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Toward a Direct Measure of Video Quality Perception
Using EEG
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Abstract—An approach to the direct measurement of perception
of video quality change using electroencephalography (EEG)
is presented. Subjects viewed 8-s video clips while their brain
activity was registered using EEG. The video signal was either
uncompressed at full length or changed from uncompressed to a
lower quality level at a random time point. The distortions were
introduced by a hybrid video codec. Subjects had to indicate
whether they had perceived a quality change. In response to a
quality change, a positive voltage change in EEG (the so-called
P3 component) was observed at latency of about 400–600 ms
for all subjects. The voltage change positively correlated with
the magnitude of the video quality change, substantiating the
P3 component as a graded neural index of the perception of
video quality change within the presented paradigm. By applying
machine learning techniques, we could classify on a single-trial
basis whether a subject perceived a quality change. Interestingly,
some video clips wherein changes were missed (i.e., not reported)
by the subject were classified as quality changes, suggesting that
the brain detected a change, although the subject did not press
a button. In conclusion, abrupt changes of video quality give
rise to specific components in the EEG that can be detected on a
single-trial basis. Potentially, a neurotechnological approach to
video assessment could lead to a more objective quantification of
quality change detection, overcoming the limitations of subjective
approaches (such as subjective bias and the requirement of an
overt response). Furthermore, it allows for real-time applications
wherein the brain response to a video clip is monitored while it is
being viewed.

Index Terms—Electroencephalography (EEG), perception,
video coding, video quality.
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I. INTRODUCTION

V IDEO signals are typically intended to be viewed by hu-
mans. For their transmission at bit rates that is suitable for

today’s channels or storage devices, these signals are digitized
and potentially compressed. With an increasing reduction in bit
rates, the compression algorithm starts to introduce distortions
that are visible to humans. The measurement of these distortions
is essential in most video transmission tasks, e.g., for control-
ling the tradeoff between bit rate and distortion (R–D) or for
assessing the visual quality of a transmitted video signal.
One approach toward measuring subjective distortion has

been the modeling of the human visual system [1], [2]. The
basic idea for obtaining such a model is to measure transfer
functions given various temporal and/or spatial stimuli and
then to combine these measurements into a more complete
model. Such approaches led to a profound understanding of the
limitations of the human visual system, e.g., the spatiotemporal
limits of perception.
However, the question at hand of how to quantify visual dis-

tortion remained unsatisfyingly answered by these approaches.
One reason is that various top-down mechanisms (which are
difficult to model) influence the sensitivity of humans to distor-
tions. The world, as we see it, is based on a number of inferences
that are related to the visual input such as motion or depth, or
content- and context-related inferences. These inferences are a
major part of (active) perception and constitute the way we per-
ceive. A model that does not dwell on these top-down processes
will remain incomplete.
Hence, a precise model for the subjective perception of dis-

tortion is not available. The most common current approach to
quantifying subjective distortion still is a judgment experiment:
a human observer is presented a stimulus and gives an overt re-
sponse. Such subjective testing for visual quality assessment has
been formalized in [3] for television applications and in [4] for
multimedia applications. The typical procedure in any of these
recommendations is that the subject has to rank the quality of a
set of test videos.
This may be done with or without showing a reference video.

These subjective tests are widely used in practice and deliver
quality assessments for video signals when averaged over many
subjects. They share the drawback that ratings are highly vari-
able across subjects. Further, these ratings given by the human
observer are the result of a conscious process, which may be in-
ferred by various aspects and which is prone to be affected by
subjective factors (e.g., bias, expectation, and strategies).
A potential solution, proposed here, is to directly monitor

brain activity during the observation of video clips using elec-
troencephalography (EEG). For the first time, measurements of
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brain activity are used to quantify the perception of a human
observer when being shown a change in video quality. Our ap-
proach capitalizes on the P3 component (or P300 component),
which is a large positivity that is usually observed 300–500 ms
after a rare and/or significant event. Its amplitude peaks over the
central–parietal brain regions [5]. The oddball paradigm is the
classical paradigm in which a P3 response is elicited: Frequent
and infrequent stimuli are shown, and a P3 component is found
in response to infrequent stimuli. The P3 reflects cognitive pro-
cessing and is observed independent of the sensory modality. In
contrast to a visually evoked potential (VEP), it is not directly
linked to sensory processing. Despite the high amount of noise
in the EEG,1 single-trial detection of the P3 component has been
demonstrated in applications such as visual [7], [8] and auditory
[9], [10] brain–computer interfaces (BCIs) and in audio quality
assessment [11]. For reviews on BCIs and BCI technology, refer
to [12]–[14].
This paper is organized as follows. In Section II, the viewing

experiment, including the stimuli and EEG, is described. The
measured EEG signals and their analysis are described in
Section II-C. Results are presented in Section III followed by a
discussion on future directions.

