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Kernel Methods

Kernel methods all learn

n∑
i=1

k(x ,Xi )αi + α0

Methods differ in how to determine α.

Kernels k must be Mercer-kernels.

Mercer-kernel

Let X be a compact subset of Rn. A continuous function
k : X × X → R is called a Mercer kernel if for all f ∈ L2(X ),∫

X

∫
X

k(x , y)f (x)f (y)dxdy ≥ 0.

Mercer kernels correspond to symmetric positive definite matrices.
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Mercer’s Formula

Mercer’s Formula

Let k be a Mercer’s kernel. Then there exist (ψi ) ∈ L2(X ), and
λi ≥ 0 with

∑
i λi <∞ such that

k(x , y) =
∞∑
i=1

λiψi (x)ψi (y)

where the convergence is uniform over X .
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The Kernel Trick

Mercer’s Formula allows to re-interpret kernel methods as linear
methods on transformed data!

Define the feature map

Ψ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .)

Ψ maps the data non-linearily into the feature map F = `2

(infinite-dimensional!) such that

〈Ψ(x),Ψ(y)〉`2 =
∞∑
i=1

√
λiψi (x)

√
λiψi (y) = k(x , y).

(It’s actually well-defined since

‖Ψ(x)‖`2 = 〈Ψ(x),Ψ(y)〉`2 = k(x , x) <∞)
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The Kernel Trick (cont’d)

Now:

n∑
i=1

k(x ,Xi )αi + α0 =
n∑

i=1

〈Ψ(x),Ψ(Xi )〉`2αi + α0

= 〈Ψ(x),
n∑

i=1

Ψ(Xi )αi 〉`2 + α0

= 〈Ψ(x),w〉`2 + α0

with w =
∑n

i=1 Ψ(Xi )αi
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Implicit feature map and separability

Mercer kernel implicitly defines feature map Ψ.

Ψ non-linearly transforms the data, making it more separable.

Kernel methods are linear methods on transformed data.

Kernel trick permits to efficiently compute scalar products
even in infinite-dimensional spaces.

 kernels permit to use well-known linear methods also on
non-linear data sets.
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The Capacity Control Argument

Feature spaces are usually quite high-dimensional (even
infinite-dimensional).

Inference in high-dimensional spaces is hard
(curse-of-dimensionality).

Use learning algorithms whose “capacity” is finite and
independent of the dimensionality (for example, large margin
classifiers).
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The Standard Picture—with capacity control
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Capacity Control and the Complexity of Ψ(X )

Finite complexity of hypothesis class does not imply good
performance! It simply means that overfitting will not occur.

Empirically kernel methods work well, so capacity control and
feature map must cooperate well.

Overview of theoretical results on Ψ(X ):

At scale 0, infinite VC-dimension.

Finite fat-shattering dimensions at finite scale γ > 0.

Variance concentrated in a few dimensions.
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Low complexity of Ψ(X )
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Extending the Standard Picture—What about Y ?

Feature map Ψ built independently of Y .

Relevant information about Y should be contained in a
low-complexity subspace of F .

Overview of theoretical results:

If kernel matches problem, information about Y contained in
low-dimensional subspace.

Relevant dimensionality can be estimated practically.
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Summary

Kernels define implicit non-linear transformations.

Kernel methods are linear methods on this transformed data
in high-dimensional spaces.

Nevertheless, the relevant information seems to be contained
in a subspace, otherweise capacity control could not work.
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The Feature Map

Usually, the feature space is not explicitly constructed.

Typical kernel functions

1 k(x , y) = (〈x , y〉+ 1)d

2 k(x , y) = exp(−‖x − y‖2/2w)

3 others: spectrum kernel, string kernel, etc.

How does the associated feature space look like?
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General Properties

General statements on the shape of Ψ(X ) are easy to come by, but
they are not very helpful:

Given sufficient smoothness of k, Ψ(X ) is a submanifold of F
with the same dimension as the input space.

n points can only span an n-dimensional subspace of F .

More insights needed.
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Explicit Feature Spaces

For some kernels, the feature map can be written down explicitly.

