
I
n many problems encountered in signal processing, it is possible to accurately describe the underlying
statistical model using probability distributions. Statistical inference can then theoretically be performed
based on the relevant likelihood function or posterior distribution in a Bayesian framework. However,
most problems encountered in applied research require non-Gaussian and/or nonlinear models to cor-
rectly account for the observed data. In these cases, it is typically impossible to obtain the required statis-

tical estimates of interest [e.g., maximum likelihood (ML) or conditional expectation] in closed form as it
requires integration and/or maximization of complex multidimensional functions. A standard approach con-
sists of making model simplifications or crude analytic approximations to obtain algorithms that can be easily
implemented. With the recent availability of high-powered computers, numerical-simulation-based
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approaches can now be considered and the full complexity of
real problems can be addressed.

These integration and/or optimization problems can be tack-
led using analytic approximation techniques or deterministic
numerical integration/optimization methods. These classical
methods are often not sufficiently precise or robust, or they are
too complex to implement. Monte Carlo algorithms are an
attractive alternative. These
algorithms are remarkably flexi-
ble and extremely powerful. The
basic idea is to draw a large
number of samples distributed
according to some probability
distribution(s) of interest so as to obtain consistent simulation-
based estimates. These methods first became popular in physics
[39] before literally revolutionizing applied statistics and related
fields such as bioinformatics and econometrics in the 1990s [8],
[27], [36], [44].

Despite their ability to allow statistical inference to be per-
formed for highly complex models, these flexible and powerful
methods are not yet well known in signal processing. This tuto-
rial attempts to provide a simple yet complete review of these
methods in a signal processing context. We describe generic
Monte Carlo methods that can be used to perform statistical
inference in both batch and sequential contexts and demon-
strate their efficiency on some complex nonlinear, non-Gaussian
signal processing problems.

MOTIVATION

MODEL-BASED SIGNAL PROCESSING
In statistical signal processing, many problems can be formulat-
ed as follows. One is interested in obtaining an estimate of an
unobserved random variable X taking values in X given the
realization of some statistically related observations Y = y. In a
model-based context, one has access to the likelihood function
giving the probability or probability density function (pdf)
p(y |x) of Y = y, given X = x. In this case, a standard point
estimate of X is given by the ML estimate

xML = arg max
x∈X

p(y |x) .

For simple models, it is possible to compute p(y |x) in closed
form, and the maximization of the pdf can be performed easily.
However, when the model includes latent variables, or some
non-Gaussian and/or nonlinear elements, it is often impossible
to compute the likelihood in closed form. It is also difficult to
maximize it as it is a multimodal and potentially high-dimen-
sional function. This severely limits the applications of ML
approaches for complex models.

The problem appears even more clearly when one is interested
in performing Bayesian inference [7], [43]. In this context, one
sets a prior distribution on X, say p(x), and all (Bayesian) infer-
ence relies on the posterior distribution given by Bayes’ theorem

p(x|y) = p(y |x) p(x)
p(y)

,

where ∫
p(y |x) p(x) dx = p(y).

For example, the minimum
mean-square error (MMSE)
estimate of X given Y = y is
defined by

xMMSE =
∫

xp(x|y) dx.

To compute this estimate, it is necessary to compute two inte-
grals. It is only feasible to perform these calculations analytically
for simple statistical models.

EXAMPLES
To illustrate these problems, we will discuss a few standard sig-
nal processing applications. For the sake of simplicity, we do not
distinguish random variables and their realizations from now
on. We will use the notation zi: j = (

zi, zi+1, . . . , zj
)T for any

sequence {zn}.

BLIND EQUALIZATION
Consider a stream of independent binary symbols b2−L:T

(bk = ±1) going through a finite impulse response channel
h = (h0, . . . , hL−1)

T and observed in a Gaussian noise of vari-
ance σ 2; i.e.,

yn =
L−1∑
k=0

hkbn−k + vk = hTbn−L+1:n + vn, (1)

where vk ∼i.i.d.N (0, σ 2). Given a set of observations y1:T, we are
interested in estimating the sequence of unknown bits b2−L:T.
When h and σ 2 are known, the likelihood function
p(y1:T | b2−L:T, h, σ 2) is given by

p(y1:T|b2−L:T, h, σ 2) ∝ exp

(
− 1

2σ 2

T∑
n=1

(yn − hTbn−L+1:n)
2

)
.

It is well known that it is possible in this case to maximize the
likelihood p(y1:T | b2−L:T, h, σ 2) with respect to b2−L:T using
the Viterbi algorithm. When the parameters (h, σ 2) are
unknown, it is not recommended to estimate (b2−L:T, h, σ 2)

by maximizing their joint likelihood to obtain the joint maxi-
mum likelihood (JML) estimate (b2−L:T,JML, hJML, σ 2

JML)

because, even if T → ∞, it is well known that (hJML, σ 2
JML) do

THESE ALGORITHMS ARE REMARKABLY
FLEXIBLE AND EXTREMELY POWERFUL.



not converge towards their true values. A standard strategy
involves estimating the parameters (h, σ 2) by maximizing the
marginal likelihood

p(y1:T | h, σ 2) =
∑

b2−L:T

p(y1:T | b2−L:T, h, σ 2 t).

This sum can be computed exactly with an algorithm of
computational complexity linear with T using the forward-
backward formula [42]. Indeed, this problem can be refor-
mulated as a standard hidden Markov model (HMM). To
perform the maximization of the marginal likelihood, one
typically relies on the expectation-maximization (EM) algo-
rithm. The EM algorithm is a deterministic, gradient-type
algorithm that typically converges towards a stationary point
of the likelihood. Once the parameter estimates of (h, σ 2),
say (hML, σ

2
ML), are obtained, b2−L:T is estimated by maxi-

mizing p(y1:T | b2−L:T, hML, σ
2
ML) using the Viterbi algo-

rithm. As a byproduct of the forward-backward formula, we
also obtain the marginal probabilities p(bk|y1:T, hML, σ

2
ML).

In the context of blind equalization, the EM algorithm was
first presented in [35].

