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Abstract—Common speech quality evaluation methods rely
on self-reported opinions after perceiving test stimuli. Whereas
these methods—when carefully applied—provide valid and reli-
able quality indices, they provide little insight into the processes
underlying perception and judgment. In this paper, we analyze
the performance of electroencephalography (EEG) for indicating
different types of degradations in speech stimuli. We show that a
certain EEG technique, event-related-potentials (ERP) analysis, is
a useful and valid tool in quality research. Three experiments are
reported which show that quality degradations can be monitored
in conscious and presumably non-conscious stages of processing.
Potential and limitations of the approach are discussed and lines
of future research are drawn.

Index Terms—Electroencephalography (EEG), perception, pro-
cessing, speech quality.

I. INTRODUCTION

I N telecommunication research, speech, audio, and audio-
visual quality is typically assessed with behavioral tests

where subjects provide a rating corresponding to their impres-
sion. Neurophysiological data can complement these ratings
as a comprehensive and non-intrusive measure, potentially
revealing neuronal differences in quality processing below the
threshold of conscious perception that might affect a user’s
long-term satisfaction. In general, only a fraction of all percep-
tual processing enters consciousness and is as such available
to the introspection required for self-report [1]. Still, also the
non-conscious processing steps are accompanied by neuronal
changes, and thus physiological measures may provide insight
into these processes which eventually lead to a given rating. In

Manuscript received November 01, 2011; revised February 18, 2012; ac-
cepted February 25, 2012. Date of publication March 23, 2012; date of cur-
rent version September 12, 2012. This work was supported by the Bernstein
Focus: Neurotechnology—Berlin (BFNT-B) by the Federal Ministry of Educa-
tion and Research (BMBF) grant FKZ 01GQ0850. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Prof.
Philip Loizou.

J.-N. Antons, R. Schleicher, S. Arndt, and S. Möller are with the Quality
and Usability Lab, Berlin Institute of Technology, 10587 Berlin, Germany
(e-mail: jan-niklas.antons@telekom.de; robert.schleicher@telekom.de; sebas-
tian.arndt@telekom.de; sebastian.moeller@telekom.de).

A. K. Porbadnigk is with the Machine Learning Laboratory, Berlin Institute
of Technology, 10587 Berlin, Germany, and also with the graduate school “Sen-
sory Computation in Neural Systems” (GRK 1589), Bernstein Center for Com-
putational Neuroscience Berlin, 10099 Berlin, Germany (e-mail: anne.k.porbad-
nigk@tu-berlin.de).

G. Curio is with the Department of Neurology and Clinical Neurophysiology,
Charité—University Medicine Berlin, 12200 Berlin, Germany (e-mail: gabriel.
curio@charite.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2012.2191936

addition it is possible to record continuously, and obtain data
closer to the actual auditory event (with respect to time). In
preliminary experiments, we could show that a certain elec-
troencephalogram (EEG) technique, event-related-potentials
(ERP) analysis, is a useful and valid tool in quality research
[2] and [3]. In addition, this method was transferred to visual
material [4], [5] and [6].

In the present paper, we will give an overview of the the-
oretical background of this study, which combines quality
measurements (Section II) and electroencephalic recordings
(Section III). Based on this, we will describe the scope and
the results of three experiments which have been carried out
to analyze the usefulness of this technique: One addressing
signal-correlated noise to provide a baseline for the perfor-
mance of the approach (Section IV), a second one extending the
paradigm to longer stimuli and more practical listening condi-
tions (Section V), and a third one addressing coding distortions
as a practically relevant type of degradation (Section VI). The
results are summarized and a perspective for future research is
given in Section VII.

II. QUALITY MEASUREMENTS

Following the considerations of Jekosch (2005) [7], the
process from an auditory event to a quality judgment includes
a perceptual and an assessment part. The incoming auditory
stimulus is perceived and then compared to an internal refer-
ence. The outcome of this comparison results in a quality event
which happens inside the human listener. In order to get access
to this event, the listener has to describe it, for example in a
quantitative way on a quality rating scale. The recommended
and commonly used procedures for this type of assessment
are subjective listening tests which are described, e.g., in
ITU Recommendations [8] (for audio quality), [9] (for video
quality) and [10] (for speech quality). These methods can be
divided into two classes; with and without reference. Methods
without reference (e.g., Absolute Category Rating (ACR))
result in a Mean Opinion Score (MOS) based on judgements
of the test stimulus alone.1 The MOS is a numerical value
commonly expressed on a scale from 5 (excellent) to 1 (bad).
For the ratings of high quality samples, methods are suitable
which have a reference stimulus. During this tests subjects have
to rate the quality of the experimental stimulus compared to
the quality of a reference sample. The Comparison Category
Rating (CCR) and the Degradation Category Rating (DCR)
are examples of such reference-based methods used in speech

1When presenting several test stimuli in a row, context effects may provoke
that the judgment is not only influenced by the test stimulus alone, but also by
other stimuli which form part of the test set.
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quality assessment [10]; similar paradigms are available for
visual and audiovisual stimuli.