For example, for a polynomial kernel k(x , y) = (〈x , y〉+ 1)d :

φ(x) =

(√(
n

k

)(
n

i1, . . . , in

)
x i1
1 · · · x

in
n

)
k=1,...,d , i1+···+in=k

with(
n

k

)
=

n!

k!(n − k)!
,

(
n

i1, . . . , ir

)
=

n!

i1! · · · ir !
, for i1+· · ·+ir = n.

(multi-nomial coefficients)
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Simple Geometric Properties

Norms in feature space:

‖Ψ(x)‖ =
√
〈x , x〉 =

√
k(x , x).

Angles in feature space:

cos∠(x , y) = cos
〈x , y〉
‖x‖‖y‖

= cos
k(x , y)√

k(x , x)k(y , y)

Distances in feature space:

‖x − y‖ =
√
〈x − y , x − y〉 =

√
〈x , x〉 − 2〈x , y〉+ 〈y , y〉

=
√

k(x , x)− 2k(x , y) + k(y , y).
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Simple Geometric Properties of the RBF-Kernel

Gaussian kernel:

k(x , y) = exp

(
−‖x − y‖2

2w

)

Feature map F = `2 = all sequences (zi ) with
∑∞

i=1 z2
i ≤ ∞.

Data lives on the surface of the infinite-dimensional unit-sphere:

k(x , x) = 1  ‖Ψ(x)‖ = 1.

k(x , y) ≥ 0  ∠(Ψ(x),Ψ(y)) ≤ 90◦.

‖Ψ(x)−Ψ(y)‖ ≤
√

2
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The Infinite-Dimensional Unit-Sphere

The infinite-dimensional unit-sphere has some funny properties:

Although it is bounded, it is not compact: The sequence
ei = (0, . . . , 0, 1, 0, . . .) with the 1 at ith position does not
converge.

Although two points cannot be further than
√

2 apart, there is
an infinite amount of directions to go from each point.

In d-dimensions, compare the volume Vd of a ball of radius
1/2 with that of its containing unit cube. While the volume of
the unit cube is 1, Vd → 0 as d →∞.
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The Empirical Feature Map

The λi s and ψi s in Mercer’s formula are not unique.

If one considers only the given points X1, . . . ,Xn, empirical kernel
maps can be constructed.

Both use the eigenvalues and eigenvectors of the kernel matrix

Kui = liui

summarized as KU = LU.

Empirical feature maps:

1 Ψ(Xi ) =
∑n

j=1

√
ljuj [uj ]i , in matrix notation F = UL1/2U>.

2 Ψ(Xi ) = (
√

l1[u1]i , . . . ,
√

ln[un]i ), or F = L1/2U>.

Then:

F>F = UL1/2U>UL1/2U> = ULU> = K = Ψ(X)>Ψ(X).
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Visualizing the Feature Space

Example data set (not linearly separable)
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Visualizing the Feature Space

Using empirical feature map F = UL1/2U>.
Shows increases separability
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Visualizing the Feature Space

Using empirical feature map F = L1/2U>.
Also shows that higher dimensions do not contain much variance.
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Kernel Principal Component Analysis

Second feature map Ψ(Xi ) = (
√

l1[u1]i , . . . ,
√

ln[un]i ) closely
related to Kernel PCA.

Classical PCA: compute eigenvectors of covariance matrix

C =
1

n

n∑
l=1

[Xl ]i [Xl ]j =
1

n
XX>

Size of C is dimensionality of the Xi s  infeasible for
infinite-dimensional feature spaces.
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Kernel PCA

Solution:

X>X has the same eigenvalues, eigenvectors are related via
u 7→ X>u = v . (u eigenvector of C, v eigenvector of K.

X>X computes all pair-wise scalar products  
Ψ(X)>Ψ(X) = K.

Instead of principal directions vi ∈ `2, consider principal
components fu : X → R

fi (x) = 〈Ψ(x), vi )〉 =
1

li

n∑
j=1

k(x ,Xj)[ui ]j .