Let us now consider an alternative Bayesian approach to
this problem. First, assume the parameters (h, σ 2) are known
and assume the symbols are independent identically distrib-
uted (i.i.d.) with p(bk = ±1) = 1

2 . Maximizing the posterior
distribution

p(b2−L:T |y1:T, h, σ 2) = p(y1:T |b2−L:T, h, σ 2)p(b2−L:T)

p(y1:T)

is obviously equivalent to maximizing the likelihood
p(y1:T| b2−L:T, h, σ 2). Now, in the case where the parameters
(h, σ 2) are unknown, we consider a full Bayesian approach
where (h, σ 2) are considered random and distributed according
to the following prior distribution

p(h, σ 2) = p(h|σ 2)p(σ 2),

where

h
∣∣ σ 2 ∼ N (0, σ 2δ2 IL), σ 2 ∼ IG

(γ0

2
,
υ0

2

)
. (2)

Here N denotes the Gaussian distribution and IG denotes the
inverse-Gamma distribution. If the parameters are such that
δ2 � 1, γ0 � 1, υ0 � 1, then this prior distribution is vague
(i.e., noninformative). It admits a conjugate form [7], [43], i.e.,
both p(h, σ 2) and p(h, σ 2| y1:T, b2−L:T) are of the same func-
tional normal-inverse Gamma form. In this case, it can be easi-
ly shown that

p(b2−L:T |y1:T) =
∫

p(b2−L:T, h, σ 2|y1:T)dhdσ 2

=
∫

p(b2−L:T|y1:T, h, σ 2)p(h, σ 2)dhdσ 2

∝
(
υ0 + y1:TyT

1:T − m(b2−L:T)

× �−1(b2−L:T)mT(b2−L:T)
)−

( T+γ0
2

)
,

(3)

where

�−1(b2−L:T) =
T∑

n=1

bn−L+1:nbT
n−L+1:n + δ−2 IL,

m(b2−L:T) = �

(
T∑

n=1

ynbn−L+1:n

)
. (4)

This discrete probability distribution cannot typically be com-
puted exactly as there are 2T+L−1 potential sequences.
Practically, it is necessary to perform some approximations.

In this case, we see that the ML approach requires solving a
global optimization problem to maximize the marginal likeli-
hood, whereas the Bayesian approach to compute/maximize
exactly p(b2−L:T | y1:T) or p(bk | y1:T) requires computing an
exponential sum of terms. It is possible to come up with sensible
deterministic algorithms to approximately perform these maxi-
mizations/integrations because this statistical model is still rela-
tively simple. However, these strategies can be very sensitive to
initialization. Moreover, as soon as the models become more
complex, they are typically not applicable.

DECONVOLUTION OF IMPULSIVE SEQUENCES
Let us consider a very similar model where the observations are
also given by (1). However, in this case, b2−L:T is not a sequence
of binary symbols anymore but is such that

bk ∼i.i.d.λN
(

0, σ 2
b

)
+ (1 − λ) δ0;

i.e., with probability 1 − λ, one has bk = 0 and otherwise it is
distributed according to N (0, σ 2

b ). This model has numerous
applications in geophysics and nuclear science [38]. This simple
modification of the nature of bk makes the problem much more
difficult. In most applications, we are interested in determining
whether an impulse occurred at time k; i.e., if bk ∼ N (0, σ 2

b ) or
bk = 0. To achieve this, we introduce the set of i.i.d. latent vari-
ables i2−L:T such that ik takes two arbitrary values, say {0, 1},
Pr(ik = 1) = 1 − Pr(ik = 0) = λ and

bk
∣∣ ik = 0 ∼ δ0, bk

∣∣ ik = 1 ∼ N
(

0, σ 2
b

)
. (5)

Assuming the parameters θ = (h, σ 2, λ, σ 2
b ) are known, it is

possible to integrate out analytically the variables b2−L:T to
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compute p(i2−L:T | y1:T, h, σ 2, λ, σ 2
b ) pointwise up to a normal-

izing constant

p(i2−L:T | y1:T, θ) ∝ p(i2−L:T | θ) p(y1:T |i2−L:T, θ),

where

p(y1:T | i2−L:T, θ) =
∫

p(y1:T | b2−L:T, i2−L:T, θ)

× p(b2−L:T | i2−L:T, θ) p(i2−L:T |θ)db2−L:T.

However, this discrete posterior distribution takes 2T+L−1 val-
ues, and some approximations are necessary to approximate/
maximize it. If the parameter θ is unknown, the problem
becomes even more complex. The likelihood function

p( y1:T | θ) =
∑
i2−L:T

p(y1:T | i2−L:T, θ)

cannot be computed pointwise because it involves the sum of
2T+L−1 � 1 terms. There is no simple EM algorithm that can be
implemented in this framework, unlike in the previous example.

One can adopt a full Bayesian approach by setting a conju-
gate prior distribution on θ ,

p
(

h, σ 2, λ, σ 2
b

)
= p(h |σ 2) p(σ 2)p(λ)p

(
σ 2

b

)
,

where

h
∣∣ σ 2 ∼ N (0, σ 2δ2 IL), σ 2 ∼ IG

(γ0

2
,
υ0

2

)
,

σ 2
b ∼ IG

(γb

2
,
υb

2

)
, λ ∼ B (ζ, τ ) . (6)

Here B denotes the Beta distribution. This prior is vague for
δ2 � 1, γ0, υ0, γb, υb � 1 and ζ = τ = 1. It is possible to
compute p(i2−L:T, b2−L:T, θ |y1:T) and p(i2−L:T, θ |y1:T) up to a
normalizing constant, but their normalizing constants are
untractable. For example, the distribution p(i2−L:T |y1:T, θ)

takes 2T+L−1 values, and some approximations are also neces-
sary to approximate/maximize it. If we are interested in com-
puting some estimates of the parameter θ , say its MMSE
estimate, the marginal posterior distribution of the parameters
p(θ |y1:T) does not admit a closed-form expression given that
the likelihood requires computing the sum of 2T+L−1 terms.

