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In this paper, we present an overview of the various uses of 
the wavelet transform (WT) in medicine and biology. We start by 
describing the wavelet properties that are the most important f o r  
biomedical applications. In particular, we provide an interpreta- 
tion of the continuous wavelet transfom (CWT) as a prewhitening 
multiscale matched filter. We also briefy indicate the analogy 
between the WT and some of the biological processing that occurs 
in the early components of the auditory and visual system. We 
then review the uses of the WT f o r  the analysis of I-D physiolog- 
ical signals obtained by phonocardiography, electrocardiography 
(ECG), and electroencephalography (EEG), including evoked re- 
sponse potentials. Next, we provide a survey of recent wavelef 
developments in medical imaging. These include biomedical image 
processing algorithms (e.g., noise reduction, image enhancement, 
and detection of microcalciJcations in ntammograms), image re- 
construction and acquisition schemes (tomography, and magnetic 
resonance imaging (MRI)), and multiresolution methods for  the 
registration and statistical analysis of functional images of the 
brain (positron emission tomography (PET) and functional MRI 
( f l R I ) ) .  In each case, we provide the reader with some gen- 
eral background information and a brief explanation of how the 
methods work. 

1. INTRODUCTION 
In the past few years, researchers in applied mathematics 

and signal processing have developed powerful wavelet 
methods for the multiscale representation and analysis 
of signals [22], [104]. These new tools differ from the 
traditional Fourier techniques by the way in which they 
localize the information in the time-frequency plane; in 
particular, they are capable of trading one type of resolution 
for the other, which makes them especially suitable for the 
analysis of nonstationary signals. One privileged area of 
applications where these properties have been found to be 
relevant is biomedical engineering. 

Due to the wide variety of signals and problems encoun- 
tered in medicine and biology, the spectrum of applications 
of the wavelet transform (WT) has been extremely large. 
It ranges from the analysis of the more traditional physio- 
logical signals such as the electrocardiogram (ECG), to the 
very recent imaging modalities including positron emission 
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tomography (PET) and magnetic resonance imaging (MRI). 
The main difficulty in dealing with biomedical objects is 
the extreme variability of the signals and the necessity to 
operate on a case by case basis. Often, one does not know 
a priori what is the pertinent information andor at which 
scale it is located. For example, it is frequently the deviation 
of some signal feature from the normal that is the most 
relevant information for diagnosis. As a result, the problems 
tend to be less well defined than those in engineering and 
the emphasis is more on designing robust methods that 
work in most circumstances, rather than procedures that are 
optimal under very specific assumptions. Another important 
aspect of biomedical signals is that the information of 
interest is often a combination of features that are well 
localized temporally or spatially (e.g., spikes and transients 
in electroencephalograph (EEG) signals and microcalci'fi- 
cations in mammograms) and others that are more diffuse 
(e.g., small oscillations, bursts, and texture). This requires 
the use of analysis methods sufficiently versatile to handle 
events that can be at opposite extremes in terms of their 
time-frequency localization. 

The purpose of this paper is to review the various 
uses of the WT and the corresponding research efforts in 
the biomedical area. The presentation is organized around 
two main axes: 1) a hscussion of the main properties 
of the WT and their particular relevance for biomedical 
problems (the point of view of the wavelet expert) and 2) a 
critical review of the applications classified by biomedical 
subjects (the point of view of the biomedical specialist). 
In Section 11, we start by examining the properties of the 
WT that are the most relevant to medicine and biology, 
with the help of many illustrative examples. This ma- 
terial is provided as a complement to the more general 
introduction to the WT given in [20]. In Section 111, we 
consider the primary 1 -D biomedical signal processing 
applications (bioacoustics, ECG, and EEG), providing the 
reader with the relevant background, and reviewing the 
recent wavelet developments in those areas. In Section IV, 
we consider the applications of wavelets to biomedical 
imaging. These include image processing tasks (noise re- 
duction, enhancement, and detection), reconstruction and 
acquisition techniques for X-ray tomography and MRI, and 
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statistical methods for localizing patterns of activity in the 
brain using functional imaging (PET and fMRI). 

This whole area of research is still relatively new, but is 
evolving very rapidly. Our bibliography includes most of 
the papets that had appeared in refereed journals prior to 
May 1995, plus a limited number of preprints of which we 
were aware. To enlarge the coverage, we also considered a 
limited number of published conference papers. Although 
we did our best to provide the most complete overview 
within the given constraints, we apologize in advance 
to those authors whose work was been left out of the 
discussion. 

Beside the growing number of researchers and the rate 
of publication that keeps increasing steadily, there are other 
indicators of the current popularity of wavelets in biomedi- 
cal engineering. The first event that was entirely devoted to 
this subject was the workshop on Wavelets in Medicine 
and Biology, which was part of the 1994 IEEE-EMBS 
conference in Baltimore. There have also been two special 
issues of the IEEE Engineering in Medicine and Biology 
Magazine: one on time-frequency and wavelet analysis of 
biomedical signals which appeared in MarcWApril 1995, 
and one: on wavelets for image analysis scheduled for 
October 1995. Finally, there is a textbook to be published 
shortly on the subject that should provide an additional 
source of information [71. 

11. 
OF BIOMEDICAL APPLICATIONS 

WAVELET PROPERTIES IN THE CONTEXT 

This section is intended to complement the general intro- 
duction to the WT that is given in [20]. Its purpose is to 
reexamine some of its properties in relation to biomedical 
applications. From the point of view of the practitioner, 
there are essentially two types of wavelet decomposition: 
the redundant ones (continuous qavelet transform (CWT) 
or wavelet frames), and the nonredundant ones (orthogo- 
nal, semi-orthogonal, or biorthogonal wavelet bases). The 
first type is usually preferable for signal analyses, feature 
extraction, and detection tasks for it provides a description 
that is truly shift-invariant; the wavelet properties that are 
of special interest for this class of applications are discussed 
in Sectlions 11-A-C. The second type, which is discussed in 
Section 11-D, is obviously more nearly adequate whenever 
it is desirable to perform some kind of data reduction, 
or when the orthogonality of the representation is an 
important factor. However, the choice between these two 
options is not necessarily clear-cut because of computa- 
tional considerations. A decomposition in terms of wavelet 
bases {using Mallat’s fast algorithm is typically orders of 
magnitude faster than a redundant analysis, even if one 
uses tbe fastest available algorithms [83], [98]. For the first 
class of problems, there is a cost benefit trade-off, and 
many researchers have considered nonredundant wavelet 
decompositions and obtained very satisfactory results. 