III. ELECTROENCEPHALOGRAM

In addition to the well-known and approved approaches for
quality measurement, the electroencephalogram (EEG) has
been proven to be a valid technique for quality research in the
auditory and visual domain, which can provide additional in-
formation about the underlying processes [2]–[4] and [11]. The
EEG is a widely used method for investigating physiological
correlates of perceptual processes [12]. It measures voltage
differences due to neural activity in the brain by placing elec-
trodes on the scalp’s surface. It has an excellent temporal, but
a rather limited spatial resolution. In a continuously recorded
EEG, one can distinguish between event-independent parts
(spontaneous EEG) and differences in voltage in reaction to an
external stimulus, so called event-related-potentials (ERP) [13].
The latter ones are of special interest to the neuroscientist and
will be described in more detail in the following paragraphs.
Fabiani et al. (2007) considers ERPs to be: “ one of the
main tools available to cognitive neuroscientists.” [14, p.110].
In the context of EEG-based brain–computer interfaces (BCIs)
[15], machine learning methods play a crucial role in extracting
relevant information from the high-dimensional data [16] and
[17]. In recent years, there has been an increasing interest in
nonmedical applications of BCI technologies [18] and [19].

A. Mismatch Negativity (MMN)

The mismatch negativity (MMN) is a measure of low-level
visual and auditory memory [20]. It is an automatic process
caused by differences between the currently processed stim-
ulus and previously received stimuli which generated an in-
ternal sensory reference [21]. It is elicited during the range of
100–250 ms after stimulus onset [12]. This automatic process
is not conscious and can also be shown in sleeping participants
[22]. Näätänen et al. first described the MMN and explained it
as follows: “The ‘traditional’ MMN is generated by the brain’s
automatic response to any change in auditory stimulation ex-
ceeding a certain limit roughly corresponding to the behavioral
discrimination threshold” [23]. The review from Garrido et al.
gives a recent overview of the MMN [21].

The components of an ERP are named after their amplitude’s
polarity (“N” for negative, “P” for positive) and latency in mil-
liseconds, respectively. Especially the N100 and P200 appear
to be very meaningful for audiovisual integration; Pilling [24]
reasoned that the N1/P2 amplitude reduction due to audiovisual
synchrony represents a marker of audiovisual integration. Fol-
stein compares the advantage of cognitive control and mismatch
in the N2 component [25].

B. P300

Components such as the P300 and later ones are ascribed to
higher cognitive processes. The P300 component, also referred
to as P3, is a positive peak approximately 300 ms after stimulus
onset. An example for the spatial distribution on the scalp and
for the time course can be found in Figs. 1 and 2, respectively. It

Fig. 1. Scalp topographies for all channels. Each circle depicts a top view of
the head, with the nose pointing upwards. Colors code the mean voltage (micro-
volts) for the time interval from 300–1000 ms after stimulus onset. For LQ1-4,
hits were used and for HQ, correctly rejected trials were used.

Fig. 2. Grand average ERP plots for HQ and LQ1-4 at channel Cz. For HQ
correctly rejected trials (wherein no quality loss was perceived) and for LQ1-4
hits (wherein the quality loss was perceived) were used. Arrows denote P300
peak. Number of trials used for the grand average ERP plot per class: HQ �

������ LQ� � ����� LQ� � ����� LQ� � ���� and LQ� � ��	.

is split into two parts: P3a and P3b. P3a is the result of a compar-
ison between newly perceived information and internal memory
copies, similar to the MMN. The P3b component is elicited by
task-related attention. In general, the P300 is elicited when a
deviant stimulus is presented among a series of more frequent
“regular” stimuli, e.g., a high tone among a repeated series of
low tones, which is one of the standard tests in ERP research
called “oddball paradigm.” The review from Polich gives back-
ground information on all relevant processes behind the P300,
P3a, and P3b components [26]. Even later components, such as
the N400, are associated with semantic processing of stimuli,
e.g., on a sentence level. The guideline from Duncan et al. gives
practical advice for the procedure of measuring MMN, P300,
and N400 [12].

Using this methodological approach, recent neurophysiolog-
ical studies of auditory processing led to a model on auditory
processing and the conscious perception of stimulus features
[27]. Koelsch, who investigated early components of music pro-
cessing, gives an overview on the connection of music pro-
cessing and MMN, which are both early stimulus processing
stages but are triggered differently [28]. Furthermore, a first
study using classes of degradations, which are of interest for
research in telecommunication industry, was conducted by Mi-
ettinen et al. in context of magnetoencephalography (MEG),
where they could show a significant increase in the measured
amplitudes for distorted stimuli [29].
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C. Experimental Preview

This paper is based on the results of three experiments.
Experiment I was conducted as an exemplary application of a
clinical method to a stimulus set which is relevant in quality
research. Experiment II gives an insight on how comparable re-
sults for stimuli with varying length are. In addition, we tested
the influence of different headphones on quality judgment.
Experiment III was performed with even more realistic stimuli
in terms of length and class of degradation.

IV. EXPERIMENT I

A. Introduction

In Experiment I, standard and deviant stimuli in terms of the
oddball paradigm (see Section III-A) were a standard /a/, uttered
by a male speaker (high quality, HQ), versus a disturbed version
of that phoneme. As distortion, signal-correlated noise gener-
ated by a Modulated Noise Reference Unit (MNRU) [30], was
chosen. The extent of the distortion was varied in four levels,
i.e., from LQ1 to LQ4, where LQ1 (low quality 1, LQ1) referred
to the weakest distortion. We hypothesized that the P300 would
vary as a consequence of distortion intensity. In addition to the
distorted /a/, a second deviant (/i/) was presented as a control
stimulus or “sanity check.” This stimulus should cause a P300
under any circumstances.