SPECTRAL ANALYSIS
Consider the problem of estimating some sinusoids in noise.
Let y1:T be an observed vector of T real data samples. The ele-
ments of y1:T may be represented by different models Mk

corresponding either to samples of noise only (k = 0) or to
the superposition of k (k ≥ 1) sinusoids corrupted by noise;
more precisely,

M0 : yn = vn,k k = 0

Mk : yn =
k∑

j=1

(acj,k cos[ω j,kn] + asj,k sin[ω j,kn])

+ vn,k k ≥ 1

where ω j1,k �= ω j2,k for j1 �= j2 and acj,k , asj,k , ω j,k are, respec-
tively, the amplitudes and the radial frequency of the jth sinu-
soid for the model with k sinusoids. The noise sequence v1:T,k is
assumed zero-mean white Gaussian of variance σ 2

k . In vector-
matrix form, we have

y1:T = D (ωk) ak + vk,1:T,

where ak = (ac1,k, as1,k, . . . , ack,k, ask,k)
T and ωk = (ω1,k, . . . ,

ωk,k)
T. The T × 2k matrix D (ωk) is defined as

[D (ωk)]i,2 j−1 = cos[ω j,ki], (i = 1, . . . , T, j = 1, . . . , k)

[D (ωk)]i,2 j = sin[ω j,ki], (i = 1, . . . , T, j = 1, . . . , k).

Here we assume that the number k of sinusoids and their
parameters (ak, ωk, σ

2
k ) are unknown. Given y1:T, our objective

is to estimate (k, ak, ωk, σ
2
k ). It is standard in signal processing

to perform parameter estimation and model selection using a
(penalized) ML approach. First, an approximate ML estimate of
the parameters is found; we emphasize that, unfortunately, the
likelihood is highly nonlinear in its parameters ωk and admits
typically severe local maxima. Model selection is then performed
by maximizing an information criterion (IC) such as Akaike IC
(AIC), Bayes IC (BIC), or minimum description length (MDL).
Note that when the number of observations is small, these crite-
ria can perform poorly. We follow here a Bayesian approach; see
[1] for a motivation of this model. One has

ak| σ 2
k ∼ N

(
0, σ 2

k δ2(DT (ωk) D (ωk))
−1

)
,

σ 2
k ∼ IG

(υ0

2
,
γ0

2

)
(7)

and the frequencies ωk are independent and uniformly dis-
tributed over (0, π). Finally, we assume that the prior distri-
bution p(k) is a truncated Poisson distribution of intensity �,
where kmax � �(N − 1)/2�. (This constraint is added because
otherwise the columns of D(ωk) would be linearly depend-
ent.) The terms δ2 and � can be respectively interpreted as
an expected signal-to-noise ratio (SNR) and the expected
number of sinusoids.

In this case, it can easily be established that the marginal
posterior distribution of the frequencies ωk is proportional on
� = {0, 1, . . . , kmax} × (0, π)k to



p(ωk, k |y1:T) ∝
(
γ0 + yT

1:TPky1:T

)− T+υ0
2

(�/(δ2 + 1)π))k

k!
, (8)

where

M−1
k = (1 + δ−2)DT (ωk) D (ωk) ,

mk = MkDT (ωk) y1:T,

Pk = IT − D (ωk) MkDT (ωk) .

This posterior distribution is highly nonlinear in the parameters
ωk. Moreover, one cannot compute explicitly its normalizing
constant p(y1:T |k), so it is impossible to compute the Bayes fac-
tors to perform model selection. Standard numerical integration
techniques could be used, but they are typically inefficient when
the dimension of the space of interest is high.

OPTIMAL FILTERING IN STATE-SPACE MODELS
Consider an unobserved Markov process {xn}n≥1 of initial
density µ and transition density xn| xn−1 ∼ f( ·| xn−1). The
observations {yn}n≥1 are conditionally independent given
{xn}n≥1 of marginal density yn| xn ∼ g( ·| xn). This class of
models is extremely wide. For example, it includes

xn = ϕ(xn−1, vn), yn = � (xn, wn) ,

where ϕ and � are two nonlinear deterministic mappings and
{vn}n≥2 and {wn}n≥2 are two independent and mutually inde-
pendent sequences.

All inference on x1:n based on y1:n is founded on the posteri-
or distribution

p( x1:n| y1:n) = p( y1:n| x1:n) p(x1:n)∫
p( y1:n| x1:n) p(x1:n) dx1:n

,

where

p(x1:n) =p(x1)

n∏
k=2

f(xk |xk−1),

p( y1:n| x1:n) =
n∏

k=1

g( yk| xk) .

This posterior distribution satisfies the following recursion:

p(x1:n |y1:n) = f(xn |xn−1)g(yn |xn)

p(yn |y1:n−1)
p(x1:n−1 |y1:n−1).

Unfortunately, except in the case where {xn}n≥1 takes values in
a finite state-space (HMM techniques) or where the model is lin-
ear Gaussian (Kalman filtering techniques), it is impossible to

come up with a closed-form expression for this sequence of pos-
terior distributions. Many suboptimal methods have been pro-
posed to approximate this sequence; e.g., extended Kalman filter
and Gaussian sum approximations. However, these methods
tend to be unreliable as soon as the model includes strong non-
linear and/or non-Gaussian models. Deterministic numerical
integration techniques have been proposed, but they are com-
plex to implement, inflexible, and realistically can only be
applied to models where {xn}n≥1 takes values in R or R2.
(Note that all problems described above require computing
and/or maximizing high-dimensional probability distributions.
It is possible to come up with deterministic techniques to
approximate these distributions. However, as soon as the prob-
lems get very complex, the performance of these methods typi-
cally deteriorates quickly. In this tutorial, we advocate that
Monte Carlo methods are a powerful set of techniques that can
provide satisfactory answers to all these problems.)

BASICS OF MONTE CARLO METHODS

GENERIC PROBLEMS
Let us consider the pdf π(x) where x ∈ X . We will assume
from now on that π(x) is known pointwise up to a normalizing
constant, i.e.,

π (x) = Z−1π̃ (x) ,

where ̃π(x) is known pointwise but the normalizing constant

Z =
∫
X

π̃ (x) dx

is unknown. Note that this assumption is satisfied in all the
examples discussed in the previous section if x corresponds to
all the unknown variables/parameters.

In most applications of interest, the space X is typically high
dimensional; say X = R1000 or X = {0, 1}1000 . We are inter-
ested in the following generic problems.