II. VIEWING EXPERIMENT

Our incentive was to investigate whether the (possibly sub-
conscious) perception of video codec artifacts can be measured
with EEG. To this end, an experiment was conducted in which
subjects watched short video clips, some of which featured a
sudden quality change from high quality to a lower quality
level during the video (see Section II-B). In order to make the
measurement independent of the image statistics at the actual
gaze position at the time of the quality change, the stimulus
material that was chosen is spatially and temporally roughly
homogeneous.

A. Stimulus Material

In order to obtain more control over the properties of the
video stimuli than would be possible with real-world video
sequences, the stimuli were synthetically generated. By using
video material without semantically meaningful content and
the absence of salient objects, influences due to high-level
image understanding were minimized. Furthermore, by using
homogeneous stimuli, we assumed the exact position of the eye
gaze to be of little effect on the experimental data. On the other
hand, the video material should not be too abstract but contain
simple real-world textures and motion.
In order to meet these requirements, video sequences were

generated based on a synthetic image of a textured checker-
board, as shown in Fig. 1. The image was deformed over time by
simulating a swaying water surface on top of the checkerboard.
The deformation was calculated by solving the 2-D wave func-
tion
(where is speed of wave, is the decay of wave, is the
time, and and are the image coordinates) iteratively using
a finite-difference approach [15]. The deformation
was applied to the image by convolution, resulting in a smooth

1In the simulations in [6], only half of the surface scalp potential comes from
sources within a 3-cm radius around the electrode.

Fig. 1. Time course of the video sequence. For 1 s, a fixation point is shown. For
at least 2 s, the undistorted video is presented. At a random time point (uniformly
distributed between 2 and 6 s), the video quality drops instantaneously. On the
right, undistorted and distorted (highest quality loss QC10) frames are shown
exemplarily.

and modest movement. Reflections have not been taken into
account.
The sequence was generated in a resolution of 832 by 480

pixels, with a frame rate of 60 fps and a duration of 8 s.
From this undistorted sequence, 500 new sequences have

been generated by introducing 1 out of 10 magnitude values
of quality drops in one out of 50 time instances into the undis-
torted sequence. The time instances of the quality change were
randomly chosen and uniformly distributed between 2 and 6 s,
i.e., between the 121th and 360th frames. This assured that
the subject cannot predict the time point of a quality change.
The magnitude of the quality change was controlled by the
quantization parameter of the video coder (see the following).
These 500 sequences with one quality change each and the
undistorted sequences served as stimuli. The different stimuli
have been labeled with QC1–QC10 and QC0, where QC1
denotes the most subtle quality change, QC10 denotes the
strongest quality change, and QC0 is the undistorted sequence.
Prior to each presentation of a stimulus, a central fixation

point was shown for 1 s. Fig. 1 shows the time course of the
stimuli and gives an example of the appearance of a stimulus
over time.
The quality loss considered in the experiments was induced

by lossy compression of the synthesized video sequence. The
used video coder is a state-of-the-art hybrid motion-compen-
sated block-based coder [16]. It is architecturally similar to
the emerging HEVC standard [17], offering a flexible quadtree
structure for prediction and transform. Statistical redundancies
are exploited by blockwise temporal and spatial prediction. The
residual signal is transformed blockwise, and coefficients are
quantized in the transform domain. Coding artifacts, which are
perceived by the human observer as a loss of visual quality, are
introduced by the quantization.
The encoder decides about the best representation of the

video to be coded by minimizing the Lagrangian R–D cost
functional on block basis with being the
distortion and being the frame rate.
We configured the coder with a maximum prediction block

size of 64 64 and a maximum quadtree depth of 4, equivalent
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Fig. 2. Experimental setup.

to a minimum prediction. We used an IPPP prediction structure
and an intra period longer than the coded sequence so that only
the first frame is coded intra-only.
In order to obtain sequences of different visual qual-

ities, we changed the quantization parameter QP
. The quantization pa-

rameter QP corresponds to the quantization step size with
, where is a multiplier depending

on the transform matrix and the position of the coefficient.
However, the perceived quality loss in the generation of the
stimuli is controlled by and is monotone with the quantization
parameter QP.