A. Wavelets as a Filterbank 
For a fixed value of the scale parameter a, the WT which 

is now a function of the continuous shift parameter b, can 

be rewritten as a convolution equation 

where the filtering template $T(x) = U - ~ ’ ~ $ [ - Z / ~ )  

corresponds to a rescaled and time-reversed version of 
the wavelet $(x). The frequency response of this filter 
is simply a1I2q(aw), where 4 is the complex conjugate 
of Fourier transform of $. Thus if we evaluate (1) for a 
discrete set of scales (for example, the dyadic values 2’), 
we obtain what is frequently referred to as a constant-Q 
filterbank.’ This type of analysis provides a decomposition 
of a signal into subbands with a bandwidth that increases 
linearly with the frequency. In the case of a dyadic trans- 
form, each spectral band is approximately one octave wide 
[Fig. l(a)]. In this form, the WT can be viewed as a special 
kind of spectral analyzer. The simplest global features 
that can be extracted from this type of system are energy 
estimates in the various bands or other related measures. 
Spectral features of this type have been used recently 
to discriminate between various physiological states. Two 
examples are the analysis of turbulent heart sounds to 
detect coronary artery disease [5] and the characterization 
of states of fetal electrocortical activity [2]. We should note, 
however, that this type of global feature extraction is only 
justified when the underlying signal can be assumed to be 
stationary and that similar results can also be obtained using 
more conventional Fourier techniques. 

If the transfer functions of the discrete filters associated 
with a redundant m channel dyadic wavelet decomposi- 
tion are denoted by Gl(w) ,  . . ? Gm-l(w)? Hm(w) ,  where 
G,(w) 7,$(2tw) and Hm(w)  is a suitable lowpass filter, 
then it is possible to obtain a corresponding reconstruction 
algorithm if the synthesis filters in Fig. l(b) are chosen 
such that 

- - 

m-1 

H,(w)B,(w) + Gz(u)Gz(w) = 1 (2) 

i.e., the system acts globally as the identity. If the wavelet 
$(x) is derived from a multiresolution analysis, then the 
corresponding filterbank can be implemented by using 
an adapted (“h trous”) version of Mallat’s fast algorithm 
without subsampling [59], [99]. This type of reversible 
wavelet decomposition can be the basis for the implementa- 
tion of noise reduction and image enhancement algorithms 
(Section IV-A). The principle is to insert an additional 
processing component that selectively modifies the wavelet 
components prior to reconstruction. 

Mallat and Zhong also used such a filterbank system to 
obtain a multiscale edge representation of a signal from 
its wavelets maxima [60]. They proposed an iterative al- 
gorithm that reconstructs a very close approximation of the 
original from this subset of features. This approach has been 
adapted for noise reduction in evoked response potentials 
(Section 111-C), as well as MR images (Section IV-C). 

a = l  

‘The Q-factor is defined as the central frequency to bandwidth ratio; it 
is a constant for a wavelet-type analysis. 
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Fig. 1. Wavelets as a filterbank. (a) Multiband frequency re- 
sponse of the discrete filterbank associated with the cubic spline 
Battle-Lemarie wavelets (b) Discrete perfect reconstruction filter- 
bank without subsampling 

B. Wavelets as a Multiscale Matched Filter 
In essence, the CWT performs a correlation analysis, so 

that we can expect its output to be maximum when the 
input signal most resembles the analysis template q ' ~ ( ~ , b ) .  

This principle is the basis for the matched filter, which 
is the optimum detector of a deterministic signal in the 
presence of additive noise. 

Consider the measurement model f(x) = pa(x - Ax) + 
n(x) where cp,(x) = p(x/a) is a known deterministic 
signal at scale a ,  Ax  an unknown location parameter, 
and n(x) an additive white Gaussian noise component. 
Classical detection theory tells us that the optimal procedure 
for estimating Ax is to perform the correlation with all 
possible shifts of our reference template (convolution) and 
to select the position that corresponds to the maximum 
output (maximum likelihood solution). Therefore, it makes 
sense to use a WT-like detector whenever the pattern p that 
we are looking for can appear at various scales. 

If the noise is correlated instead of white, then we can 
get back to the previous case by applying a whitening 
filter. This leads to the prewhitening matched filter whose 
frequency response is G a ( w ) / & ( w ) ,  where & ( w )  is the 
noise power spectral density [115]. Strickland presents a 
case where the corresponding detector closely resembles 
a WT [92]. Here we take the argument one step further 
and show that the wavelet-like structure of the detector is 
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preserved exactly if the noise has a fractional brownian 
motion structure. Specifically, if the noise average spectrum 
has the form &(U) = 02 / /wIo  with a = 2H+ 1 where H 
is the Hurst exponent, it is not difficult to establish that the 
optimal prewhitening matched filter at scale a is 

(-3)"D"cpa(z) = c a  . ,$(./a) (3) 

where j = fl and where D" is ath fractional derivative 
operator (multiplication by (jw), in the Fourier domain). In 
other words, the (real-valued) wavelet ,$(x) is proportional 
to the fractional derivative of the pattern p that we want to 
detect. Consequently, for H > 0, the optimal detector is an 
admissible wavelet even if the initial template cp(x) is not 
(e.g., it is a lowpass function). For example, the optimal 
detector for finding a Gaussian in O ( W - ~ )  noise is the 
Mexican hat wavelet (second derivative of a Gaussian). As 
suggested by Strickland's analysis [92], this is perhaps one 
of the main reasons why the WT works well for detecting 
microcalcifications in mammograms (Section IV-A). 

