbol{D}oldsymbol{x} - oldsymbol{b} = oldsymbol{0} & \Rightarrow & oldsymbol{A}oldsymbol{x} = oldsymbol{0} & \Rightarrow & oldsymbol{A}oldsymbol{x} = oldsymbol{0} & \Rightarrow & oldsymbol{0} & oldsymbol{A} & b = oldsymbol{0} & \Rightarrow & oldsymbol{A}oldsymbol{D}oldsymbol{x} - oldsymbol{b} = oldsymbol{0} & \Rightarrow & oldsymbol{A} & b = oldsymbol{0} & \Rightarrow & oldsymbol{A} & b = oldsymbol{0} & \Rightarrow & oldsymbol{A} & b = oldsymbol{0} & \Rightarrow & oldsymbol{A} & oldsymbol{A} & b = oldsymbol{0} & b = oldsymbol{0} & oldsymbol{A} & oldsymbol{A} & b = oldsymbol{0} & oldsymbol{A} & oldsymbol{D} & oldsymbol{A} & b = oldsymbol{0} & oldsymbol{A} & oldsymbol{A} & oldsymbol{A} & b = oldsymbol{0} & oldsymbol{0} & oldsymbol{A} & oldsymbol{A} & oldsymbol{A} & oldsymbol{0} & oldsymbol{A} & oldsymbol{A} & oldsymbol{D} & oldsymbol{A} & oldsymbol{A} & oldsymbol{A} & oldsymbol{D} & oldsymbol{D} & oldsymbol{D} & oldsymbol{D} & oldsymbo$$

Let us consider an unconstrained convex problem

minimize $f(\boldsymbol{x})$

General descent method:

```
Initialization: set x \in \text{dom } f.
```

repeat

- 1. Determine a descent dirrection δ .
- 2. Line-search: find a step size $t = \operatorname{argmin}_{t'>0} f(\boldsymbol{x} + t'\boldsymbol{\delta})$.
- 3. Update $\boldsymbol{x} := \boldsymbol{x} + t\boldsymbol{\delta}$.

until stopping condition is satisfied.

- It generates a sequence of $x^{(1)}, x^{(2)}, \ldots$ such that $f(x^{(k)}) > f(x^{(k+1)})$.
- For f differentiable, a vector $\boldsymbol{\delta}$ is a descent direction if

$$f'(\boldsymbol{x};\boldsymbol{\delta}) = \lim_{h \to 0_+} \frac{f(\boldsymbol{x} + h\boldsymbol{\delta})}{h} = \nabla f(\boldsymbol{x})^T \boldsymbol{\delta} < 0$$

e.g., gradient descent methods use $\boldsymbol{\delta} = - \nabla f(\boldsymbol{x}).$

Let us consider equality constrained convex problem

 $\begin{array}{ll} \mbox{minimize} & f({\bm x}) \\ \mbox{subject to} & {\bf A}{\bm x} = {\bm b} \end{array}$

• Using the KKT optimality conditions, $x \in \operatorname{dom} f$ is optimal iff there exist u such that

$$\mathbf{A}\boldsymbol{x} = \boldsymbol{b}, \qquad \nabla f(\boldsymbol{x}) + \mathbf{A}^T \boldsymbol{\nu} = 0.$$

• For a convex quadratic function $f(x) = \frac{1}{2}x^T H x + c^T x$ the KKT conditions lead to an efficiently solvable set of linear equations:

$$\mathbf{A}\boldsymbol{x} = \boldsymbol{b}, \qquad \mathbf{H}\boldsymbol{x} + \boldsymbol{c} + \mathbf{A}^T \boldsymbol{\nu} = 0.$$

• Newton method is applicable for a general twice differentiable function f(x): it iteratively approximates f(x) by a quadratic function

$$\hat{f}(\boldsymbol{x}) = \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}')\nabla^2 f(\boldsymbol{x}')(\boldsymbol{x} - \boldsymbol{x}') + \nabla f(\boldsymbol{x}')^T(\boldsymbol{x} - \boldsymbol{x}') + f(\boldsymbol{x}')$$

and solves the KKT conditions for the approximation $\hat{f}(\boldsymbol{x})$.

Let us consider equality constrained convex problem

$$\begin{array}{lll} \mbox{minimize} & f_0({m x}) \\ \mbox{subject to} & f_i({m x}) & \leq & 0 \ , & i=1,\ldots,m \\ & {m A}{m x} & = & {m b} \end{array}$$

• Constraints $f_i(\boldsymbol{x}) \leq 0$ can be made implicit using the **barrier function**

$$\phi_i(\boldsymbol{x}) = \left\{ egin{array}{ccc} 0 & ext{if} & f_i(\boldsymbol{x}) \leq 0 \ \infty & ext{if} & f_i(\boldsymbol{x}) > 0 \end{array}
ight.$$

i.e., we can equivalently optimized equality constraint problem

minimize
$$f_0(\boldsymbol{x}) + \sum_{i=1}^m \phi_i(\boldsymbol{x})$$

subject to $\mathbf{A}\boldsymbol{x} = \boldsymbol{b}$

• Functions $\phi_i(\boldsymbol{x})$ are approximated by a **differentiable convex functions**

$$\hat{\phi}_i(\boldsymbol{x}) = -rac{1}{t}\log(-f_i(\boldsymbol{x})) \ ,$$

which for high t well approximates the step barrier function $\phi_i(x)$.

Literature

Materials used to prepare this lecture:

• S. Boyd, L. Vandenberghe: *Convex optimization*. Cambridge University Press. 2004.

Available at: http://www.stanford.edu/~boyd/cvxbook/

- S. Boyd: *Lecture notes for EE364*, Stanford University. 2007-2008. Available at: http://www.stanford.edu/class/ee364/
- H. Hindi: A Tutorial on Convex Optimization II: Duality and Interior Point Methods. Palo Alto Research Center, California.
 Google: hindi tutorial convex

Further recommended literature:

- D.P. Bertsekas. *Nonlinear Programming*. (2nd edition), Athena Scientific, Belmont, Massachusetts, 1999.
- J.F. Bonnans, et. al: *Numerical Optimization*. (2nd edition), Springer, Heidelberg, 2006.