B. Experimental Design

Videos were shown on a 30 screen (Dell UltraSharp
3008WFP) with a native resolution of 2560 1600 pixels (see
Fig. 2). The screen was normalized according to the specifica-
tions in [3]. The video resolution was 832 480 pixels or 20.8
12 cm, which corresponds to 24 14 of visual angle. The

viewing distance was 48 cm (four times the video height) in
compliance with the specifications in [3].
Nine subjects (three females and six males in the age group

of 20–32) participated in the experiment. They were naive with
respect to the purpose of the experiment and they had not par-
ticipated in a video assessment study before. All had normal or
corrected-to-normal vision. Subjects sat in front of the screen in
a dimly lit room.
Following a visual acuity test and a general introduction to

the experiment, a pretest of 100 trials with ten different stim-
ulus levels was conducted. In each trial, the subjects first had
to fixate a central fixation point for 1 s. Subsequently, the video
was shown for a duration of 8 s. In 83% of the video sequences, a
quality change occurred in the interval of 2–6 s; in the other 17%
of sequences, no change occurred (QC0). The stimulus levels of
the experiment (QC1–QC10) are the magnitude of the quality
change (c.f. Section II-A). At the end of the video, subjects in-
dicated via a button press whether they perceived a change in
quality at any point during the video (yes/no task). Based on
the behavioral data from the pretest, four subject-specific stim-
ulus levels were chosen that targeted the slope of the psycho-
metric functions, i.e., stimulus levels around the threshold of
perception. If QCx is the stimulus level closest to the percep-
tion threshold, then QCx 2, QCx 1, QCx, QCx 1 were the

TABLE I
INDIVIDUAL STIMULUS LEVELS FOR ALL SUBJECTS. FOR THREE SUBJECTS,
STIMULUS LEVEL QC-I WAS OMITTED DUE TO TIME CONSTRAINTS

selected stimulus levels.2 In addition, the undistorted condition
without a quality change (QC0) and a maximal quality change
condition (QCmax) were included in order to have clearly per-
ceived and not perceived trials, respectively, as a reference (see
Table I).
The main experiment consisted of 600 trials (100 trials per

stimulus level that are randomly shuffled). These trials were
subdivided into eight blocks of 75 trials each. A block lasted
about 15 min followed by a few minutes break. Including cap
preparation, the experiment lasted about 4 h.

C. EEG Data

Brain activity was recorded using a 64-channel actiCAP ac-
tive electrodes setup and BrainAmp amplifiers (Brain Products,
Munich, Germany). The following electrode sites were used:
AF3-4; Fp1-2; Fz,1-10; FCz,1-8; Cz,1-8; CPz,1-8; CP,1-9;
Pz,1-10; POz,1-6; and Oz,1-2. Data were recorded at 1000 Hz
with impedance kept below 20 k . For offline analysis, data
were downsampled to 200 Hz and low-pass filtered at 40 Hz in
order to attenuate line noise. Trials in which subjects responded
before the end of the video were omitted. No artifact rejection
was performed.

D. Data Analysis

1) Behavioral Data: The psychometric function character-
izes the performance of an observer in a detection task as a func-
tion of a physical quantity, i.e., in this case, the change in video
quality. The performance is given by the detection rate, i.e., the
fraction of trials where subjects are reported to have detected
the stimulus divided by the total number of trials for the stim-
ulus level. To obtain the psychometric curve, a logistic function
was fitted to the detection rates of the stimulus levels with the
psignifit toolbox [18] using bootstrapping to determine the con-
fidence intervals of the fit.
2) Neurophysiology: Event-related potentials (ERPs) are ob-

tained by aligning EEG data from a number of trials according
to a predefined time point and averaging over trials. The time
instance of alignment was chosen to be the time instance of the
quality drop. ERP waveforms reflect only neuronal activity that
is phase locked to the stimulus because activity that is not phase
locked to the quality change averages out. Averaging also helps

2Stimulus levels with Latin numbers denote the pooled quality change levels
over subjects. Since the stimulus levels are selected individually for each sub-
ject, the pooled stimulus levels might have different physical characteristics but
are most similar perceptually.
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Fig. 3. EEG single-trial classification scheme. First, the raw EEG signal is bandpass filtered. Then, QC0 trials (where the superscript “ ” indicates the subset of
trials that were correctly labeled by the subject, i.e., correct rejections) are split into two equisized sets in an even–odd manner, as indicated by the gray-and-white
horizontal bars. One of these two sets and the QCmax trials (again, “ ” indicates correctly labeled trials, in this case hits) are used to train the LDA filter. To
this end, the - between QCmax and QC0 is used to select a discriminative interval [a] on a basis of which an LDA filter is determined [b]. Then, the sets
of quality change trials QC-I, QC-II, QC-III, and QC-IV (depicted as QCI–IV) and the second set of QC0 trials are projected to virtual channels using the LDA
filter [c]. For each QC level and for hits and misses separately, two intervals that discriminate best between quality changes and undistorted trials are selected [d].
This yields 2-D features that are finally used to classify single trials using LDA [e].