The detection properties of the WT have also been used 
advantageously for certain biomedical signal processing 
tasks. One example is the detection of interictal spikes 
in EEG recordings of epileptic patients (Section 111-C). 
There are also applications in cardiology (Section 111-B), 
for example, the detection of the QRS complex in ECG 
signals [52]. We should note that this last application also 
exploits the ability of the WT to characterize singularities 
through the decay of the wavelet coefficients across scale 
[20, Section 21. 

C. Wavelets and Time-Frequency Localization 
The function that has the best time-frequency localization 

in the sense specified by the uncertainty principle is the 
Morlet or Gabor wavelet $ ( x )  = eJwoze-z2/2.  The corre- 
sponding analysis template is centered at the position 
x = b and the standard deviation of its Gaussian envelope is 
G~ = a. Its Fourier transform is a Gaussian as well, with a 
central frequency w = wo/a  and a standard deviation o, = 
a-'. Thus each analysis template tends to be predominantly 
located in a certain elliptical region of the time-frequency 
plane; the same qualitative behavior also applies for other 
nongaussian wavelet functions. Note that the area of these 
localization regions is the same for all templates and that 
it is constrained by the uncertainty principle. Thus by 
measuring the correlation between the signal and each 
wavelet template, we obtain a characterization of its time- 
frequency content (scalogram). Its main difference with the 
short-time Fourier transform is that the size of the analysis 
window is not constant for it varies in inverse proportion 
to the frequency (i.e., a = W O / W  where W O  is the central 
wavelet frequency). This property enables the WT to zoom 
in on details, but at the expense of a corresponding loss in 
spectral resolution. Since we cannot simultaneously achieve 
a good localization in time and frequency, the name of the 
game in time-frequency analysis is to trade one type of 
localization for the other in a way that is well adapted 
to the characteristics of the input signal. In this respect, 
we should note that most biomedical signals of interest 
include a combination of impulse-like events (spikes ,and 
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transients) and more diffuse oscillations (murmurs and EEG 
waveforms) which may all convey important information 
for the clinician. The short-time Fourier transform or other 
conventional time-frequency methods are well adapted for 
the latter’ type of events but are much less suited for the 
analysis of short duration pulsation. When both types of 
events are present in the data, the WT can offer a better 
compromise in terms of localization. This may explain its 
success in biomedical signal processing. Recent examples 
of applications where time-frequency wavelet analysis ap- 
pears to be particularly appropriate are the characterization 
of heart beat sounds [46], [45], [69], the analysis of ECG 
signals including the detection of late ventricular potentials 
[451, [301,[681, [90], the analysis of EEG’s 1893, [%I, [43], 
as well as a variety of other physiological signals [87]. 

The Gabor-Morlet wavelet cannot generate a basis of 
L2 and are only appropriate for performing a redundant 
wavelet analysis. Yet, it is also possible to construct semi- 
orthogonal wavelet bases with a time-frequency that is 
arbitrarily close to the limit specified by the uncertainty 
principle [SI. This property was first demonstrated with 
the B-spline wavelets which converge to a cosine-Gabor 
function as the degree of the spline goes to infinity [IOO]. 
In practice, it is sufficient to chose a cubic B-spline wavelet 
[Fig. 2(b)], which provides a localization that is already 
within a few percent of the limit specified by the uncertainty 
principle. The advantage of these wavelets is that they can 
be implemented very efficiently using standard decimated 
(or nondecimated) filterbank algorithms. 

D. Wavelet Bases 
Perhaps the most remarkable aspect of wavelet theory is 

the possiblility to construct wavelet bases of L2 (the spaces 
of square integrable functions) [62], [21]. The wavelet 
basis is generally given by the set of dilated (index z) 
and translated (index I C )  versions of the mother wavelet 
{&,k = 2-z/211,(x/2a - k ) } ( , , k ) E ~ 2 .  Hence, it is possible 
to represent a signal through its wavelet expansion 

f = cz,k$z,k (4) 
r k E Z  

where the wavelet coefficients c,,k are obtained through 
the following inner product 

ca,k ( f ,  4 z , l i ) .  (5)  

The function 4 is_ the dual analysis wavelet; in the orthogo- 
nal case, 111 and 11, are identical. In addition, associated with 
such a decomposition is a fast filterbank decomposition 
algorithm [63], [20]. 

The important point for our purpose is that, in the discrete 
case, the decomposition formula (4) provides a one-to-one 
representation of the signal in terms of its wavelet coeffi- 
cients (reversible linear transformation). Data compression 
as well as noise reduction can be achieved by quantization 
in the wavelet domain, or by simply discarding certain 
coefficients that are insignificant (Sections 111-C and IV-A). 

This form of orthogonal (or close-to-orthogonal) wavelet 
decomposition was found to be very useful for image 
coding [SI], [lo], [28], [91]. There have also been specific 

applications of wavelet compression to medical images, 
including MR images [9], digital mammograms [56], as 
well as full 3-D data sets [64], [13], [65]. One should 
note, however, that the use of lossy image compression 
schemes for medical images is still controversial. One of 
the problems is that the usual, nonmedical image quality 
criteria are not necessarily very meaningful in the context 
of diagnostic radiology. The use of these techniques also 
raises some delicate legal issues. 

While the future of medical image compression remains 
unclear, the availability of multiresolution wavelet bases 
has probably had the greatest impact on some of the more 
fundamental aspects of medical imaging, including tomo- 
graphic reconstruction, image acquisition, and functional 
imaging. These various applications, which are described 
in Section IV, all take advantage of the property that 
the wavelet basis functions retain a certain degree of 
localization in space. 

In addition to the multiresolution wavelet bases, we 
should also mention wavelet packets, which produce more 
general tilings of the time-frequency plane. The most ap- 
propriate transform within the given family is usually found 
by optimizing an application-dependent criterion (best basis 
algorithm). Karatchouc et al. introduced a correlation crite- 
rion to configure an adaptive subband filtering algorithm for 
respiratory interference cancelation in pulmorary capillary 
pressure [44]. Healy and Weaver also considered wavelet 
packet solutions for MFU encoding [109], [40] (Section IV- 
C) . 

E. Wavelets as a Model of Perception 
Interestingly, there is a striking similarity between the 

WT and some of the biological information processing that 
occurs in the first stages of auditory and visual perception 
[107], [61]. This has led various authors to propose wavelet- 
like models for low-level auditory and visual sensory 
processing. 