■ Computing integrals. For any test function ϕ : X →R, we
want to compute

Eπ (ϕ) =
∫
X

ϕ (x) π (x) dx. (9)

■ Marginal distributions. Assume x = (x1, x2) ∈ X1 × X2.
Then we want to compute the marginal distribution

π (x1) =
∫
X2

π (x1, x2) dx2. (10)

■ Optimization. Given π(x), we are interested in finding

arg max
x∈X

π (x) = arg max
x∈X

π̃ (x) . (11)
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■ Integration/Optimization. Given the marginal distribution
(10), we want to compute

arg max
x1∈X1

π (x1) = arg max
x1∈X1

π̃ (x1) . (12)

MONTE CARLO METHODS
Assume it is possible to obtain a large number of N independent
random samples {x(i)} (i = 1, . . . , N) distributed according to
π . The Monte Carlo method approximates π by the following
point-mass measure:

π̂ (x) = 1
N

N∑
i=1

δ
(

x − x(i)
)
. (13)

It follows that an estimate of (9) is given by

Êπ (ϕ) =
∫
X

ϕ (x) π̂ (x) dx = 1
N

N∑
i=1

ϕ
(

x(i)
)

. (14)

Marginal distributions can also be estimated in a straightforward
manner as

π̂ (x1) =
∫
X2

π̂ (x1, x2) dx2

=
∫
X2

1
N

N∑
i=1

δ
(

x1 − x(i)
1 , x2 − x(i)

2

)
dx2

= 1
N

N∑
i=1

δ
(

x1 − x(i)
1

)
. (15)

Since the samples {x(i)} are distributed according to π , a signifi-
cant proportion of them will be in the vicinity of the mode.
Thus, a reasonable estimate of (11) is

arg max
{x(i)}

π̃
(

x(i)
)

. (16)

Optimizing marginal distribution is more difficult; one cannot
use arg max{x(i)

1 } π(x(i)
1 ) since the marginal distribution cannot

be computed even up to a normalizing constant. In the scenario
where π(x1|x2) is known analytically, an alternative to (15) is

π̂ (x1) =
∫
X2

π ( x1| x2) π̂ (x2) dx2

=
∫
X2

π ( x1| x2)

(
1
N

N∑
i=1

δ
(

x2 − x(i)
2

))
dx2

= 1
N

N∑
i=1

π
(

x1| x(i)
2

)
. (17)

It is then possible to estimate (12) by arg max{x(i)
1 } π̂(x(i)

1 ).
Note that the computational complexity of this algorithm is

unfortunately very expensive since evaluating (17) pointwise
involves N � 1 terms. Alternative techniques will be dis-
cussed later.

A natural question to ask is why the Monte Carlo method is
attractive. The typical answer is that, if one considers (14), this
estimate has good properties; i.e., it is clearly unbiased and one
can easily show that its variance satisfies

var{Êπ (ϕ)} =
∫

ϕ2 (x) π (x) dx − E2
π (ϕ)

N
. (18)

The truly remarkable property of this estimate is that the
rate of convergence to zero of its variance is independent of
the space X (i.e., it can be R or R10,000 ), whereas all deter-
ministic integration methods have a rate of convergence of
the approximation error that decreases severely as the
dimension of the space increases. Note, however, that this
does not imply that Monte Carlo methods will always out-
perform deterministic methods, as the numerator of (18)
can be huge. However, Monte Carlo methods  tend to be
much more flexible and powerful.

Nevertheless, these methods rely on the assumption that we
are able to simulate samples {x(i)} from π . The next question to
address is how we obtain such samples.

CLASSICAL MONTE CARLO METHODS
We will only briefly discuss the topic of classical Monte Carlo
methods. It is possible to generate samples from most stan-
dard distributions (e.g.,  uniform, Gaussian, Gamma,
Poisson, etc.) using standard techniques. Most of these tech-
niques are based on the inverse cumulative distribution
function (cdf) transform and the acceptance-rejection
method; see [17] for a thorough treatment of the subject.
Note that the inverse cdf method is only applicable to simple
probability distributions that are known exactly rather than
only up to a normalizing constant. The acceptance-rejection
method does not require knowledge of the normalizing con-
stant. However, as discussed below, it is inefficient for high-
dimensional distributions.

ACCEPTANCE-REJECTION METHOD
We are interested in sampling from π(x) ∝ π̃(x). Assume we
are able to sample from another pdf q(x) ∝ q̃(x) such that
π̃(x) ≤ C̃q(x) for any x ∈ X . Then the following procedure
allows us to sample from π .

ACCEPTANCE-REJECTION SAMPLING
1) Sample a candidate x∗ ∼ q (·) .

2) Sample u ∼ U [0, 1] (uniform distribution on [0, 1]).
3) If u ≤ (̃π(x∗))/(C̃q(x∗)), then return x∗; otherwise go 
back to step 1.

The accepted candidate x∗ is distributed according to π .
Indeed, one has



Pr(x∗ ≤ x, x∗accepted) =
∫

u≤x

π̃ (u)

C̃q (u)
q (u) du

= C−1∫
X q̃ (u) du

∫
u≤x

π̃ (u) du

Pr(x∗ accepted) =
∫
X

π̃ (u)

C̃q (u)
q (u) du

= C−1

∫
X π̃ (u) du∫
X q̃ (u) du

.

Thus

Pr(x∗ ≤ x |x∗accepted) = Pr(x∗ ≤ x, x∗accepted)

Pr(x∗accepted)

=
∫

u≤x π̃ (u) du∫
X π̃ (u) du

=
∫

u≤x
π (u) du;

i.e., if x∗ is accepted, then it is distributed according to π .
Example: Assume we are interested in sampling from the

posterior distribution p(x|y) ∝ p(x)p(y|x). If it is easy to sam-
ple from the prior distribution p(x) (whose normalizing con-
stant p(y) is typically known) and, if the likelihood is upper
bounded over X , i.e., say p(y|x) < M, then it is possible to use
the acceptance-rejection algorithm. Just set π(x) = p(x|y),
π̃(x) = p(x)p(y|x) , q(x) = q̃(x) = p(x) , and π̃(x) ≤ Mq̃(x) ,
i.e., C = M. Note that this method requires being able to find an
upper bound on the likelihood, which can be very difficult.

There are two problems with this approach.
■ It can be difficult to find a pdf q (·) that is easy to sample
such that ̃π (x) ≤ C̃q (x) for any x ∈ X .
■ The acceptance probability of the candidate is typically
extremely small if X is a high-dimensional space.