B. Methods

1) Participants: Ten right-handed students and university
staff of Technical University of Berlin participated in Experi-
ment I (six female, four male; mean age years; SD

; range – ), all of them native German speakers. The
data from one additional subject was excluded because the ex-
perimental task was not accomplished as instructed. All partici-
pants reported normal auditory acuity and no medical problems.
Handedness was assessed using an inventory from Oldfield [31].
Participants gave informed consent and received monetary com-
pensation. The experiments were conducted in accordance with
ethical principles that have their origin in the Declaration of
Helsinki.

2) Material: Fourteen vowel phonemes were used: /a/
undisturbed, /i/ undisturbed, and 12 disturbed versions of /a/
impaired with signal-correlated noise. None of these phonemes
have lexical meaning in German. To account for possible
individual differences in hearing sensitivity, a set of stimuli
was selected for each subject individually, based on her/his
detection rate. Out of the overall stimulus set, an individual set
of four stimuli was selected for each participant, based on the
results of an individual pretest. We aimed for detection rates
of 100%, 75%, 25%, and 0% for the four selected stimulus
levels. The signal-to-signal-correlated noise ratio (SNR) for the
complete stimulus set were set to: 14, 16, 18, 20, 21, 22, 23, 24,
25, 26, 28, and 30 dB. Stimulus material was digitally recorded
in a sound-attenuated experimental chamber with a 48-kHz
sampling rate. The phonemes were articulated numerous times
by a male speaker. To keep the acoustic variability minimal,
we selected only one version of each phoneme. Intensities were
normalized using the root mean square of the speech period of

TABLE I
SNR (dB) FOR ALL SUBJECTS AND OVERALL MEDIAN SNR

the sound file with the software Adobe Audition®. The duration
of each stimulus was set to 200 ms. The stimuli were degraded
by a MNRU according to ITU-T Rec. P.810 in a controlled and
scalable way [30]. The median SNR for the deviant stimuli and
for all subjects can be found in Table I.

3) Experimental Design and Procedure: In this experimental
condition, oddball stimulus sequences of 300 trials in total were
presented. In each sequence, the undisturbed phoneme /a/
served as the standard stimulus (70% of the trials), whereas the
undisturbed phoneme /i/ and four selected disturbed versions
of the phoneme /a/ served as deviants (6% of the trials each),
delivered in a pseudo-randomized order, forcing at least one
standard to be presented between successive deviants. Since
the oddball paradigm has not been used for studies in quality
telecommunication research so far, we initially included a
control stimulus (/i/) as a sanity check using a well-established
P300 event [26]. An exploration of the P300 evoked by the
/i/ stimulus showed indeed that a regular novelty P300 was
evoked in any subject. As we eventually found a P300 for at
least one degradation condition for every subject, a further
evaluation of the control stimulus (i.e., /i/) was not conducted.
Per subject, eight to twelve sequences were recorded, resulting
in a total of 107 sequences. Three additional sequences were
run as a pretest: The 12 versions of disturbed phoneme /a/ were
presented in separate sequences (four each) with pseudo-ran-
domized order. All of these sequences contained six trials per
degradation strength (SNR), respectively. Based on the behav-
ioral results of each subject during the pretest, an individual
set of four stimuli was chosen for the experiment. As men-
tioned, the four selected degradation levels that were selected
should be detected with a rate of LQ % LQ %
LQ % and LQ %. Stimulus sequences were
presented with an inter-stimulus-interval varying from 1000
to 1500 ms. Participants were seated comfortably and were
instructed to press a button, whenever they detected one of the
deviants or the control stimulus (identification task, LQ1-4, and
/i/). Stimuli were presented binaurally at the individual pre-
ferred listening level through Sennheiser® in-ear headphones.
After the physiological measurement, subjects had to rate all 12
stimuli on a CCR scale. An experimental session lasted approx-
imately 3 hours (plus additional time for electrode application
and removal), including breaks to avoid participants’ fatigue.

4) Electrophysiological Recordings: The EEG (Ag/AgCl
electrodes, Brain Products GmbH, Garching, Germany) was
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recorded continuously from 64 standard scalp locations ac-
cording to the extended 10-20 system (AF3-4, 7-8; FAF1-2; Fz,
3-10; Fp1-2; FFC1-2, 5-8; FT7-10; FCz, 1-6; CFC5-8; Cz, 3-6;
CCP7-8; CP1-2, 5-6; T7-8; TP7-10; P3-4, Pz, 7-8; POz; O1-2
and the right mastoid) [32]. The reference electrode was placed
on the tip of the nose. Electroocular activity was recorded
with two bipolar electrode pairs. Impedances were kept below
10 k . The signal was digitized with a 16-bit resolution and a
sampling rate of 1000 Hz.

C. Data Analysis

1) Behavioral Data: As behavioral data during the EEG
measurement two parameters were extracted. First, the reaction
time for the different stimuli, and second, the psychometric
functions. The reaction time for each stimulus class is mea-
sured in milliseconds, as the duration between the onset of
stimulus presentation and the reaction of the subject (received
button click). The psychometric function is the result of the
detection rate as a function of SNR. A logistic function was
fitted to the detection rates of the stimulus levels with the
MATLAB® toolbox psignifit, approximating the data points
in a least-squares sense [33]. After the EEG measurement,
subjects had to complete a CCR opinion test, namely rate all
LQ level on the scale from excellent to bad. The slider of the
Audio Research Lab software STEP set by the participants
according to the scale from excellent to bad was converted to a
value from 100 to 0.