1) The Auditory System: The analysis of acoustic signals 
in the brain involves two main functional components: 1) 
the early auditory system which includes the outer ear, 
middle ear, inner ear (the cochlea), and the cochlear nucleus 
and 2) the central auditory system, which consists of a 
highly organized network of neurons in the cortex. When 
a sound pressure p ( t )  impinges on the outer ear, it is 
transmitted to the inner ear, transduced into neural electrical 
impulses, which are further transformed and processed in 
the central auditory system. The preprocessing and analysis 
of sounds in the early and central systems involve a series 
of processes best modeled by nonlinear dynamics [35], 
[106], [114], [41]. However, both systems include linear 
processing stages that behave like WT’s. In particular, it 
has been shown that the snail-like cochlea transforms the 
acoustic pressure p ( t )  received from the middle ear, into 
displacements y(t,xl) of its basilar membrane given by 
the convolution equation [I 141, [lo71 

(6) 

where x1 is a curvilinear coordinate along the cochlea, c 
a propagation velocity, and where h ( t , x l )  = h(ct /z l )  is 

Y ( 4  XI) = M.1 * h(. ,  a )>( t>  
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Fig. 2. Similarity between the receptive field of simple cortical 
cells and a wavelet basis function. (a) Response of a simple X cell 
from a monkey visual cortex and its fitted Gabor elementary signal 
[26], [67, Fig. 31. (b) Semi-orthogonal cubic B-spline wavelet and 
its log-log frequency response [loo]. 

the cochlear bandpass filter located at 2 1 .  Thus y( t ,z1)  
is simply the CWT of p ( t )  with the wavelet h(t) at a 
time scale proportional to position z1/c. This property has 
also inspired new engineering applications for the detection, 
transmission, and coding of auditory signals 1141. 

2) Visual System: Even though the primary visual cortex 
has may other complex functional units, it includes an 
important population of neurons that have wavelet-like 
properties. These are the so-called simple cells of the 
occipital cortex, which receive information from the retina 
through the lateral geniculate nucleus and send projections 
to the complex and hypercomplex cells of the primary 
and associative visual cortices. The receptive fields of 
these cells (i.e., the corresponding area on the retina that 
prolduces a response) consist of distinct elongated excitatory 
and inhibitory zones of a given size and orientation and 
their response is approximately linear [42]. Simple corti- 
cal cells have also been characterized by their frequency 
response which is a directional bandpass, with a radial 
bandwidth that is more or less proportional to the central 
frequency (constant-& analysis) [25]. Another remarkable 
feature is the topographic organization of these neurons into 
“columns” which share a common preferential orientation 
(not unlike wavelet channels). Marcelja showed that the 
spatial responses of individual cells are well represented 

by modulated Gaussians [67]. Note the striking similarity 
between the cell’s response’ in Fig. 2(a) adapted from [67], 
and the cubic B-spline wavelet basis function mentioned 
previously p i g  2(b)]. Considerations of this nature led 
researchers to fomulate a variety of multichannel neuronal 
models consisting of a set of directional Gabor filters with 
a hierarchical wavelet-like organization [23], [24], [ 1081, 
[77]. Simpler decompositions in terms of wavelet-basis 
have also been considered [34]. 

m. BIOMEDICAL SIGNAL PROCESSING 

Having reviewed the principal properties of the WT, we 
now proceed with a more detailed overview by biomedical 
subject. We start with the primary physiological signals 
(1-D processing). 

A. Bio-Acoustics 
The pumping of the heart gives rise to mechanical 

vibrations that can be perceived as pulses or sound through 
a stethoscope. Better quality recordings of these sounds can 
be obtained by placing a microphone inside the heart via a 
catheter or within the esophagus using a tube. The analysis 
of heart sounds can provide valuable insights into the course 
of cardiac activity, even though this diagnostic method is 
progressively being taken over by ultrasound. The auditory 
events of the heart are classified into heart sounds and mur- 
murs. Sounds are short, impulse-like events that represent 
transitions between the different hemodynamic phases of 
the cycle. Murmurs, which are primarily caused by blood 
flow turbulence, are characteristic of carhac disease such 
as aortic stenosis, or valve defects. These are distributed 
over the whole cycle. The sound induced by stenosis will 
typically be the loudest during systole where the blood flow 
is maximum. 

Kbadra et al. were the first to suggest that the WT 
can provide a useful tool for the time-frequency analysis 
and characterization of the primary heart sounds [46]. 
Its adequacy for this particular application was further 
confirmed in a comparative study with other time-frequency 
methods (Wigner distribution and spectrogram) [69]. In 
particular, Obaidat showed that the WT could pick up 
certain sound components (e.g., the aortic and pulmonary 
valve components of the second heart sound) that could not 
be resolved by the other methods. Akay et al. considered the 
analysis of the more diffuse turbulent sounds. In particular, 
they used simple global wavelet statistics to investigate the 
effects of vasodilator drugs on the turbulent sounds caused 
by arterial stenosis [2]. The same type of wavelet features 
were also used in a classification experiment that was aimed 
at detecting subjects with coronary artery disease in a group 
of 122 patients [5]. 

Interestingly, these recent wavelet methods are rem- 
iniscent of the analog octave filter bank proposed by 
Mannheimer in 1942 to extract the various components of 
the phonocardiographic signal [66]. This filter, which used 
to be an integral part of heart sound amplification systems, 
enabled the experimenter to isolate faint components such 

2The data presented corresponds to the spatial and spatial-frequency 
measurements performed by De Valois et al. [26]. 
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Fig. 3. Schematic representation and labeling of the ECG (one 
cardiac cycle). 

as heart murmurs that could not have been picked out other- 
wise (masking effect of the high amplitude low frequency 
components). 