IMPORTANCE SAMPLING
A simple alternative to the acceptance-rejection method is
importance sampling. In this framework, one also introduces a
probability distribution q (x) ∝ q̃ (x) to sample candidates; this
probability distribution is called importance distribution.
However, instead of accepting the candidates with a given proba-
bility, all the candidates are accepted but are weighted to correct
for the discrepancy between q (·) and π (·).

Indeed, assuming that π (x) > 0 ⇒ q (x) > 0, then the fol-
lowing identities hold trivially

π (x) = w (x) q (x) (19)

= w (x) q (x)∫
w (u) q (u) du

, (20)

where w (·) is the so-called importance weight given by

w (x) = π (x)
q (x)

. (21)

This suggests that if N samples {x(i)} from q(·) are available,
then an approximation of this distribution is given by

q̂ (x) = 1
N

N∑
i=1

δ
(

x − x(i )
)

. (22)

Plugging this approximation into (19), we obtain

π̂ (x) = 1
N

N∑
i=1

w
(

x(i)
)

δ
(

x − x(i )
)

. (23)

Plugging it in (20), we obtain the alternative estimate

π̂ (x) =
N∑

i=1

w(i)δ
(

x − x(i )
)

, (24)

where the normalized importance weights are given by

w(i ) = w
(
x(i ))∑N

j=1 w
(
x( j)

) . (25)

It now follows clearly that if we are interested in Eπ (ϕ), then
two possible estimates are available. If we use (23), then

Êπ (ϕ) = 1
N

N∑
i=1

w
(

x(i )
)

ϕ
(

x(i )
)

, (26)

and if we use (24), then

Êπ (ϕ) =
N∑

i=1

w(i )ϕ
(

x(i )
)

. (27)

One can check that the estimate (26) is unbiased and con-
verges asymptotically (N → ∞) towards the true value.
Unfortunately, it cannot be used in most applications as comput-
ing {w(x(i))} requires knowing the normalizing constant of π
(and q) and this normalizing constant is unknown. In this case, it
is possible to use (27) since computing {w(i)} does not require
knowledge of this normalizing constant. The estimate (27) is
biased. However, this bias is of the order O (1/N) and this esti-
mate is also asymptotically consistent; see [25] or [44] for a
detailed introduction to importance sampling and its properties.

Example: Assume we are interested in approximating the
posterior distribution p( x | y) ∝ p(x) p( y | x). Typically, the
normalizing constant p(y) is unknown, but it is easy to sample
from the prior distribution p(x). With the notation given
above, this corresponds to π (x) = p( x | y) and q (x) = p(x).
As the normalizing constant of p( x | y) is typically unknown,
one cannot use the importance sampling estimates (23) and
(26), but rather only (24) and (27). Given N samples from p(x),
one obtains
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p̂( x | y) =
N∑

i=1

w(i )δ
(

x − x(i )
)

,

Êp( x |y) (ϕ) =
N∑

i=1

w(i )ϕ
(

x(i )
)

,

where

w(i ) = p
(

x(i )
∣∣ y

)
/p

(
x(i ))∑N

j=1 p
(

x( j)
∣∣ y

)
/p

(
x( j)

) = p
(

y| x(i ))∑N
j=1 p

(
y| x( j)

) .

This method is very simple to implement.
At first glance, it seems that the importance sampling

method does not suffer from the problems of acceptance
rejection. However, in practice, one can only expect to obtain
estimates with a reasonable variance if the unnormalized
weights (21) are upper bounded, i.e., w (x) ≤ C for all x ∈ X .
A similar condition exists for acceptance rejection. Moreover,
even if this condition is satisfied, the method is typically inef-
ficient if the dimension of X is large. Thus, it is necessary to
develop alternative methods.

MARKOV CHAIN MONTE CARLO METHODS

BASIC IDEA
Markov chain Monte Carlo (MCMC) methods have been intro-
duced in physics in the 1950s by Metropolis et al. [39]. The key
idea they introduced is to sample from the target distribution of
interest π (x) using a Markov chain. More precisely, let us con-
sider an X -valued Markov chain {x(n)}n≥1 of initial distribution
µ1 and transition kernel K ( ·| ·), i.e.,

x(1) ∼ µ1, x(n)
∣∣∣ x(n−1) ∼ K

(
·| x(n−1)

)
for n ≥ 2.

Let us denote µn, the marginal distribution of xn given by

µn

(
x(n)

)
=

∫
µ1

(
x(1)

) n∏
k=2

K
(

x(k)
∣∣∣ x(k−1)

)
dx(1:n−1).

Under regularity conditions on the transition kernel, the
sequence of probability distribution {µn} converges towards a
limiting distribution denoted by π .

Example: Consider the real-valued Markov chain defined by
x(1) ∼ µ1 and

x(n) = αx(n−1) + v(n),

where |α| < 1 and v(n) ∼ N (0, σ 2) . In this case,
K(x(n)|x(n−1)) = N (x(n);αx(n−1), σ 2) is a Gaussian distribution
of argument x(n), mean αx(n−1), and variance σ 2. Let us introduce

ν (x) = N (x; 0, (σ 2)/(1 − α2)). It can be shown easily that if
x ∼ ν, then x ′∣∣ x ∼ K ( ·| x) is such that x ′ ∼ ν as well, i.e.,

ν(x ′) =
∫

ν (x) K(x ′|x)dx.

This means that ν is a so-called invariant distribution. It can
be further proved that µn → π = v. What are the practical
consequences of this fact? Assume we are interested in obtain-
ing random samples distributed according to π . Then it is pos-
sible to sample a realization of the Markov chain of transition
kernel K. Then, whatever being the initialization µ1, one will
have µn → π , i.e., for n large enough, the samples {x(n)} are
approximately distributed according to π . Obviously, in this
case the method is useless since one can sample from π exact-
ly. However, we will see further that the same methodology
can be used even if π is extremely complex.

We have just seen that, under certain regularity assump-
tions, a Markov chain of transition kernel K admits a limiting
distribution π , i.e., the samples {x(n)} are approximately distrib-
uted according to π for large n. So we can use a realization of
this Markov chain to obtain (approximate) samples from π . In
the example described above, we were given the kernel K and
then we identified π . Obviously, in practice, we are given π and
the question becomes: is it possible to come up with a Markov
transition kernel K admitting π as limiting distribution? The
answer is yes. There is actually an infinity of such kernels, and
the first algorithm we present was created by Metropolis et al.
[39] and later refined by Hastings [34].