2) ERP Data: Offline signal processing was carried out using
the MATLAB® toolbox EEGLAB [34]. The raw EEG data were
low-pass filtered with a finite impulse response filter (low-pass
filter with a critical frequency of 40 Hz). EEG epochs with a
length of 1400 ms, time locked to the onset of the stimuli, in-
cluding a 200 ms pre stimulus baseline, were extracted and av-
eraged separately for each condition (HQ, LQ1-4, and C) and
for each participant. Epochs ( 200 ms to 1200 ms around stim-
ulus onset) showing an amplitude change exceeding 100 V
at any of the recording channels were rejected as artifacts, as
this voltage change is unlikely to be produced by neuronal ac-
tivity. Grand averages were subsequently computed from the in-
dividual participant averages. To quantify the deviance-related
effects of P300, we measured mean amplitudes, peak latency,
peak amplitude and the area below the curve in a fixed time
window relative to the pre-stimulus baseline. The time window
for P300 quantification was set from 200 to 1000 ms after stim-
ulus onset. The maximal positive amplitude in this time window
was automatically determined and its voltage and latency were
extracted for further analysis.

3) Classification: The aim of classification was to identify
trials in which the subject was not able to detect a degraded stim-
ulus, while notwithstanding an activation pattern similar to con-
scious detection was present. The detailed selection of classes
can be found in Section IV-D3. The classification was done
using the MATLAB® toolbox BCILAB [35]. The comparison of
ERP data with classification is usually done by comparing the
HQ versus the LQ ERPs. Features were the averaged voltage for
the time windows, 200–400 ms, 400–600 ms, 600–800 ms, and
800–1000 ms, for all EEG channels. In case of equal covariance

matrices for both classes and Gaussian distributions, Linear dis-
criminant analysis (LDA) is the optimal classifier [36]. For ERP
signals LDA is most suitable for classifying (for detailed infor-
mation on single-trial classification of EEG data; see [37]). We
used a LDA with automatic regularization of the estimated co-
variance matrix using shrinkage.

D. Statistical Analysis

1) Behavioral Data: A Milton–Friedman-Test with a
post-hoc comparison was calculated for the reaction times [38].
For the CCR an analysis of variance (ANOVA) with degrada-
tion intensity as the independent variable and the mean opinion
score (MOS) as the dependent variable was calculated [39].

2) ERP Data: Deviance-related effects, namely the presence
and amplitude of P300 responses, were analyzed on the basis of
data from Cz electrode where P300 is typically maximal. While
the present pilot study used 64 electrodes, the long-term goal is
to identify a minimal electrode placement providing a reliable
response estimate in the majority of subjects. Accordingly, in
a pre-analysis we calculated a grand average and identified the
one single electrode exhibiting the mean maximal P300 ampli-
tude. As this was found at the vertex, all further analysis were
run using the Cz electrode. Fig. 2 shows exemplary ERPs for
different stimuli classes. To test for the presence of P300 in the
control condition (/i/), we compared the deviant responses and
the corresponding standard responses to the undisturbed stan-
dard phoneme by means of dependent t-tests. The minimum
number of epochs constituting the ERP was set to 25. The peak
latency and peak amplitude of the P300 responses were ana-
lyzed by means of repeated measures ANOVA with the factor
Stimulus (HQ, LQ1-4, and C). Finally, pair-wise post-hoc com-
parisons between target types were drawn with Sidak adjusted
alpha level.

3) Classification: Classification was done subject-wise using
bandpass filtered raw data (0.2 to 7 Hz). Each LQ class was di-
vided in two separate classes: hits (true positives) and misses
(false negatives). Stimuli that were degraded and not detected
by the subjects were labeled as misses. Detected degradations
were labeled as hits. Two classifications were done: 1) training
of a classifier to distinguish between hits and correctly reported
HQ trials and test this classifier on the same events (HQ against
hits of each class); and 2) again training of a classifier to dis-
tinguish between hits and correctly reported HQ trials, but then
tested on misses against correctly reported HQ trials. For the
training of the second classification one half of the HQ trials
and the hit trials of each LQ class were used. Two separate sets
of HQ trials (HQ1 and HQ2) were created for the second classi-
fication by selecting even and odd HQ trials and assign them to
HQ1 and HQ2, respectively. For the testing the other half of the
HQ trials and the missed trials were used. This approach was
first introduced in [2]. Analysis one was done for all stimulus
levels with a five-fold cross validation. Only if a minimum of
15 trials containing hits (classification 1) or containing 15 hits
and 15 misses (classification 2) was available, classification was
performed (minimal number of trials needed to train and test a
classifier). The classification of hits of each target class against
HQ demonstrates that the classification of neural reactions due
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Fig. 3. Psychometric function fits from the psychophysical data; for all subject
(Subject(S) 1–10) and the mean.

TABLE II
MEAN REACTION TIMES FOR ALL LEVELS OF DEGRADATION

to the perception of degraded stimuli is feasible. The second
analysis, classifying misses against HQ trials, would reveal dif-
ferences of the EEG signal due to degradations which were not
noticed on the behavioral level. Still, on a physiological level
these two classes might differ because the degradation is still
processed on a neuronal level. Classification performance was
measured by the balanced accuracy, expressed as the area under
the curve (AUC) of the receiver operating characteristic (ROC),
as follows[40]:

AUCb (1)

The balanced accuracy stands for the relationship of true pos-
itive (tp) rate and false positive (fp) rate of a 2-class problem
including the true negative (tn) rate and the false negative (fn)
rate. A value of AUCb reflects excellent classification and
AUCb chance level.