B. Electrocardiography (ECG) 
The ECG signal represents the changes in electrical 

potential during the cardiac cycle as recorded between 
surface electrodes on the body. The characteristic shape of 
this signal is the result of an action potential that propagates 
within the heart and causes the contraction of the various 
portions of the cardiac muscle. This internal excitation starts 
at the sinus node which acts as a pacemaker, and then 
spreads to the atria; this generates the characteristic P wave 
in the ECG (Fig. 3). The cardiac excitation then reaches 
the ventricles (ventricular depolarization) giving rise to 
the characteristic QRS complex. Once the ventricles have 
been completely stimulated (ST segment of the EEG), they 
repolarke corresponding to the T wave of the ECG. The 
automatic detection and timing of these waves is important 
for diagnostic purposes. 

The arucial step in the analysis of ECG is the detection of 
the QRB complex. While there are many other algorithms 
available, there has been a recent proposal for a wavelet- 
based qpproach which provides excellent performance (a 
detection of 99.8% for the MIT/BIH arrhythmia data- 
base) [53]. Senhadji et al. have demonstrated the potential 
of wavelet-based feature extraction for discriminating be- 
tween normal and abnormal cardiac patterns [90]. The 
WT has also been applied to the detection of ventricular 
late potentials (VLP) [97], [45], [30], [68]. These are 
small Bignals with a frequency content above 40 Hz, 
which ‘have been associated with coronary heart desease, 
myocatdial infarctions, and ventricular arrhythmia. VLP’ s 
are typkcally found in the terminal part of the QRS complex 
and in the beginning of the ST segment, but they can also 
occur during the whole QRS complex. While other time- 
frequency methods can also be used for this task, the results 

of Khadra and Dickaus suggest that the detection accuracy 
of the WT is superior [45], [301. 

Wavelets were also applied to characterize beat-to-beat 
fluctuations of the heart rate under varying physiological 
conditions [3], [96]. However, their advantages over the 
more standard spectral analysis techniques remains to be 
demonstrated [6]. 

C. Electroencephalography (EEG} 
The synchronous discharge of nerve cells creates rhyth- 

mic potential fluctuations on the head surface, which can 
be measured through electroencephalography. Even if the 
method is relatively ancient (1924), the electroencephalo- 
gram (EEG) is still considered an important clinical tool in 
neurosurgery, psychiatry, and pedriatics. 

1) Seizure Detection: EEG is especially important for the 
diagnosis of epilepsy. One of the early sign of a seizure is 
the presence of characteristic transient waveforms in the 
EEG (spikes and sharp waves). As the seizure progresses, 
the transient activity slowly develops into more nearly 
regular high amplitude quasiperiodic oscillations, reflecting 
abnormal discharge of a large group of neurons. The shape 
and size of these waveforms can vary substantially from 
one patient to the other. Here again, the WT appears to be 
an appropriate detection tool due to the very mixed nature 
of these phenomena. This has been first demonstrated in the 
case of intracranial EEG, where electrodes are implanted di- 
rectly on the surface of the brain in order to localize seizures 
for neurosurgery [89], [88]. Real time processing is very 
desirable in this context and fast CWT algorithms were de- 
veloped with that objective in mind [102], [88]. With scalp 
EEG, the detection task is more difficult because of signal 
attenuation and the presence of interfering background 
noise (electromyogenic activity). The WT may still provide 
a valuable feature extraction tool, as suggested by the classi- 
fication experiments of Kalayci and Ozdamar who trained 
a neural network to discriminate between two classes of 
signals: 1) short abnormal EEG segments with a spike in 
the center (with or without sharp wave complexes) and 2) 
others corresponding to any other form of activity [43]. 

Another related application of the WT is the analysis 
of fetal electrocortical activity using implanted brain elec- 
trodes [l]. So far, most efforts have been directed toward 
the simpler discrimination tasks where the problem is to 
distinguish between different patterns of global activity; 
e.g., high voltage slow activity versus low voltage fast 
activity. This methodology has also been used to assess 
the effect of opioid drugs on brain activity [4]. 

2) Evoked Potentials: The sensitivity of electroen- 
cephalography can be dramatically improved by looking at 
evoked response potentials (ERP’s). This method creates 
perturbations in the EEG using an external acoustic, 
visual, or somatosensory stimulus. The latency from 
the time of stimulation is used to distinguish between 
electrical events that directly reflect the characteristics 
of the stimulus (latency <lo0 ms) or those that reflect 
cognitive processing (latency > 100 ms). ERP’s are usually 
acquired using multiple synchronized trials (typically 

UNSER AND ALDROUBI: A REVIEW OF WAVELETS IN BIOMEDICAL APPLICATIONS 63 1 



100-600 repetitions) and noise reduction is achieved 
through ensemble averaging. 

Thakor et al. characterized the shape of partially averaged 
somotosensory ERP’s using global wavelet energies and 
showed that these measures provided a reliable tracking of 
the time course of neurologic injury (cerebral hypoxia) [93]; 
comparable results could also be obtained using Fourier- 
based descriptors. 

Depending on the number of trials, there may still be 
some residual noise after ensemble averaging. The measure- 
ment model in this case is a deterministic signal (ERP) plus 
noise (residual EEG) which may be assumed to be station- 
ary. An elegant approach for noise reduction proposed by 
Bertrand et al. is to perform a generalized Wiener filtering 
in the wavelet domain [16]. In this particular application, 
the WT appears to be superior to the Fourier transform, 
the latter being optimal only when both the signal and 
noise are stationary (conventional Wiener filter). Lim et al. 
also report good noise reduction results with respiratory- 
related ERP’s by simply &scarding the three upper wavelet 
bands [54], which also corresponds to a particular form 
of wavelet filtering. The benefit of these techniques is a 
possible reduction of the number of trials, the ultimate goal 
being to extract the ERP using no averaging at all. One 
proposal is to reconstruct single ERP’s from a reduced 
number of wavelet coefficients [12], [17], which again 
falls into the same filtering framework. In this method, 
the selection of the significant coefficients is based on a 
discriminant analysis between the signal f noise and noise- 
only (ongoing EEG) recordings. Cannona and Hudgins 
considered a completely different approach and attempted 
to reduce noise in ERP’s using Mallat and Zhong nonlinear 
denoising algorithm which reconstructs the signal from its 
wavelet maxima [ 181. 