to increase the signal-to-noise ratio of the transient ERP wave-
form. Common parameters to characterize an ERP are the am-
plitude and the latency (with respect to stimulus onset) of the
peaks in the waveform.
3) LDA: The classification of EEG data in the temporal do-

main is normally done by comparing the ERP data of trials
from different stimulus levels. For each trial, features are de-
rived from each channel at different time points, which are then
used for classification. Usually, a single feature corresponds to
the voltage averaged in a certain time window for a particular
EEG channel.
For a linear classifier, the separating hyperplane is defined

by , where is the projection vector, is the
data point on the separating hyperplane, and is the bias term
(classification threshold). The classification of data point is
then given by .
Linear discriminant analysis (LDA) is a linear classifier that

aims at finding a projection that maximizes the ratio of the class
mean distance (of two ormore classes) and the within-class vari-
ances. The projection vector of LDA is defined as

where is the estimated mean of class and
is the estimated covariance matrix (the matrix of covari-

ances of all EEG channels), i.e., the average of the classwise
empirical covariance matrices .
A linear classifier trained on temporal EEG features can be

regarded as a spatial filter. Thus, the linear classifier may be
interpreted as a “backward model” to recover the signal of dis-
criminative sources. The weight vector of the classifier can
be visualized as a scalp map (c.f. Section II-D-4).

Let be the LDA projection vector and
be a matrix of EEG signals with C channels and T samples per
channel. Then

is the result of spatial filtering: each EEG channel in gets
weighted with the corresponding component of and summed
up to yield a single virtual channel. In other words, each virtual
channel is a linear combination of the original EEG channels.
For Gaussian distributions with equal covariance matrices

for both classes, LDA is the optimal classifier, i.e., the risk
of misclassification for samples drawn from the same distribu-
tions is minimized [19]. Since ERP signals are approximately
Gaussian distributed and the covariances are dominated by the
background EEG signal rather than by class-specific covaria-
tions, LDA is perfectly suitable for classifying ERP signals.
However, the stated optimality of LDA relates to known pa-

rameters , , and . For real applications, the dimension-
ality of the feature space is often high, whereas the number of
observations is comparatively low. For EEG data, the ratio be-
tween the number of observations and the number of channels is
low, which leads to a systematic misestimation of the covariance
matrix [20]. Due to that, the estimated distribution parameters,
in particular , are error prone, which render classification sub-
optimal. Accordingly, classification was done by LDA with au-
tomatic regularization of the estimated covariance matrix using
shrinkage [20], which outperforms the standard LDAwhen clas-
sifying ERPs on a single-trial level. For detailed overviews on
single-trial classification of EEG data, see [21] and [22].
4) Classification: Classification is done subjectwise in a

two-step procedure (c.f. Fig. 3). First, discriminative time inter-
vals between correctly reported QC0 trials (correct rejections,
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Fig. 4. Scalp plots depicting spatial distribution as a top view on the head, with
nose pointing upwards and crosses marking the electrode positions. Left: -
values for QCmax against QC0 for subject S1. The spatial distribution is
similar to the P3 component, suggesting that class differences are mostly due
to the P3. Right: LDA filter trained on the two classes. If the channels were
uncorrelated, the LDA filter would be proportional to the difference of the class
means. If the noise is not substantial (as it is the case for our narrowband filtered
data), the spatial distribution roughly consists of dipoles along the gradient of
the - scalp plot.

denoted as QC0 ) and correctly detected trials with highest
quality change (hits, denoted as QCmax ) are computed [see
Fig. 3(a)].
To measure class discrimination for each channel and time

point (over trials), we use the signed squared biserial correla-
tion coefficient - . The biserial correlation
coefficient is defined as

where and are the number of samples in the two classes,
is the mean over samples (EEG voltage levels in this case)

of class (stimulus levels), and is the standard deviation over
all samples. Roughly, the measures how much of the total
variance for all samples can be explained by class membership.
Since classification is done on the P3, which is a single pos-

itive component, it is sufficient and neurophysiologically rea-
sonable to choose only one time interval.3 For the channelwise
mean of this interval, the LDA projection vector is computed
[see Fig. 3(b)]. Fig. 4 shows the projection vector obtained for
one subject.
The data for the different stimulus levels are projected on

the LDA filter (see Fig. 3(c); c.f. Section II-D-3). The LDA
filter is computed on QCmax versus QC0 since we expect
the P3 component to be most prominent for this stimulus level
(this is verified in Fig. 7, top left). By projecting EEG data of
the other stimulus levels onto the LDA filter, we ensure that the
classification is done on the P3 component instead of artifacts
such as eye blinks that might also be discriminative to some
degree. Furthermore, as illustrated in Fig. 5, LDA prefiltering
reduces the variability across trials and thus enhances class
separation on a single-trial level. In addition, the dimension-
ality (i.e., the number of channels) is thereby largely reduced.
This is particularly important as LDA relies on an estimation
of the covariance matrix, which is systematically skewed if

3The VEP is not used for classification since, in this paper, its amplitude was
considerably smaller than the P3 amplitude and was of negligible class discrim-
inability.