METROPOLIS-HASTINGS ALGORITHM 
AND GIBBS SAMPLER
Let us introduce a candidate kernel distribution q ( ·| ·). The
Metropolis-Hastings (MH) kernel is given by

KMH(x ′ |x) =α(x ′ |x)q(x ′ |x) + δ(x ′ − x)∫
(1 − α(u |x))q(u |x)du, (28)

where

α(x ′|x) = min
(

1,
π(x ′)q(x |x ′)
π(x)q(x ′ |x)

)
. (29)

As potential choices for the proposal kernel q ( ·| ·), one can use
q(x ′|x) = q(x ′) [independent proposal] or q(x ′|x) =
q(x ′ − x) [random walk proposal]. It can easily be shown that
KMH is π−reversible, i.e.,

π(x ′)KMH(x |x ′) = π(x)KMH(x ′ |x),

which implies directly that KMH admits π as invariant 
distribution



π(x ′) =
∫

π(x)KMH(x ′|x)dx

as ∫
KMH(x |x ′)dx = 1

is a pdf for any x′. Algorithmically, one can simulate a realiza-
tion of the Markov chain of transition kernel KMH by using the
following algorithm.

METROPOLIS-HASTINGS ALGORITHM
Initialization.

■ Select randomly or deterministically x(0).
Iteration n (n ≥ 1).
■ Sample a candidate x∗ ∼ q

( ·| x(n−1)
)
.

■ Sample u ∼ U [0, 1] .

■ If u ≤ α
(

x∗| x(n−1)
)

, then set x(n) = x∗ ; otherwise
x(n) = x(n−1).

This algorithm is remarkable. It is very simple and does not
require knowledge of the normalizing constant of π , which only
appears through a ratio in (29). Under weak assumptions on
q ( ·| ·), it can be shown that for any µ1, µn → π [44]. An esti-
mate of (9) could be computed using

1
n

n∑
i=1

ϕ
(

x(i)
)

. (30)

This asymptotically converges towards the right value under weak
assumptions despite the fact that samples {x(i)} are dependent.
However, using the estimate (30) is not very sensible since the
first simulated samples have a distribution initially far from π . It
thus makes sense to discard the first n0 iterations corresponding
to the so-called burn-in period of the chain and then consider

1
n − n0

n∑
i=n0+1

ϕ
(

x(i)
)

.

Determining n0 automatically is very difficult since obtaining
sharp bounds on the convergence rates of MCMC for realistic
models is an extremely difficult problem. Also, despite 50 years
of research, convergence assessment of Markov chains is still
more an art than a science. In practice, we typically monitor
some statistics of the Markov chain to decide whether it has
reached its stationary regime; see [44] for further details.

The crucial problem of MCMC is actually not to determine
the length of the burn-in, but to engineer a so-called fast mix-
ing kernel, i.e., such that {µn} converges quickly towards π .
To achieve this goal, several guidelines must be followed. It is
recommended to update the components of x = (x1, . . . , xP)

by subblocks using a mixture of random walks and independ-
ent proposals. Indeed, if x belongs to a very high-dimensional

space, candidates x∗ will only be accepted with a very small
probability; the resulting Markov chain mixes too slowly and
does not explore the distribution π properly given a reasonable
number of iterations.

METROPOLIS-HASTINGS ONE-AT-A-TIME ALGORITHM
Initialization.

■ Select randomly or deterministically x(0) =
(x(0)

1 , . . . , x(0)
P ).

Iteration n (n ≥ 1).
■ For i = 1 : P

■ Sample x∗
i ∼ qi(·|(x(n)

1:i−1, x(n−1)
i:P )).

■ Sample u ∼ U [0, 1] .

■ If u ≤ αi((x(n)
1:i−1, x∗

i , x(n−1)
i+1:P )|(x(n)

1:i−1, x(n−1)
i , x(n−1)

i+1:P ))

then set x(n)
i = x∗

i ; otherwise x(n)
i = x(n−1)

i .

End For

In the above algorithm, one has

αi

((
x(n)

1:i−1, x∗
i , x(n−1)

i+1:P

)∣∣∣ (x(n)
1:i−1, x(n−1)

i , x(n−1)
i+1:P

))
= min

1,
π

(
x(n)

1:i−1, x∗
i , x(n−1)

i+1:P

)
q
(

x(n−1)
i

∣∣∣ x(n)
1:i−1, x∗

i , x(n−1)
i+1:P

)
π

(
x(n)

1:i−1, x(n−1)
i , x(n−1)

i+1:P

)
q
(

x∗
i

∣∣ x(n)
1:i−1, x(n−1)

i:P

)

 .

(31)

This algorithm simply corresponds to the case where the
transition kernel is a composition of P MH kernels; each kernel
KMH,i (i = 1, . . . , P) only uses a proposal kernel updating com-
ponent xi. If possible, it is better to include correlated compo-
nents of the vector x in the same subblock so as to improve the
mixing property of the Markov chain.

A particular case of great interest corresponds to the selec-
tion of proposal distributions

q
(

x∗
i

∣∣ x1:i−1, xi:P
) = π

(
x∗

i

∣∣ x1:i−1, xi+1:P
)

referred to as the full conditional distributions. Indeed, even if
the joint distribution is only known up to a normalizing con-
stant, it is often possible to express the conditional distributions
in closed form. In this case, one can check that

αi

((
x(n)

1:i−1, x∗
i , x(n−1)

i+1:P

)∣∣∣ (x(n)
1:i−1, x(n−1)

i , x(n−1)
i+1:P

))

= min


1,

π
(

x(n)
1:i−1, x∗

i , x(n−1)
i+1:P

)
π

(
x(n−1)

i

∣∣∣ x(n)
1:i−1, x(n−1)

i+1:P

)
π

(
x(n)

1:i−1, x(n−1)
i , x(n−1)

i+1:P

)
π

(
x∗

i

∣∣ x(n)
1:i−1, x(n−1)

i+1:P

)



=1;

that is, all candidates are accepted. The MH one-at-a-time algo-
rithm simplifies to the so-called Gibbs sampler.
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GIBBS SAMPLER
Initialization.
■ Select randomly or deterministically x(0) = (x(0)

1 , . . . ,

x(0)

P ).