IV. BIOMEDICAL IMAGING 
Many of the I-D applications reviewed so far used 

wavelet techniques that are not necessarily specific to 
biomedical signals. We will see that the situation in 2-D 
is different. Except for some of the image processing 
methods described in Section IV-A, the wavelet techniques 
developed for medical imaging are quite specific and appear 
to have no equivalent in nonbiomedical applications. 

A. Biomedical Image Processing 
I )  Noise Reduction: One of the first application of the 

WT in medical imaging was for noise reduction in MR 
images [ 1101. The approach proposed by Weaver et aZ. was 
to compute an orthogonal wavelet decomposition of the 
image and apply the following soft thresholding rule on the 
coefficients c z , k  = ( f ,  l / / % , k )  

ca,k - t z  c z , k  2 t z  

I (k ,k /  5 t z  (7) i cz,k + t z  ca,k 5 - t z  
E2,k  = 0 

where t ,  is a threshold that depends on the noise level 
at the zth scale; the image is then reconstructed by the 
inverse WT of the Cx%,k’s. This is essentially the wavelet 

shrinkage denoising method later systematized by Donoho 
and Johnston [31]-[33], as well as DeVore and Lucier 
[29]. A more sophisticated approach uses an overcomplete 
wavelet decomposition and a variation of the Mallat and 
Zhong algorithm [60] to reconstruct the image from its 
wavelet maxima [ 1131. The significant wavelet maxima 
are retained by exploiting the correlation between adjacent 
scales. When applied to MR images, the method compared 
quite favorably with the optimal space-invariant solution 
(Wiener filter); in particular, it produced images with much 
sharper edges and did not induce ringing artifacts [113]. 
Malfait et al. proposed a stochastic extension of this ap- 
proach using Markov random field models [58]. 

2) Image Enhancement: The task here is to accentuate 
image features that are clinically relevant and that may be 
difficult to visualize under normal viewing conditions (e.g., 
X-ray film on a light box). Image enhancement is especially 
relevant in mammography where the contrast between the 
soft tissues of the breast is inherently small, and a rela- 
tively minor change in mammary structure can signify the 
presence of a malignant breast tumor. Because of the cur- 
rent emphasis on mammographic screening, wavelet-based 
enhancement methods have been primarily designed with 
that application in mind [50], [Xl], [49]. These approaches 
all use a reversible wavelet decomposition, which may be 
redundant or not, and perform the enhancement by selective 
modification (amplification) of certain wavelet coefficients 
prior to reconstruction. Laine et al. used a point nonlinearity 
that is either global (histogram modification) or local and 
controlled by the edges at the corresponding resolution 
[50], [49]. Note that when the weighting scheme is linear, 
this approach can be interpreted as a multiscale version 
of traditional unsharp masking [48]. The improvement in 
performance over the standard enhancement techniques 
reported by Laine et al. supports the notion that wavelets 
are useful for improving the detectability of important 
mammographic features [49], [112]. A possible extension, 
which is briefly described in [78], is to replace the point 
nonlinearity in the wavelet domain by a nonlinear adaptive 
filter. Contrast enhancement can also be performed in the 
context of Mallat and Zhong’s algorithm by accentuating 
selected maxima in the multiscale edge representation of 
the image [55]. Note that these enhancement techniques 
are not fundamentally different from the noise reduction 
methods described previously. In one case, one amplifies 
certain signal features of interest, while in the other, one 
suppresses the unwanted noise components. 

3) Detection of Microcalci$cations in Mammograms: One 
of the key issues in computer-assisted mammography is the 
detection of clusters of fine, granular microcalcifications, 
which constitute one of the primary warning signs of breast 
cancer. Individual grains (pCA++) typically range in size 
from 0.05-1 mm in diameter. The detection of pCA++s 
is closely related to the previous enhancement task and 
the methods developed are very similar, except that the 
detection is typically performed by thresholding (or classifi- 
cation) in the wavelet domain [19], [79], [92], [116]. Clarke 
et al. found some advantages in using specifically designed 
three channel quadrature mirror filterbanks instead of the 
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(b) 

Fig. 4. Basic tomographic operators. (a) The tomographic pro- 
jection Rof( t )  is the collection of parallel ray integrals through 
the object f in the direction specified by 6'; the Radon transform 
is the set of all such angular projections for 6' E [0,7r]. (b) 
The backprojection operator provides a reverse mapping from the 
Radon domain back to the object domain. Specifically, (R*p)(z)  
represents the angular average of all projection contributions 
p ( t ,  6') originating for the point 5. 

more conventional two channel solution [19]. Strickland 
used an overcomplete WT detector, which he showed to 
be clos$ly related to the prewhitening matched filter for the 
detection of Gaussian objects (idealized microcalcifications) 
in Markov noise (background noise) [92] (Section II-C). 
Barmaq~ et al. based their detection on a more complete 
object tdescription using local shape parameters derived 
from a wavelet-like multiscale decomposition that uses 
directional quadrature filters [ 113. The detection results 
reporteid so far suggest that these new wavelet techniques 
perform better than the best available single-scale methods 
[191, 1921, [1161. 

B. Computer-Assisted Tomography (CAT) 
The problem of 2-D computerized X-ray tomography 

is to reconstruct an object f ( z ) , z  = (x1,x~) E R2 
from the measured values of its angular projections. These 
measurements are described by the Radon transform of f 
which provides the line-integrals of f along the direction 

specified by the angle 0 [Fig. 4(a)] 

f i e f ( . t )  = J'" f ( t  cos 0 - u sin 0, t sin 0 + u cos 0) du. 
-CO 

(8) 
In the idealized case in which the variables 2, t ,  and 0 are 
continuously defined, the inversion formula is provided by 
the well-known filtered-backprojection (FBP) identity [go], 
C571 

(9) f = R*KRe f = R*(q * Ref)  

which is valid for any function in L2(R2). The operator K 
in (9) represents the filtering part of the formula, in which 
each projection is convolved with the ramp filter q whose 
Fourier transform is 

= 14. (10) 
The adjoint operator R* is the backprojection 

(~*p)(z) = 1" p ( z 1  cos 0 + x2 sin O,O) do (11) 

which computes the angular average of all projection con- 
tributions originating for the point z; i.e., the (filtered) 
projectionvaluesp(t,O) = (q*Ref)(t)  witht = x1cos0+ 
x2 sin f9 and f9 E [0,7r] (Fig. 4(b)). Note that the continuous 
Fl3P formula (9) is equivalent to the central slice theorem 
which states that the, 1-D Fourier transform of Ref ( t )  is a 
line through the 2-D Fourier transform of f .  