E. Results

1) Behavioral Data: For the CCR, the ANOVA with degra-
dation intensity as the independent variable and the mean
opinion score (MOS) as the dependent variable on the CCR
data revealed a main effect on the factor Stimulus (strength of
degradation) .
The post-hoc test (Sidak adjustment for pairwise comparisons)
reached significance for a level of 21 dB compared
to the non-degraded stimulus. The mean reaction times for
the different conditions can be found in Table II. The reaction
time for LQ1-3 are on a similar level, but significantly different
compared to LQ4 . For stimulus condition LQ4, the
reaction time was shorter. The psychometric function fits for
all subjects are plotted in Fig. 3.

Fig. 4. Classification results. Bars show the average classification performance
(balanced accuracy value). Left: Trained (TR) on hits against HQ and tested
(TE) on hits against HQ; Right: Trained (TR) on hits against HQ1 and tested
(TE) on misses against HQ2; for all stimuli LQ1-4. The bar for LQ4 is missing
because no participant had enough misses for testing (classification 2). Number
of subjects used for the average of first classification (left): LQ� � �� LQ� � ��

LQ� � �� LQ� � ��� and for the second classification (right): LQ� � ��

LQ� � �� LQ� � 	� LQ� � �. Whiskers denote standard errors.

2) ERP Data: The time window for P300 quantification was
set from 200 to 1000 ms after stimulus onset. To test for the
presence of P300 in the control condition (/i/), we compared
those ERP amplitudes with the ERP amplitudes of the standards
by means of two-tailed dependent t-tests. The t-test result was
significant ( ). Fig. 2 shows the grand average
ERP, the arrows point the location of the P300 peak for each LQ.

The ANOVA for repeated measurements revealed a main ef-
fect for the factor stimulus

. For the dependent variable P300 peak amplitude a signifi-
cant effect was found , as
well as for the dependent variable P300 peak latency

. The pairwise comparison (Sidak ad-
justment for pairwise comparisons) for the peak amplitude re-
vealed a significant difference between LQ2 and LQ4 .
For the latency a significant effect could be found between LQ2
and LQ3 , in addition to a significant effect between
LQ2 and LQ4 . Fig. 1 shows the scalp distribution
of voltage for the different stimulus conditions (hits and correct
rejections for LQ1-4 and HQ, respectively). For LQ4, a broad
reaction was detected. For the less disturbed stimuli, a reaction
was provoked, but not as strong as for LQ4.

In addition, we found a correlation between the P300 ampli-
tude for electrode Cz and the detection rate .
Within the ERP data, a negative correlation between the P300
amplitude and the P300 latency at electrode Pz could be ob-
served .

3) Classification: The classification results can be found in
Fig. 4. For the first classification level, trained on hits versus HQ
and tested on hits versus HQ, the average AUCb value reached
a high level for LQ4: AUCb , LQ3: AUCb , LQ2:
AUCb , and LQ1: AUCb . The second classification
level reached the following values; for LQ4: not enough misses,
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LQ3: AUCb , LQ2: AUCb , and LQ1: AUCb .
It needs to be noted, that classification could not be performed
for all subjects (due to a small number of hit/miss trials) such
that the average values reported here are averages calculated
over subsets of subjects (classification 1: LQ LQ
LQ LQ ; classification 2: LQ LQ
LQ LQ ).

F. Discussion

The analysis of the subjective CCR ratings revealed that the
quality was rated as significantly lower from an SNR of 21 dB
on. This point denotes the threshold, from where on the quality
was perceived as significantly worse in comparison to the refer-
ence. The reaction time for the strongest degradation was shorter
compared to the weaker ones, meaning that subjects were faster
in detecting the degradation and providing the corresponding
rating. The psychometric functions showed that the mean detec-
tion rate passes 50% at a 21-dB degradation level. This result is
similar to the result of the CCR. For the ERP data, the significant
P300 generated by the control stimulus (i.e., /i/) showed that the
experimental setup is appropriate for our purposes. It turned out
that in this stimulus design and given the present signal-to-noise
ratio, no robust MMN could be identified. It might appear sur-
prising that a residual P3 response, which is known to represent
cognitive stimulus appraisal, was detected in trials for which no
behavioral detection was reported. In the context of the present
paradigm one could argue that minor physical stimulus differ-
ences were initially detected, yet an internal response criterion
has not been met, such that an overt behavioral report was not
initiated. The discovered effects of P300 peak latency showed
that the harder it is to detect a degraded stimulus the later a P300
was evoked. This can be due to the fact that more cognitive effort
is involved in detecting the degradation. The significant varia-
tion of the P300 peak amplitude is comparable to the variation of
latency, but shows the opposite pattern of change: the stronger
the degradation, the higher the P300 amplitude. This result was
supported by the two correlations.

The P300 amplitude is varying with the detection rate: The
higher the amplitude, the higher the detection rate. Comparing
the amplitude with the latency of the P300, a negative corre-
lation suggests that the smaller the amplitude the longer the
latency.