Iteration n (n ≥ 1).
■ For i = 1 : P

■ Sample x(n)
i ∼ π(·|(x(n)

1:i−1, x(n−1)
i+1:P )).

End For

The nice feature of the Gibbs sampler is that it does not
require the selection of a proposal distribution; everything is
fixed by the target distribution π . However, it is not always pos-
sible to sample from the full conditional distributions. Moreover,
even if this choice is possible, it might not give the best results.

Many convergence results are available for MCMC based on
general state-space Markov chains theory [40]. An introduction
to these results and an exhaustive list of references on the sub-
ject is given in [44].

REVERSIBLE JUMP MCMC
Consider the case where one is interested in sampling from a
distribution π defined on a space that is a union of subspaces,
say X = ⊎∞

k=0{k} × Xk. We write the distribution as π(k, xk)

(i.e., xk ∈ Xk). In this case, the associated random variables can
take values in subspaces of different dimensions. This is the case
when one has to solve inference problems where the number of
unknowns is not known. This is, for example, the case in the
spectral analysis problem discussed at the beginning of this arti-
cle. In this case, the number of sinusoids k is unknown and the
unknown parameters are defined on a space whose dimension is
dependent on k.

For such problems, it is not possible to apply the stan-
dard MH algorithm to jump from Xk to Xl i f
dim (Xk) �= dim (Xl). A solution proposed by Green [29] is
called reversible jump MCMC as it is based on a reversibility
constraint on the moves between the different sets {Xk}. To
jump from X1 to X2 , one samples an auxiliary variable
u1 ∼ q1→2 (·) and sets

(x2, u2) = ϕ1→2 (x1, u1) ,

where ϕ1→2 is a one-to-one deterministic mapping; this implies
that the vectors (x1, u1) and (x2, u2) have the same dimension.
Note that if dim(X1) > dim(X2), one typically does not intro-
duce a variable u1. Similarly, to jump from X2 to X1, one sam-
ples u2 ∼ q2→1 (·) and sets

(x1, u1) = ϕ2→1 (x2, u2) ,

where ϕ2→1(ϕ1→2(x1, u1)) = (x1, u1).

In this case, the probability of accepting a move from X1 to
X2 is given by

min
(

1,
π (2, x2)

π (1, x1)

p2→1q2→1 (u2)

p1→2q1→2 (u1)

∣∣∣∣∂ϕ1→2 (x1, u1)

∂ (x1, u1)

∣∣∣∣
)

,

where |(∂ϕ1→2 (x1, u1))/(∂ (x1, u1))| is the determinant of the
Jacobian of the transformation, pi→ j is the probability of choosing
to attempt a jump from Xi to X j, and q1→2 (·) is the density of u1.

To sum up, the reversible jump algorithm proceeds as follows.
Reversible Jump MCMC
Initialization.
■ Select randomly or deterministically (k(0), x(0)).

Iteration n (n ≥ 1).
■ Assume we have x(n−1) = (k(n−1), x(n−1)

k(n−1) ).

■ Propose a move from Xk(n−1) to Xl with probability 
pk(n−1)→l.

■ Sample uk(n−1) ∼ qk(n−1)→l(·).
■ Set (x∗

l , ul) = ϕk(n−1)→l(x(n−1)

k(n−1) , uk(n−1) ).

■ With probability

min


1,

π
(
l, x∗

l

)
π

(
k(n−1), x(n−1)

k(n−1)

) pl→k(n−1) ql→k(n−1) (ul)

pk(n−1)→lqk(n−1)→l (uk(n−1) )

∣∣∣∣∣∣
ϕk(n−1)→l

(
x(n−1)

k(n−1) , uk(n−1)

)
∂

(
x(n−1)

k(n−1) , uk(n−1)

)
∣∣∣∣∣∣



set x(n) = (l, x∗
l ); otherwise x(n) = x(n−1).

PARALLEL TEMPERING
Assume we want to sample from π . In some cases, π admits sev-
eral distinct modes, and standard MCMC methods might be
inefficient in this framework. The idea of parallel tempering is
based on the fact that the distribution πn given by

πn (x) = πγn (x)∫
πγn (u) du

(32)

is more diffuse than π if γn < 1. If a distribution is more diffuse,
it is easier to sample from it using an MCMC algorithm.

Parallel tempering consists of building an MCMC algorithm
on an extended state-space, say EP, with a target distribution
given by

π (x1, . . . , xP) =
K∏

i=1

πi (xi)

with γ1 = 1 and γi < γi−1 [26]. One can use the standard
MCMC algorithm to sample from πi, where i = 1, . . . , K, and
then use swap moves where it is proposed to exchange the
states between two different “adjacent” distributions, say πi and
πi+1. Obviously, it is not necessary to propose swap moves at
each iteration or only between adjacent distributions. Parallel



tempering is a generic method, yet it is pretty robust and effi-
cient. The main practical problem consists of selecting K and
the schedule {γi}.

SIMULATED ANNEALING FOR GLOBAL OPTIMIZATION
We mentioned previously that it is possible to estimate the
global optimum of a distribution π by simply obtaining sam-
ples (approximately) distributed according to it and then using
(16). Though it is sensible, this method can be somewhat inef-
ficient. In particular, if the distribution is fairly diffuse, then
most samples are concentrated away from the global mode(s).
The idea behind simulated annealing is to sample at iteration n
from a modified target distribution given by (32), where
{γn}n≥1 is an increasing positive sequence such that
limn→∞ γn = ∞. The rationale is that, for γn > 1, the distri-
bution (32) is more concentrated around its global maxima
than π and eventually the limiting distribution π∞ concen-
trates itself on the set of global maxima of π . Indeed, assume a
global optimum is given by xmax, then for any x �= xmax such
that π(x) < π(xmax)

πn (x) = [π (x) /π (xmax)]γn∫
[π (u) /π (xmax)]γn du

→0, as n → ∞.

It is typically impossible to sample from {πn}n≥1, so the simu-
lated annealing algorithm approximately samples from πn by
using an MCMC kernel Kn of invariant distribution πn.