Fig. 5. EEG data from hit trials of stimulus-level QC-IV of subject S1. First
column: Raw EEG data at channel CPz. Second column: Bandpass-filtered
EEG data at channel CPz. Third column: LDA-projected EEG data. Rows 1–3:
Single-trial data from three hit trials of subject S1. Last row: ERP and standard
deviation over all hit trials of QC-IV for subject S1. The ERP peak is similar
for all three data types, but the standard deviation is substantially reduced by
each processing step. Further, the processing clearly increases the prominence
of the P3 component in single trials. This illustrates that the filtering steps are
beneficial for the enhancement the P3 component and, therefore, classification
performance.

the ratio between the number of features and the number of
observations is high.
In the second step, the LDA-prefiltered data are classified

stimulus-levelwise (QC I–IV) against EEG data of correctly
rejected undistorted trials. Again, the - heuristic is used
to extract the most discriminative time intervals [21] [see
Fig. 3(d)]. Simulations have shown that two intervals suffice.
By searching for the most discriminative subject-specific
time intervals in the LDA-projected data, the classification
becomes invariant with respect to the exact position of the P3
component relative to the stimulus onset. The trialwise means
within the selected time intervals are the features (2-D) for the
classification with LDA [see Fig. 3(e)]. Thus, this analysis is
based on the assumption that a P3 component for lower quality
changes has a similar spatial distribution to the P3 component
of QCmax, although amplitude and latency might differ. Note
that two disjunct sets of undistorted trials from QC0, created
by alternating trials chronologically, are used for step 1 and 2.
For each subject, hits (true positives) and misses (false

negatives) of each stimulus level are cross-validated sepa-
rately against correctly reported undistorted trials (QC0 ) in
a leave-one-out fashion. Classification is only performed on
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Fig. 6. Psychometric function fits from the psychophysical data (small circles),
each function represents one subject. Horizontal lines depict the 95% confidence
intervals of the fit.

stimulus levels with sufficient numbers of hit or miss trials
. Classifying hits against QC0 serves as a proof of

concept. It shows that the features derived from EEG indeed
reflect the subject’s perception of the quality change and that
EEG-based classification on a single-trial basis is possible.
By classifying misses against QC0 trials, we investigate
whether the EEG signals of these two classes differ, although
their behavioral response is the same. A classification perfor-
mance above chance level would substantiate that EEG offers
a sensitivity that goes beyond what can be inferred from the
behavioral data.
Classification performance is measured by the AUC, the area

under the curve of the receiver operating characteristic (ROC)
[23]. The ROC curve displays the true positive rate and the false
positive rate of a 2-class problem as the discrimination criterion
is varied. It is frequently used in machine learning as a measure
of classification separability that is invariant to the number of
observations per class. The AUC value equals the probability
that a randomly chosen instance of class 1 has a higher value
than one of class 2. An AUC of 1 (or 0) thus reflects perfect
class separation, and an AUC of 0.5 reflects classification by
chance.
For classification, data are bandpass filtered with a butter-

worth filter between 0.2 and 7 Hz to attenuate the influence of
slow wave and alpha activity.

III. RESULTS

A. Behavioral Data

Fig. 6 depicts the psychometric functions fitted to the detec-
tion rate of the subjects at different stimulus levels.
The stimulus levels selected in the pretest were identical for

the majority of subjects (see Table I). In addition, the corre-
sponding psychometric functions are roughly consistent across
subjects.

B. ERPs

The ERP waveform is dominated by the P3 component that
is evident from 400–600 ms following the quality change (see
Fig. 7). Its peak is broadly distributed over the scalp with a

Fig. 7. Grand average ERP plots for the different stimulus levels. Top left:
ERP for undistorted trials and the different quality changes at channel CPz.
Top right: ERP for a selected stimulus level (QC-III) for subject S1, subdi-
vided in hits (wherein the quality change was perceived) and misses (wherein
the quality change was not perceived). Bottom: Scalp topographies for all chan-
nels. Each circle depicts a top view of the head, with the noise pointing up-
wards. Colors code the mean voltage for the time interval from 400–700 ms
after quality change. ERP plots for single subjects can be found in the supple-
mentary material.