The primary motivation for using wavelets for tomog- 
raphy is that the spatial delocalization effect of the ramp 
filter @ ( U ) ,  which is due to its singularity at w = 0, is 
greatly attenuated by the corresponding zeros of the wavelet 
functions (vanishing moments) [70]. Hence, wavelet recon- 
struction formulas tend to be localized spatially and can 
be applied to obtain partial reconstructions when only a 
portion of the Radon transform is available (limited-angle 
tomography) [15]. 

The simplest approach to obtain a wavelet reconstruction 
of f is to evaluate the 2-D wavelet coefficients of f directly 
using (9). For this purpose, we first convolve f with the 
rescaled 2-D analysis function pa(%) = a- ' / 'p (z /a)  and 
rewrite the FBP identity for this prefiltered signal 

pa * f = R*KRe(p, * f )  = R"K(Recp, * R e f )  
=R*(qa,O * Ref) (12) 

where, on the right-hand side, we have combined the 
Radon transform of the 2-D analysis function with q into a 
modified (angle-dependent) ramp filter 

q a , e ( t )  = ( 4  * Recpa)(t). (13) 

Note that in the wavelet case, this filter tends to be much 
better localized then q in (10). We can then compute the 
desired 2-D inner products (wavelet or spline coefficients) 
by using modified resampled EBP scheme 

ca(k )  = a-1'2(f(z), & l a  - k)) 
=R*(qa,e  * Ref )(")12=k/a, (14) 
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which only requires the computation of the backprojection 
on the lattice at the corresponding scale. This approach was 
first proposed for fixed-scale tomographic reconstruction 
using splines [36]-[38]. The scheme is directly applicable 
for the reconstruction of the wavelet coefficients of the 
function and has been investigated by several authors [37], 
[471, [271. 

An alternative approach promoted by Olson et al. is to 
start by decomposing the Radon transforms in terms of a 
wavelet basis [70]. The advantage of this procedure is that 
one can make use of the range properties of the Radon 
transform to interpolate for missing angles. In particular, 
Olson showed that the Radon wavelet coefficients as a 
function of B are essentially bandlimited with a bandlimit 
inversely proportional to their scale. 

Another interesting observation is that if the andysis 
function cp = is a circularly symmetric wavelet with 
sufficient decay in frequency, then the modified ramp filter 
is an admissible wavelet as well, so that we can interpret 
(12) as a relation that links the CWT of f to the CWT of 
its Radon transform [751, [761, [1051. 

Finally, the WT also appears to have some merit for 
noise reduction in tomography. Two approaches that have 
been considered are wavelet shrinkage [47], and a wavelet- 
contrained version of linear least squares estimation [X6]. 

C. Magnetic Resonance Imaging (MRI) 
When exposed to a large external static magnetic field, 

the nuclear spins in a specimen tend to resonate and 
precess at the Lamor frequency f~~~~~ = THO,  which is 
proportional to the external field Ho. MRI exploits this phe- 
nomenon and produces images through spatially selective 
excitation. The spatial encoding is achieved by applying 
suitable gradient fields in the three principal directions 
( 2 ,  y, 2) .  During a measurement sequence, the spins in a 
selected portion of the specimen (e.g., a slice) are excited 
by the application of a radio frequency (RF) pulse. The 
precessing magnetizations in the transverse plane generate a 
small oscillating voltage in the pickup coil, a signal that dies 
out progressively as the spins loose their energy and realign 
with the external field. Thus the Fourier transform of the 
received signal can be used to determine the density of the 
spins resonating at the various frequencies. The resonance 
frequency is typically modified linearly along the x-axis (or 
any other direction) by switching on the corresponding gra- 
dient field during the measurement (frequency encoding). 
An additional subtlety is that the readout is not performed 
on the primary signal but on an echoed version of it which 
eliminates most sources of dephasing not directly related 
to the specimen (field inhomogeneities, etc.). Spin echoing 
is induced by applying a second 180’ RF pulse reversing 
the phases of the spins in the sample. Conventional spin- 
echo imaging requires N repeated measurements of this 
type and uses frequency encoding in the x-direction and 
phase encoding in the y-direction. The additional phase 
shift is introduced by submitting the sample to a y-gradient 
of appropriate strength during a certain time interval Tp 
prior to recording. The image is then reconstructed by 2-D 
inverse Fourier transformation. 

The idea behind wavelet encoding, as proposed by 
Weaver and Healy [l 1 11, [39], is that one can shape the RF 
excitation and select a 2-D portion of the specimen as if it 
was viewed through a weighting function. In this setup, the 
M R  signal collected at the center of the echo is modeled 
by the following inner product 

C k ( t )  = 1)” P ( Z ,  y)cpk(y)e3G”xt dy (15) 

where p(x, y) is the effective 2-D spin density in the slice of 
interest, cpk (y) the analysis function (or excitation profile) 
in the y-direction, and elGnxt the frequency encoding term 
in the x-direction introduced by the readout gradient. Such a 
selective excitation is obtained by applying an RF pulse that 
corresponds to the inverse Fourier transform of cpk ( g )  . An 
example of implementation is shown in Fig. 5.  Thus if we 
acquire N such measurements against a set of basis func- 
tions {cpk(y)}k=l, p, we can reconstruct the spin density 
function p(x, y) by appropriate 2-D inverse transformation 
(Fourier in the t-dimension and cp-based along k) .  