Interestingly, the analysis of the grand mean data obtained
as average over all subjects showed the strongest P3 response
at Cz. Thus, in the present paradigm the most effective place-
ment of a single electrode was in between the commonly re-
ported places for novelty (P3a) and target (P3b) ERP which have
been described at more frontal or more parietal sites [26]. With
the first level of classification we could show that the brain re-
action due to the processing of a degradation, in our case the
difference between the undisturbed and disturbed stimulus, can
be well detected. With our second classification we could show
that the pattern of brain activation related to processing degrada-
tions consciously can also be detected in trials which are not re-
ported as degraded on a subjective level. We conclude that these
trials might have been processed non-consciously and had no
measurable influence on the direct user rating. This processing

might still lead to an influenced long-term quality judgement,
due to increased cognitive load and fatigue when being exposed
to small degradations for a long period of time (for measuring
fatigue using EEG see [42]).

V. EXPERIMENT II

A. Introduction

The aim of Experiment II was to determine if 1) the length of a
stimulus has an influence on the subjective rating and 2) the type
of headphones has an influence on the subjective rating of one
degradation class. The motivation for this test was based on the
fact that the common length of stimuli used for tests in telecom-
munication research is around 8 seconds [10], which is much
longer than the common length in ERP research (between 100
to 1500 ms). In addition, common speech quality tests are car-
ried out with circumaural headphones rather than in-ear plugs,
the latter being typical for EEG setups. The result should reveal
if the headphone type was an unwanted influence on degrada-
tion perception.

B. Methods

1) Participants: Twenty volunteers (ten female, ten male;
years; ; – ; all

right-handed), all native German speakers took part in Experi-
ment II. All participants reported normal auditory acuity. They
gave informed consent and received monetary compensation.

2) Material: For Experiment II we used stimuli of three
different lengths: phoneme, word and sentence. The phoneme
from Experiment I was used: /a/ (200 ms). The stimulus with
the length of a word was the German translation of eye brow
/Augenbraue/ (1200 ms) and a test sentence from the EUROM
data base uttered by a male speaker were used (8000 ms) [41].
The two tested headphones were Sennheiser in-ear plugs and
AKG over-ear headphones. Stimuli were degraded with signal-
correlated noise at the following SNRs: 5, 10, 14, 16, 18, 20,
21–35 dB in one dB steps.

C. Experimental Design and Procedure

As in Experiment I subjects had to rate all stimuli on a CCR
scale from excellent (100) to bad (0). The stimuli types (three
different lengths) were judged on all levels of degradation and
with both headphones (in-ear versus over-ear).

D. Statistical Analysis

The data was analyzed performing an ANOVA with type of
headphone and length of stimulus as the independent variables
and the mean opinion score (MOS) as the dependent variable.

E. Results

We found a main effect for the factor length of stimulus
. There was no

main effect for the type of headphone ( , not
significant). The post-hoc analysis (Sidak adjustment for pair-
wise comparisons) revealed a significant difference between
the stimuli with the length of phonemes and words ,
as well for the difference between phonemes and sentences
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. Not significant was the difference between stimuli
with the length of words and sentences.

F. Discussion

As expected from Experiment I, the level of degradation had
an influence on the subjective judgement. The factor length of
stimulus had a significant effect on the user rating. A signifi-
cantly higher quality was assigned to stimuli with the length
of phonemes compared to stimuli with the length of words and
sentences. There was no difference between the judgement of
word and sentence-long stimuli. This leads to the conclusion that
stimuli for EEG experiments on quality should be at minimum of
word length. As there was no difference between the rating of the
two types of headphones the influence of the headphone type can
be neglected. Experiment I had used short stimuli (vowels) which
are a standard in ERP studies and thus allowed to use the estab-
lished physiological knowledge to interpret the new findings and
their implications for cerebral processing of stimulus quality.
However, in quality research longer stimuli are employed for
behavioral detection of stimulus degradation. Therefore, Ex-
periment II directly compared the behavioral effects of stimuli
differing in length (vowels, words, sentences). Indeed, longer
stimuli (i.e., words or sentences) permit a better detection of
minor stimulus degradation. According to this behavioral result,
we added the ERP Experiment III which now used word stimuli
thereby linking the present ERP results directly to the behavioral
standards in quality research.

VI. EXPERIMENT III

The goal of Experiment III was to test even more realistic
stimuli in terms of the length, and to extend our paradigm to
another class of degradation. The stimuli were words [/Haus/
(English: house) and /Schild/ (English: sign)] and differed each
with regard to the bandwidth of the codec ITU-T Recommen-
dation G.722.2 [43]. The difference between the high quality
(HQ; wide-band) and lower qualities (LQ1-4; subset chosen
from the conditions: 6.6, 8.85, 12.65, 14.25, 15.85, 18.25,
19.85, 23.05 kbit/s) was expected to elicit an early difference
pattern for conditions LQ2-4 and a P300 for at least the highest
degradation.

A. Methods

1) Participants: Nine volunteers (four female, five male;
mean age years; ; range – ; all
right-handed), all native German speakers took part in Exper-
iment III. None of them had participated in Experiment I or II.
All participants reported normal auditory acuity. They gave in-
formed consent and received monetary compensation.

B. Material

We used different stimulus material as in Experiment I.
Two words were chosen, each spoken by a female and male
speaker. For all four LQ conditions we used the codec G.722.2
as degradation. The best quality was used as high quality (HQ:
direct wide-band quality without any coding-decoding process)
as standard stimulus and all lower bandwidth conditions as
deviants (6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, and 23.05
kbit/s). All combinations result in a stimulus set of 8 per word

TABLE III
BANDWIDTH (kbit/s) FOR ALL SUBJECTS AND OVERALL MEDIAN

and speaker. As in Experiment I a subset of four stimuli were
determined individually for each subject. The aimed detection
rates were LQ % LQ % LQ % and
LQ %. The selected stimulus levels can be found in
Table III.