Fig. 8. Relationship between neurophysiological and behavioral measures.
Left: Amplitude and latency of the P3 component for QCmax shows a signifi-
cant linear correlation across subjects ( , , left plot). Right:
Within subjects and across stimulus levels, amplitude and detection rate are
positively correlated ( ; right plot).

center at central–parietal electrode sites (channel CPz). For
QCmax, the P3 was present for all subjects. We found that
P3 amplitude increases with the magnitude of quality change,
which implies that it is a good index of stimulus intensity.
This is supported by the fact that there is a strong correlation
( on average) between the detection rate of the sub-
jects for the different stimulus levels and the corresponding
P3 amplitude (see Fig. 8). In other words, the average neu-
ronal response directly reflects task difficulty: If the quality
change is easy to detect, P3 amplitude is high [24], [25]. For
quality changes near the threshold of perception, the amplitude
is low. For stimulus levels below the perceptual threshold
(QC-I/QC-II), the grand average shows no P3 component.
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Fig. 9. Classification results for all subjects (S1–S8). Green bars show the classification performance (AUC value) of hits against QC0 ; red bars depict misses
against QC0 . One or two asterisks denote the significance level of the classification outcome in a Wilcoxon rank-sum test ( or , respectively).
The gray curve depicts the detection rate over stimulus levels. Note that the detection rate and the classification performance have no direct connection as the
classification is done separately on hit and miss trials.

Separate ERPs over reported and unreported quality changes
differ considerably for all subjects, even within the same stim-
ulus class (see Fig. 7, top right), which further indicates that the
P3 reflects neuronal processing of the quality change.

C. Classification

Classification results for all subjects are depicted in Fig. 9.
Single-trial classification performance of hits against undis-
torted trials is highly significant for all sub-
jects, with AUC values close to 1 for QCmax in most cases.
For lower stimulus levels, the AUC drops slightly to 0.8–0.9
for most subjects. An increase in classification accuracy with
higher stimulus levels was observable for all subjects. Since
ERP amplitude increases with the stimulus level, classifica-
tion performance is tightly coupled to ERP amplitude. Across
subjects, a comparably small ERP amplitude for QCmax also
tends to lead to lower performance (c.f. Fig. 9; subjects S4,
S5, and S9) and a high amplitude for QCmax leads to a high
performance irrespective of the stimulus level (subjects S1, S3,
and S7).
Classifying misses against undistorted trials yielded signif-

icant results for three subjects, with AUC values around 0.65.
For all other subjects, classification did not exceed chance level.

In line with the hits versus undistorted classification, there was
a clear tendency for classification performance to increase with
the stimulus level (e.g., all three statistically significant classi-
fications were measured for the highest stimulus class with a
sufficient number of misses).
However, classification performance alone is not a sufficient

measure when the objective is to detect conservative behavior,
i.e., trials that were reported as “not perceived,” although the
subject faintly did. Since the fraction of these trials within all
miss trials within a stimulus level may be small and may differ
across subjects, classification performance does not reflect how
well these trials have been detected.
An alternative approach can be motivated as follows. If a

quality change was perceived residually but not reported, this
should be reflected by a (possibly low amplitude) P3 component
in the EEG. If not, the ERP waveform should be indistinguish-
able from the undistorted trials. Thus, if the subjects answered
conservatively, a P3 component should be detectable by aver-
aging over trials that were not labeled as undistorted trials by the
classifier (“classifier hits”). Generally, the P3 itself is character-
ized by its spatial and its temporal form. However, for LDA-pre-
filtered classifier hits, the spatial distribution is roughly fixed by
the LDA filter, i.e., the classifier will only label those trials as
positive that have a P3-like spatial distribution in the classifi-
cation time interval. However, as a P3-like spatial distribution
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Fig. 10. ERPs of LDA-prefiltered data for subjects S1, S2, and S3. The blue
dotted line shows the ERP over all trials of the stimulus level, and the black
dash–dotted line shows the ERP of the QC0 undistorted trials. The green and
red lines give the ERP over the trials of the stimulus level, subdivided into
trials that are classified as hits (green) and misses (red) by the classifier. The
gray-shaded areas depict the time intervals from which classification features
are computed. Rows are the results for different classification runs. Top row:
Hits versus QC0 for QC-III. Middle row: Misses versus QC0 for QC-III.
These are the three classifications on miss trials that are statistically significant.
Bottom row: Misses versus QC0 for the lowest QC-level of the subject. Note
the different scaling of the plots.