Evaluated on X = (X1, . . . ,Xn), fi (X) = ui (eigenvectors of K).
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Kernel PCA and Feature Maps

Summary:

Eigenvectors
Eigenvalues

of K ≡ principal
directions

values
in F .

Eigenvector ui ≡ ith coordinate in F .

Scaled by
√

li → only leading dimensions carry much variance.

Therefore, one can visualize the mapping into feature space by
looking at the leading eigenvectors.
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Typical effects

There are two typical effects:

Eigenvectors become increasingly complex.

For data sets with separated clusters, the eigenvectors for the
clusters can become independent.
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Increasingly Complexity of Eigenvectors
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Increasingly Complexity of Eigenvectors
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Independent sets of eigenvectors for clusters
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First 6 eigenvectors (rbf−kernel) for two clusters

Data consists of two clusters at 3 and −3.
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Summary

Kernels can be visualized using the eigenvectors of the kernel
matrix.

This corresponds to plotting the Kernel PCA dimensions.

Higher dimensions have only small complexity.

Higher dimensions are more complex.

Next: theoretical results.
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Embedded image has finite complexity

Theoretically, for n data points, Ψ(X) has at most dimension n.

For rbf-kernels (up to numerical errors), every data set can be
separated perfectly (infinite VC-dimension).

But at “finite scale”, situation looks different!
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Guaranteed Fast Decay of Kernel Principal Values

The space spanned by the leading p kernel PCA directions
minimizes the projection error among all such spaces.

 at a finite scale γ, Ψ(X ) is essentially contained in a
low-dimensional subspace.

This also holds for the empirical kernel map.
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Convergence for kernel PCA

The reason is that kernel PCA approximates the asymptotic kernel
PCA with relative perturbation bounds.

finite sample setting

[Kx ]i =
n∑

j=1

k(Xi ,Xj)Xj

li eigenvalues of K

 
asymptotic setting

Tk f (s) =

∫
X

k(s, t)f (t)P(dt)

λi eigenvalues of Tk
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Convergence results

Eigenvalues are approximated with high relative error
(approximation error for smaller eigenvalues is smaller)

Individual eigenvalues [2]:

|li − λi | ≤ λiC (r , n) + E (r , n)

with C (r , n) → 0 for n →∞, E (r , n) → 0 for r →∞.

Tail sums of eigenvalues [3]:∣∣∣∣∣
n∑

i=d

li −
∞∑

i=d

λi

∣∣∣∣∣ ≤ C

√√√√ ∞∑
i=1

λi + E .

 also for empirical feature spaces, Ψ(X ) is concentrated in
leading dimensions.
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Summary

For a given scale, Ψ(X ) has finite dimensionality.

Result obtained by linking finite to asymptotic setting.

Accurate approximation errors for individual eigenvalues and
tail-sums of eigenvalues.
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Looking at the Labels

So far: Only few principal directions carry large variance.

Projecting to finite subspace in F leads only to small error.

What about the label information?

Further applications:

Preprocessing for classification.

De-noise labels Y .

Explicitly construct low-dimensional feature space.

Estimate data set complexity / noise for given kernel.
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Y and the PCA Directions in Feature Space

Recall: eigenvector ui are principal components fi evaluated on
X1, . . . ,Xn.

Decomposition of Y = (Y1, . . . ,Yn) along kernel PCA directions

s = U>Y = (u1
>Y , . . . , un

>Y )

Since eigenvectors are orthogonal ui (since K is symmetric), this
amounts to a change of basis via a rotation in Rn.
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Coordinate transform of the Y s
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Including Y in the feature map picture

It seems that information is contained in leading PCA directions
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Alternative view: Sorting coefficients
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Even if you sort the contributions si , the cut-off stays at roughly
the same position.
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Theoretical Analysis

Goal: Separate “relevant information” from noise:

Yi = g(Xi ) + εi ,

g(x) = E (Y |X = x),

G = (g(X1), . . . , g(Xn)).
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The relevant information
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Go to the asymptotic setting

Again, the answer is found in the asymptotic setting and
convergence bounds.

finite sample setting

[Kx ]i =
n∑

j=1

k(Xi ,Xj)Xj

ui eigenvector of K
si = ui

>G

 
asymptotic setting

Tk f (s) =

∫
X

k(s, t)f (t)P(dt)

ψi eigenfunction of Tk

σi = 〈ψi , g〉

This time, for spectral projections.
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Assumption

Not all data sets will be well-behaved!