Conventional phase-encoded MRI uses Fourier basis 
functions3 that are completely delocalized spatially. As 
a result, the method is relatively slow because of the 
need to wait for all the spins in the specimen to realign 
before a new measurement can be made. Wavelet bases, 
on the other hand, are much better localized spatially 
and offer the possibility of a faster repetition rate [l 111, 
[39]. The practical feasibility of the wavelet approach was 
demonstrated by Panich et al. who imaged 2-D samples 
using Battle-Lemari6 spline wavelets [73]. Currently, it 
appears that the main advantages of wavelet-encoded MRI 
are the possibility of faster acquisition with the ability 
to generate T2 weighted spin echo images one slice at 
the time, and the reduction of motion artifacts. However, 
speed in MRI always comes at the expense of signal-to- 
noise ratio. It is still possible to trade one property for the 
other by using more general wavelet-packets basis functions 
[109]. Likewise, one can attempt to obtain the best quality 
reconstruction with the smallest number of measurements 
by using Karhunen-Lohe type basis functions [40]. 

The multiresolution properties of the WT can also be used 
advantageously for fast image sequence acquisition. Olson 
et al. proposed a tomographic MRI acquisition scheme 
in which the information at different scales is updated at 
different rates [72]; in particular, low frequency compo- 
nents can be reconstructed almost instantaneously and used 
to estimate the motion of the object which is then used 
to compensate for the dsplacement of the fine structures 
[71]. Panich et al. described a similar dynamic acquisition 
scheme that adaptively locates and then finely resolves only 
those regions of the field of view where change is occurring 
V I .  

As far as speed is concerned, these wavelet methods are 
still not competitive with the more recent echo-planar imag- 
ing techniques that can acquire an entire slice in a single 
echo. However, the use of echo planar MRI is currently 
limited because of the costly hardware that is required (very 

3Specifically, y k ( g )  = e j k T p G o y ,  where kGo is the strength of the 
y-gradient at the kth measurement 

PROCEEDINGS OF THE IEEE, VOL 84, NO 4, APRIL 1996 634 



180" 
Excitation 

RF 
I 

Frequency encoding 

Wavelet encoding 

GY -/ 
Slice selection 

G* 

Readout - Sample 

Fig. 5. Simplified representation of the pulse sequence used by Panich et al. for single section 
wavelet-encoded MRI. The sequence of events is as follows: 1) The sample is excited using a small 
flip angle wavelet-shaped RF pulse which is applied in conjunction with a linear gradient (Gy); 
this achieves a selective excitation in the y-direction. 2) The slice of interest is selected through 
the application of a spatially selective (z-axis) sinc-shaped 180' pulse. 3) Finally, the MR signal 
is measured with the 2-gradient tumed on; this achieves the frequency encoding in the z-direction. 

large, very fast, switched gradients). It is also more prone 
to artifacts and has a much lower signal-to-noise ratio. 

D. Functional Image Analysis (PET andjMR1) 
Functional neuroimaging is a fast developing area aimed 

at investigating the neuronal activity of the brain in vivo. 
The data for those studies is provided by PET and fMRI. 
PET measures the spatial distribution of certain function- 
specific radiotracers injected into the bloodstream prior to 
imaging. A typical example is the measurement of cerebral 
glucose utilization with the tracer [ "F] 2-fluoro-2-deoxy- 
D-glucose (FDG). fMRI, which is a more recent technique, 
allows for a visualization of local changes in blood oxy- 
genation believed to be induced by neuronal activation. It 
is substantially faster than PET and also offers better spatial 
resolution. Yet there is still disagreement among specialists 
concerning the exact nature of the biological processes that 
produce the observed changes in the MR signal. 

The functional images obtained with those two modalities 
are extremely noisy and variable, and their interpretation 
requires the use of statistical analysis methods [103]. What 
is typically of interest is the detection of the differences 
of activity between different groups of subjects (e.g., nor- 
mal versus diseased) or between different experimental 
conditions with the same subject (e.g., rest versus word 
generation). In either case, the variability of the signal is 
such that multiple subjects or repeated trials are required 
in each subgroup. 

The first step in this analysis is to register the various 
images so that they can be compared on a pixel-by-pixel 

basis. The registration can be used to compensate for 
inter-subject anatomical variability (which is acceptable for 
low resolution PET data), or for intrasubject movement 
in the scanner. Efficient multiresolution solutions to this 
problem have been proposed first in 2-D for rigid body 
motion (rotation and translation) [loll, and more recently 
in 2-D-3-D using the more general affine transformation 
model [94], 1951. In both cases, the images or volumes are 
represented by a spline multiresolution and the registration 
parameters are determined iteratively using a coarse-to-fine 
refinement strategy. As a result, the algorithm is much 
faster and more robust than a comparable single-scale 
implementation. So far, the method has been successfully 
applied to inter-subject PET registration using the general 
affine model, and intrasubject (rigid body) registration in 
fMRI [95]. 

The second step is to compute the difference between the 
aligned group averages and perform the statistical analysis. 
Testing in the image domain directly is difficult because 
of the amount of residual noise and the necessity to use 
a very consei-vative significance level to compensate for 
multiple testing (one test per pixel!). A better solution 
is to perform the testing in the wavelet domain [85],  
[82], [103]. The main advantage is that the discriminative 
information, which is smooth and well localized spatially, 
becomes concentrated into a relatively small number of 
coefficients, while the noise remains evenly divided among 
all coefficients. In addition, the number of statistical tests 
can be reduced considerably by first identifying the few 
wavelet channels that contain significant differences. A 
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recent application of this technique to fMRI is presented 
in [84]. 

V. CONCLUSION 
As this review shows, the uses of the WT in biomedical 

applications are extremely diverse. All the recent successes 
that have been obtained in this area should be attributed to 
the versatility of the wavelet tools, especially with respect to 
their localization properties in the time-frequency (or space- 
frequency) plane. The principle of a multiscale analysis also 
appears to be justified whenever the initial sampling rate of 
the signal is not necessarily adapted to the phenomena that 
are of interest to the investigator. It is also satisfying to note 
the analogy between these mathematical tools and certain 
forms of low level processing that occur in the auditory 
and visual system. 

However, wavelets are not a panacea and they should 
be used with caution. The selection of a particular solution 
should always be motivated by the problem itself and our 
understanding of the underlying biology and physics, rather 
than by the tools that are currently available and fashion- 
able. As more and more wavelet solutions are proposed, 
these methods will only be credible if they are shown to 
outperform the best techniques otherwise available. Thus 
comparative studies are needed more than ever. 
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