might also arise due to random fluctuations in the EEG, the tem-
poral time course is important to tell apart a random distortion
from a true P3.
In Fig. 10, three different classification tasks were performed

corresponding to the three rows. In each column, the results of
the same three example subjects are shown. The curves corre-
spond to the ERP averages of the EEG data after it has been
projected onto a single channel using the LDA filter. For the
classification of hits against undistorted trials (top row), a clear
P3-like component is present for all three example subjects. This
component is visible for the QC-III trials, i.e., the distorted
QC-III trials that have been detected by the classifier (green
line), but it is also visible when one averages over all QC-III
trials, including those that have not been detected by the classi-
fier (blue dotted line). For QC-III trials (undetected distorted
trials) and undistorted trials, no P3 component is visible. For
misses against undistorted trials (middle row), a P3 component
with similar latency but smaller amplitude can be seen in at least
two subjects (S2 and S3). Note that this positive peak is not only
visible for trials classified as hits but also for the average over
all miss trials. For lower stimulus levels in which the classifi-
cation was not significant (bottom row), there are no apparent
differences in the average waveform between miss trials and

undistorted trials. For these cases, some trials (classifier hits)
still seem to have a P3-like shape, but as classifier misses have
a negative peak during the classification interval, this effect can
be attributed to random fluctuations within the EEG signal.

IV. DISCUSSION

A. General Pattern of Activation

A P3 component related to the quality change was detected in
all subjects. This component shows a graded response, i.e., its
amplitude scales with the magnitude of the quality distortions
for all subjects (mean correlation: ). The P3 has long
been known to vary with stimulus probability and with stimulus
intensity in both the auditory and visual modality [26]. In this
experiment, the probability of a large change as in QCmax is
low (17%) as all other quality changes are clearly more subtle,
which is reflected neuronally by a very large P3 amplitude for
QCmax compared with the other stimulus levels.
Across subjects, there is also a large variability in P3 am-

plitude (7–23 V). However, amplitude differences of the P3
between subjects have been recognized for decades and are un-
derstood to depend on a variety of psychological and biological
factors [27] rather than on different processing of the stimuli.
For stimulus levels below the perceptual threshold

(QC-I/QC-II) for which detection rates are below 0.15, we
did not find a difference between the ERPs.

B. Classification

Psychophysical experiments suffer from lapses of subjects, in
which clearly perceivable stimuli are not reported (e.g., due to
inattentiveness or a wrong button press) or stimuli far below the
perceptual threshold are reported as perceived. For fitting a psy-
chometric function to the behavioral data, methods have been
developed to deal with these lapses [28]. However, in a yes/no
task, methods purely based on the behavioral data cannot detect
conservative response behavior, i.e., trials in which subjects re-
ported to have seen no change in quality although they faintly
did. We showed that the EEG classification has the potential to
detect these “mislabeled” trials. For those cases where the clas-
sification is significant, the ERP of miss trials classified as hits
shows a P3-like temporal (see Fig. 10) and spatial topography
(positive peak centered over central–parietal areas, unpublished
data), indicating that the classification is also reasonable neuro-
physiologically. That is, we can assume that the subject either
consciously perceived the change or that the brain processed it
to some degree without conscious awareness.
In some cases, single QC0 trials were classified as hits. This

is possibly due to random fluctuations in the EEG that have a
similar spatial distribution as the P3 component. Although these
events are rare, these fluctuations impede an error-free classifi-
cation, and further investigations have to be made on how to
reduce their influence. Overall, for subjects with high P3 ampli-
tude, the classification tends to be better and more stable over
stimulus levels. The reason is that, on single-trial level, low-am-
plitude P3 components are hard to detect since the background
EEG noise is high, particularly in the low frequency range from
which the P3 originates.4 Subjects with high P3 amplitude are

4The power spectrum of EEG background noise has approximately a
distribution.
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thus less prone to random fluctuations in the EEG and there-
fore more suited for our approach than subjects with low P3
amplitude.
Subjects did not have to press the button instantly when they

perceived a quality change since this would lead to neuronal
motor activity that might interfere with classification. As a
result, we cannot determine whether subjects perceived the
quality distortion immediately or with a time lag. In particular,
for stimuli around the perceptual threshold, subjects might
not notice the change exactly at its onset. In the ERP wave-
form, lower amplitude and slower decay can be observed for
more subtle quality changes (see Fig. 7), which seems at least
partially to be due to a temporal jitter of the P3 component. Al-
though LDA prefiltering is spatial and therefore time invariant,
the discriminative intervals for classification are selected using
all trials in the training set. If the P3 components of these all
have similar latency, this will lead to a peak at this latency for
the - discrimination function. If the latency is variable,
this discriminative peak will be smoothed out, and an interval
will be chosen that may not be optimal for all trials.
EEG data are highly noisy, nonstationary, and easily affected

by psychological factors such as attentiveness, motivation, or
fatigue. As a result, EEG varies considerably over the time
course of an experiment, and methods that make the signals
more robust against such fluctuations are important for a good
single-trial classification performance. For instance, adaptive
LDA classifiers [29] and stationary subspace analysis (SSA)
[30] are two methods that enhance single-trial classification
in BCIs [31], [32]. Future work has to examine to what ex-
tent these and other methods prove useful in video quality
experiments.