Minimal assumption: Kernel and data set match in the following
sense:

g asymptotically representable by Tk , (exists h such that
g = Tkh):

 g(x) =
∞∑
i=1

λiαiψi (x)  σi = λiαi = O(λi ).

Note: Constant unspecified, measures fit between kernel and data
set.
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Equivalence between Finite Sample and Asymptotic Setting

Theorem

Let g(x) =
∑∞

i=1 αiλiψi (x), G = (g(X1), . . . , g(Xn)) Then,
with high probability,

1√
n
|ui

>G | < 2liarci (1 + O(rn−1/4))

+ rarΛrO(1) + Tr +
√

ATrO(n−1/4) + rar

√
ΛrO(n−1/2),

where
ci : measures size of the eigenvalue cluster around li
ar =

∑r
i=1 |αi |: measure for size of the first r components

Λr : sum of all eigenvalues smaller than λr

A: supremum norm of g
Tr : error of projecting g to the space spanned by the

first r eigenfunctions
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The location of zero-mean noise
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Since U> is a random rotation, noise does not change its shape
under the coordinate transformation.
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Summary

We see that also the information about Y is contained in the
leading kernel PCA coefficients (if the kernel matches the problem)

Relation between Y and kernel PCA components analyzed by
scalar products si = ui

>Y .

Decompose Y into informative part G and noise ε.

Informative part G is contained in the first few directions.

Noise is evenly spread over everything.

 A good kernel optimally increases the power of linear
discriminant functions while keeping the dimensionality low.
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Example

Information is contained in leading PCA directions
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The Extended Standard Picture (revisited)
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Overview

Estimating the relevant dimensionality on a data set.

Analyze fit between kernel and data set.

Use criterion for model selection.
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Some reminders

X1, . . . ,Xn ∈ Rd objects

Y1, . . . ,Yn ∈ R labels

K = k(Xi ,Xj) kernel matrix

Kui = liui eigenvectors and eigenvalues

ui kernel PCA components

li kernel PCA values (variances)

si = ui
>Y kernel PCA coefficients of Y
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Properties of Kernel PCA Quantities

ui become increasingly complex.

li decay quickly.

ui
>Y leading coefficients contain relevant information,

superimposed noise-floor.

 estimating the relevant dimensionality.
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Idea: fit a two-component model to the si !
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Fitting the Two-Component Model

Assumption:

si ∼

{
N (0, σ2

1) 1 ≤ i ≤ d

N (0, σ2
2) d < i ≤ n

The negative log-likelihood is proportional to

− log `(d) ∼ d

n
log

1

d

d∑
i=1

s2
i +

n − d

n
log frac1n − d

n∑
i=d+1

s2
i .

 choose d which minimizes − log `(d).
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Appliation: Denoising the Labels

Project Y to leading d kernel PCA components

Ŷ =
d∑

i=1

uiui
>Y .

Amounts to estimating the relevant information vector Ŷ ≈ G .

Theorem

If d →∞ and dn−1/4 = O(1), then Ŷ → G .
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Application: Estimating the Noise Level

Since Y = G + ε, the noise ε is simply Y − Y ′.

Computing using appropriate loss function L

ε̂ =
1

n

n∑
i=1

L(Yi , Ŷi ).