C. Experimental Design and Procedure

In a forced choice task, subjects had to rate whether a given
word was of high quality (HQ) or degraded (LQ). Stimuli were
presented either in wide-band quality or were impaired. Besides
the aforementioned modifications, we used the same experi-
mental setting as in Experiment I.

D. Electrophysiological Recordings

Settings for the electrophysiological recordings were the
same as in Experiment I. Scalp locations: Fp1-2; AF3-4; Fz,
1-6,9-10; FCz, 1-8; T7-8; Cz, 1-6; TP7-8; CPz, 1-6; Pz, 1-10;
Poz, 3-4, 7-8; Oz, 1-2; AF7-8 and the right mastoid were
recorded.

E. Data Analysis

The data were analyzed in the same way as in Experiment I
except the following changes.

1) ERP Data: The time window for P300 quantification was
set from 400 to 900 ms after stimulus onset.

2) Classification: As time windows, we used: 400–500 ms,
500–600 ms, 600–700 ms, and 700–900 ms.

F. Statistical Analysis

Statistical analyses were performed in the same way as de-
scribed for Experiment I.

G. Results

1) Behavioral Data: The ANOVA calculated on the subjec-
tive data, with degradation intensity as the independent vari-
able and the mean opinion score (MOS) as the dependent vari-
able, revealed a main effect on the factor Stimulus (strength of
degradation) .
The post-hoc test (Sidak adjustment for pairwise comparisons)
reached significance for a level of 8.85 kbit/s . The
mean reaction times for the different conditions can be found
in Table IV. The reaction time for LQ1-3 are on a similar level,
but significantly different compared to LQ4 and HQ

. For the stimulus condition LQ4 and HQ reaction
time was shorter. The psychometric function fits for all subjects
are plotted in Fig. 5.
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Fig. 5. Psychometric function fits from the psychophysical data; for all subject
(Subject(S) 1–10) and the mean.

TABLE IV
MEAN REACTION TIMES FOR ALL CONDITIONS

Fig. 6. Grand average ERP plots for HQ and LQ1-4 at channel Cz. For HQ
correctly rejected trials (wherein no quality loss was perceived) and for LQ1-4
hits (wherein quality loss was perceived) were used. Arrows denote P300 peak.
Number of trials used for the grand average ERP plot per class: HQ � ������

LQ� � ����� LQ� � ��	� LQ� � 	��� and LQ� � �

.

2) P300: The ANOVA for repeated measurements re-
vealed a main effect for the factor stimulus

. The P300 area variation is significant
, as well the P300

mean and the peak
amplitude . For the
dependent variable P300 peak latency no effect was found. The
grand average for all stimulus classes can be found in Fig. 6.
The pairwise comparison for the peak amplitude revealed a
significant difference between LQ1 and LQ2 and
LQ1 and LQ4 . Fig. 7 shows the scalp distribution of

Fig. 7. Scalp topographies for all channels. Each circle depicts a top view of
the head, with the nose pointing upwards. Colors code the mean voltage (micro-
volts) for the time interval from 500–1000 ms after stimulus onset. For LQ1-4,
hits were used and for HQ, correctly rejected trials were used.

Fig. 8. Classification results. Bars show the average classification performance
(balanced accuracy value). Left: Trained (TR) on hits against HQ and tested (TE)
on hits against HQ; Right: Trained (TR) on hits against HQ1 and tested (TE) on
misses against HQ2; for all stimuli LQ1-4. Number of subjects used for the
average of first classification (left): LQ� � �� LQ� � �� LQ� � �� LQ� � �

and for the second classification (right): LQ� � �� LQ� � �� LQ� � ��

LQ� � �. Whiskers denote standard errors.

voltage for the different stimulus conditions (hits and correct
rejections for LQ1-4 and HQ, respectively). For LQ4 a broad
reaction was detected. For the less disturbed stimuli a reaction
was evoked but not as strong as for LQ4.

3) Classification: The results for the classification can be
found in Fig. 8. For the first classification level, trained on hits
versus HQ and tested on hits versus HQ, the average AUCb
value reached a high level (for LQ1: AUCb , LQ2:
AUCb , LQ3: AUCb , and LQ4: AUCb ).
The second classification level reached the following values;
for LQ1: AUCb , LQ2: AUCb , LQ3: AUCb ,
and LQ4: AUCb . As for Experiment I, it needs to be
considered that the average values reported here are averages
calculated over subsets of subjects (classification 2: LQ4: 7
subjects; otherwise: all subjects).

H. Discussion

The analysis of the subjective CCR ratings revealed that the
quality was rated as significant lower from a SNR of 8.85 kbit/s
on.