C. Toward Neurotechnology in Video Quality Assessment

A full assessment of the human perception of video quality
is beyond the reach of conventional experimental methods.
The purpose of this paper is to pave the way for a neurotech-
nology-based approach to video quality assessment by giving
a proof-of-concept. While we do not present a full-fleshed
solution for objective, robust, and reliable assessment of video
quality perception, we believe that our method shows that
neurotechnology can be a useful complement to, and an exten-
sion of, established behavioral methods. To substantiate this,
it seems feasible to enumerate its potential merits in quality
assessment.
• Overt response. The direct monitoring of brain activity re-
leases one from the necessity to record overt responses
such as button presses. Overt responses not only interrupt
the experimental flow but they can also interfere with the
subject’s evaluation of a stimulus.

• Real-time monitoring. Brain activity can be monitored and
processed in real time, potentially giving an impression of
the user’s assessment of video material while it is being
viewed.

• Objectivity. Behavioral methods often suffer from re-
sponse bias, i.e., some subjects are more inclined than
others to give a particular response or rating. Tapping
the brain response directly promises a more objective
account on the perception and assessment of a stimulus
than behavioral methods.

• Sensitivity. EEG is sensitive to stimuli that are at or even
below the threshold of conscious perception. In this paper,
we have some indications for that from subject S6 (see
Fig. 9), who showed a brain response to low-distortion
stimuli, although he did not report perceiving them. More
robust evidence stems from a recent study on visual flicker,
which, by using machine learning, showed that the brain
can respond to flicker even when it is not reported by the
subject [33].

D. Caveats

Before an out-of-the-box solution to video quality assessment
is in reach, several more hurdles have to be overcome. This
paper is limited in the following respects.
First, the coding artifacts arising in our stimulus video do not

cover the full range of possible artifacts, and those artifacts ap-
pear in a sudden change of quality. Thus, the quality characteris-
tics of the used stimuli are similar to the quality deviation in the
special case of packet loss in fidelity-scalable video coding [34].
For a full assessment, several experiments have to be conducted
to examine the different types of codec artifacts and typical ar-
tifact combinations.
Second, the EEG approach yielded significant results only

with a subset of subjects. In particular, our approach at present
requires a sufficiently large P3 amplitude of the subject. At
present, two routes are possible to remedy this limitation. One
route is to increase the sensitivity and robustness of EEG using
advanced signal processing methods such as those mentioned
earlier. Another route is to have a method to quickly identify
the subjects that are suitable for an EEG-based approach. Such
screening methods have already been explored in the context
of BCIs [35], [36]. In the present context, one might envisage
a short measurement using a classical oddball paradigm, based
on which the P3 amplitude can be estimated. P3 amplitude
could serve as a good predictor of classification performance
due to its strong correlation.
Third, it seems that the extra preparation time required by an

EEG setup ( 1/2 h) may counteract the benefits of EEG mea-
surements. However, a new generation of EEG caps using dry
electrodes [37], [38] eliminates the time-expensive preparation
of the EEG cap. This could substantially increase the practical
applicability of our approach in quality assessment experiments.
Fourth, the present proof-of-concept study used artificially

generated movie clips featuring a homogeneous 10-s video
stream. Thus, one might wonder how this approach would
work for real videos, particularly given the regular occurrence
of scene changes, which could be perceived as unexpected
changes and might thus trigger themselves a P3 component.
In this respect, it is important to note that scene changes may
be considered not an interfering nuisance, rather they could
serve as a kind of calibration normal for each subject under
study: Scene changes (which could be automatically detected
from the video stream) define instances where the individual
spatiotemporal profile of the P3 voltage maps can be obtained,
against which the P3 triggered by artificially inserted quality
changes can be compared. Thereby, one could obtain a natural
metric for characterizing the extent of quality-change-related
EEG data across subjects.
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V. CONCLUSION

We proposed a novel approach based on neural correlates
from EEG. This approach holds the promise to provide a less
biased and more objective account of quality perception than
obtained with behavioral methods.
Clearly, the method presented here needs further improve-

ment, but we conjecture that it can be a valuable complement
in psychophysical experiments wherein the number of trials is
limited by relabeling mislabeled trials. Furthermore, since its
focus is the perception of quality change, not quality perception
per se, it forms only the first step of a neurotechnology-based
approach to video quality assessment. Future work will aim to-
ward a direct measure of quality perception using tonic EEG
features such as oscillatory components (e.g., alpha rhythm). A
direct neural index would allow for the real-time assessment of
perceived image quality during the observations of videos, and
it would relinquish the need for an overt response by the subject.
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