(Usually, this estimate is a bit too optimistic)
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Application: Model Selection

Idea: Use kernel which separates noise from data best.

 choose kernel such that log-likelihood value at d̂ is maximal.
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Benchmark Data Sets

data set dim dim (cv) est. error rate kPCR KRR SVM
banana 24 26 8.8 ± 1.5 11.3 ± 0.7 10.6 ± 0.5 11.5 ± 0.7
breast-cancer 2 2 25.6 ± 2.1 27.0 ± 4.6 26.5 ± 4.7 26.0 ± 4.7
diabetis 9 9 21.5 ± 1.3 23.6 ± 1.8 23.2 ± 1.7 23.5 ± 1.7
flare-solar 10 10 32.9 ± 1.2 33.3 ± 1.8 34.1 ± 1.8 32.4 ± 1.8
german 12 12 22.9 ± 1.1 24.1 ± 2.1 23.5 ± 2.2 23.6 ± 2.1
heart 4 5 15.8 ± 2.5 16.7 ± 3.8 16.6 ± 3.5 16.0 ± 3.3
image 272 368 1.7 ± 1.0 4.2 ± 0.9 2.8 ± 0.5 3.0 ± 0.6
ringnorm 36 37 1.9 ± 0.7 4.4 ± 1.2 4.7 ± 0.8 1.7 ± 0.1
splice 92 89 9.2 ± 1.3 13.8 ± 0.9 11.0 ± 0.6 10.9 ± 0.6
thyroid 17 18 2.0 ± 1.0 5.1 ± 2.1 4.3 ± 2.3 4.8 ± 2.2
titanic 4 6 20.8 ± 3.8 22.9 ± 1.6 22.5 ± 1.0 22.4 ± 1.0
twonorm 2 2 2.3 ± 0.7 2.4 ± 0.1 2.8 ± 0.2 3.0 ± 0.2
waveform 14 23 8.4 ± 1.5 10.8 ± 0.9 9.7 ± 0.4 9.9 ± 0.4

kPCR: (kernel) least-squares on the denoised data
KRR: kernel ridge regression
SVM: support vector machines
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Benchmark Data Sets: Categorizing Data Sets

low noise high noise
low dimensional banana, breast-cancer, diabetis

thyroid, flare-solar, german
waveform heart, titanic

high dimensional image, ringnorm splice
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Application: Kernel Design for Splice Site Detection

Genes are not encoded in one piece on the DNA, but in multiple
parts.

Splice sites indicate where a coding region ends.

First, the whole protein sequence is built from the DNA, then
special enzymes “cut out” the non-coding regions based on the
splice cites.
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Naive Encoding

Aminoacid Encoded as

A 0
C 1
G 2
T 3
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Median of estimated dimensions = 87.5
Maximum of median kernel PCA coefficient = 13.3

0.95 percentile
median
0.05 percentile

Dimensionality 87, test error 12.9± 0.9%.

Using an rbf kernel, over 100 resamples of the data.

Main problem: A, C appear more similar than A, T.
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A Better Encoding

Aminoacid Encoded as

A (0, 0, 0, 1)
C (0, 0, 1, 0)
G (0, 1, 0, 0)
T (1, 0, 0, 0)
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Median of estimated dimensions = 12.0
Maximum of median kernel PCA coefficient = 18.3

0.95 percentile
median
0.05 percentile

Dimensionality 11, test error 7.6± 0.7%.

All aminoacids are comparably far from one another. But only
fixed positions are comapred.
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A Domain Specific Kernel: Weighted Degree Kernel

Weighted degree kernel is defined as

k(x , x ′) =
d∑

j=1

wi

N−d∑
i=1

1{uj,i (x)=uj,i (x ′)}

with:

uj ,i (x) = xixi+1 . . . xi+j−1 (subword of length j starting at i)

wj = d − j + 1 (longer matches get lower weights)
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A Domain Specific Kernel: Weighted Degree Kernel
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Median of estimated dimensions = 29.5
Maximum of median kernel PCA coefficient = 21.2

0.95 percentile
median
0.05 percentile

Dimensionality 29, test error 5.5± 0.7%
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The Three Spectra Compared
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Summary

Relevant dimension can be estimated well.

Permits to denoise the data, estimate the noise level.

Can also be used for model selection.

E.g. on splice data set, better encoding and better kernel
lead to better performance, also visible from the relevant
dimensionality.
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