Surprisingly, one of our subjects was more sensitive con-
cerning the detection of the degradation (Fig. 5). Even after a de-
tailed inspection of the data no irregularity of the ERP data was
encountered and thus the data were included in the analysis. The
reaction time for the strongest degradation and for the HQ stim-
ulus was lower compared to the weaker degraded ones, meaning



ANTONS et al.: ANALYZING SPEECH QUALITY PERCEPTION USING EEG 729

that subjects were faster to detect the degradation and giving the
corresponding rating. The psychometric functions showed that
the mean detection rate passes 50% at 8.85 kbit/s degradation
level. Compared with the psychometric functions of Experiment
I the curves of Experiment III are smoother, meaning the detec-
tion rate is rising slower with the intensity of the degradation.
This is due to the fact that participants can clearly identify the
noise in Experiment I as a degradation, whereas the compres-
sion artifacts in this experiment, were harder to detect for some
participants. The P300 area showed that the harder it is to detect
a degraded stimulus, the smaller the P300 area. The significant
variation of the P300 mean amplitude is comparable to the vari-
ation in area: the stronger the degradation, the higher the P300
mean amplitude.

With the first level of classification we could show that the
brain reaction due to the processing of a degradation in our case
the difference between the undisturbed and disturbed stimulus
can be well detected. With our second classification we could
show that the pattern of brain activation related to processing
degradations consciously can also be detected in trials which
are not reported as degraded on a subjective level. We con-
clude again that these trials might have been processed non-con-
sciously and had no measurable influence on the direct user
rating. Balanced accuracy for classification 2) show a huge sim-
ilarity across quality levels, in contrast to what could be ex-
pected. This might be, because one stimulus had a surprisingly
high number of hits for low quality levels for a considerable
number of subjects (LQ2 and 1).

VII. GENERAL DISCUSSION AND FUTURE WORK

In this paper, we investigated the usefulness of event-related
potentials (ERPs) for analyzing human speech quality percep-
tion. Our aim was to investigate whether ERPs specific to the
detection of degradations can be identified, potentially also
for non-conscious processing steps when listening to degraded
speech files, and to test the applicability of the method in a
realistic application scenario. Three experiments were carried
out to perform the analysis. At present there is limited insight
in the neuronal processes underlying quality appraisal. EEG
can serve as a tool to learn about these processes, and may offer
the benefit of potentially revealing non-conscious parts of the
quality judgment process as well.

In the first experiment, we could show that the subjects’
detection rate in the oddball paradigm experiment reached the
50% threshold at the same SNR level at which test participants
also rated the quality significantly worse in the CCR test. The
reaction time in the oddball paradigm was significantly higher
for the high SNR condition, reflecting the cognitive effort
required to process the (subtle) degradation. The P300 peak
latency showed that the lower the degradation level, the later a
P300 was evoked, which is most likely due to the same reason,
namely the higher cognitive effort involved in detecting the
degradation. In turn, the stronger the degradation, the higher
the P300 peak amplitude. Using LDA classifiers on the EEG
signals, we could show that patterns of brain activation which
were similar to the ones for detected degradations could also be
observed for trials where the participants did not report a degra-
dation. It is likely that small degradations are non-consciously

processed in a similar way as larger ones, although they do not
result in the same conscious user rating.

The brain accomplishes the given experimental task mainly as
expected. Strongly degraded stimuli were assessed faster com-
pared to the weaker degradations. The stronger the degradation,
the earlier is the maximum amplitude of P300 and the higher its
amplitude. The expected scalp potential distribution and peak
latency matches neatly with the literature [26]. One unusual fea-
ture is the detection of degradation-specific brain responses to
weak degradations which were not reported at the behavioral
level. Thus, ERP analysis might provide objective evidence for
non-conscious engagement of brain processes by minor stim-
ulus degradations which eventually could influence the users’
appreciation of stimulus quality during long-term confrontation
with this degraded material.

The applicability of the method was further analyzed in the
second experiment. The results showed that stimulus length had
a significant impact on the subjective responses, with stimuli
of word or sentence length being rated significantly worse than
phoneme stimuli. That implies that stimuli of at least word
length should be used in subsequent experiments in order to
reflect realistic usage scenarios. The type of headphone did not
have a significant impact. Therefore in-ear headphones which
are more common in EEG studies can be used.

For the third experiment, similar results could be found for
coding distortions as for signal-correlated noise. It should be
noted, however, that the subtlety of the degradation did not af-
fect the latency of the P3 for coding distortions in words. This
leads to the question to which stimulus modalities and types of
degradations the ERP-based analysis can be applied to. Con-
sidering the initial investigations reported in [2] and [3], it is
expected that the method is applicable to auditory, visual and
audiovisual stimuli alike. With respect to the latter, we expect
that further insight on the quality integration process of audi-
tory and visual perception may be obtained by our method. For
example, one could determine how the impact on MMN and
P300 components adds up when a stimulus contains both audi-
tory and visual degradations. We are interested in how the brain
activity patterns sum up in such cases, and how this affects the
classification rate.

A further point of future work will be to analyze the impact
that the presumably non-conscious detection of degradations
may have on perceived quality aspects. A missing response
behaviorally does not necessarily mean that small degradations
do not have an influence on quality perception neurally. For ex-
ample, we assume that cognitive load and fatigue might increase
when being exposed to small degradations for a long period of
time, e.g., when viewing films with subtle degradations. In order
to analyze this impact, EEG-based measurement techniques
need to be combined with other physiological methods such
as Heart rate variability (HRV) and non-physiological indices
(self-reported load indices). On the long run, we expect that
ERP-based analysis will be one of several methods providing
insight into the quality perception and judgment processes which
are still not well understood. In the future, a new compression or
transmission method might be declared “subjectively lossless”
only if the subject’s brain activity shows no difference compared
to the activity during perception of the original signal.
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