Simulated annealing is thus nothing but a nonhomogeneous
version of MCMC. For “historical” reasons, simulated annealing
is often associated with the simple MH algorithm [47] or with
Gibbs sampling [24]. However, it should be clear that any MCMC
algorithm (Gibbs sampler, MH, reversible jump) can be used to
perform global optimization by substituting π with πn. To
ensure convergence of the resulting simulated Markov chain
towards the set of global optima, one needs to ensure that the
target distributions are slowly time-varying. Convergence
towards this set can be ensured for a logarithmic so-called
“cooling schedule,” i.e.,

γn = a ln(n + b);

see [2] for a convergence proof in the continuous state-space
case. This sequence proceeds too slowly to infinity, so practition-
ers are using a faster cooling schedule such as

γn = an + b.

Note that this method only applies to the case where π (x)
can be estimated pointwise. In particular, this method does not
apply if one is interested in estimating (12) and if (10) is not
known up to a normalizing constant. A solution to this problem
has been recently proposed in [23]; this is the state augmenta-
tion for marginal estimation (SAME) algorithm. The idea is to
consider at iteration n the artificial target distribution

πn
(
x1, x2,1, x2,2, . . . , x2,γn

) ∝
γn∏

k=1

π(x1, x2,k), (33)

where the set of variables we want to integrate has been artifi-
cially replicated γn times, γn obviously being an integer. It fol-
lows that the marginal distribution

πn (x1) =
∫

· · ·
∫

πn
(
x1, x2,1:γn

)
dx2,1:γn

= πγn (x1)∫
πγn (u) du

. (34)

Now we can use at iteration n, an MCMC kernel of invariant dis-
tribution (33) to sample approximately from it. Marginally, the
samples {x(n)

1 } will be approximately distributed according to
(34). Similar to standard simulated annealing, it can be shown
under regularity assumptions that convergence towards the set
of global maxima can be ensured for a logarithmic cooling
schedule. The price to pay is that the algorithm is getting more
and more computationally intensive as n increases because the
number of variables x2,1:γn to sample also increases.

APPLICATIONS

BLIND EQUALIZATION
We consider the model described in an earlier section also titled
“Blind Equalization.” We have established that the posterior dis-
tribution p(b2−L:T|y1:T) is given by (3). There are 2T+L−1 possi-
bilities for the binary sequence b2−L:T. To approximate
p(b2−L:T |y1:T), we next discuss several MCMC algorithms.

In this case, the full conditional distributions can be easily
computed as shown in the equation at the bottom of the page.
The unknown normalizing constant of p(b2−L:T|y1:T) does not
need to be known since it appears in both the numerator and
denominator of the full conditional distributions. A Gibbs sam-
pler to sample from p(b2−L:T|y1:T) proceeds as follows.

ALGORITHM 1—SINGLE-SITE GIBBS SAMPLER
Initialization.
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p
(

bk = 1
∣∣ y1:T, b2−L:k−1, bk+1:T

) = 1 − p
(

bk = 0
∣∣ y1:T, b2−L:k−1, bk+1:T

)
= p

(
b2−L:k−1, bk+1:T, bk = 1

∣∣ y1:T
)

p
(

b2−L:k−1, bk+1:T, bk = 1
∣∣ y1:T

) + p
(

b2−L:k−1, bk+1:T, bk = 0
∣∣ y1:T

) .
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■ Select randomly or deterministically b(0)

2−L:T.

Iteration n (n ≥ 1).
■ For k = 2 − L : T

– Sample b(n)

k ∼ p(·|y1:T, b(n)

2−L:k−1, b(n−1)

k+1:T).

End For

This is just a particular Gibbs sampler. Instead of sampling
the symbols bk one at a time, it is also possible to sample them
by subblocks of length M. For the sake of simplicity, assuming
that K = (T+ L − 1) /M is an integer, one obtains the follow-
ing algorithm.

ALGORITHM 2—BLOCK GIBBS SAMPLER
Initialization.
■ Select randomly or deterministically b(0)

2−L:T.

Iteration n (n ≥ 1).
■ For k = 1 : K

– Sample b(n)

2−L+(k−1)M:2−L+kM−1 ∼
p(·|y1:T, b(n)

2−L:(k−1)M−1, b(n−1)

2−L+kM:T).

End For

This algorithm is expected to converge faster than the previ-
ous one as variables are updated in larger blocks. The price to
pay is that the computational complexity to compute full condi-
tional distributions increases exponentially with M.

Note that both algorithms will eventually yield some samples
approximately distributed according to p

(
b2−L:T

∣∣ y1:T
)
. Thus,

we can directly estimate p
(

bk
∣∣ y1:T

)
for any k. If we want to esti-

mate the marginal distribution of the unknown parameters(
h, σ 2), it is sufficient to add into the Gibbs sampler loop the

following sampling step:

(h(n), σ 2(n)) ∼ p
(

·| y1:T, b(n)
2−L:T

)
.

Given the conjugate prior distribution (2),
p
(

h, σ 2
∣∣ y1:T, b2−L:T

)
is equal to

σ 2 ∼ IG(
T+ γ0

2
,
υ0 + yT

1:Ty1:T − mT (
b2−L:T

)
�−1 (

b2−L:T
)

m
(
b2−L:T

)
2

)
,

h
∣∣ σ 2 ∼ N

(
m

(
b2−L:T

)
, σ 2�

(
b2−L:T

))
. (35)

Clearly, since b(n)
2−L:T ∼ p(b2−L:T |y1:T) (for large n),

(b(n)
2−L:T, h(n), σ 2(n)) ∼ p(b2−L:T, h, σ 2|y1:T) and thus margin-

ally (h(n), σ 2(n)) ∼ p(h, σ 2|y1:T).
An alternative method to sample from the joint distribution

p
(

b2−L:T, h, σ 2
∣∣ y1:T

)
involves using the following Gibbs sam-

pling method. This is known as data augmentation in the literature.

ALGORITHM 3—DATA AUGMENTATION
Initialization.
■ Select randomly or deterministically (h(0), σ 2(0)).

Iteration n (n ≥ 1).

■ Sample b(n)
2−L:T ∼ p(·|y1:T, h(n−1), σ 2(n−1)) using the 

forward-backward sampling formula.
■ Sample (h(n), σ 2(n)) ∼ p(·|y1:T, b(n)

2−L:T).

Sampling from p(b2−L:T|y1:T, h, σ 2) can be achieved using
the forward-filtering backward-sampling formula described in
[9]; this is a sampling version of the standard forward-backward
algorithm for HMM. Sampling from p(h, σ 2|y1:T, h, σ 2) can be
achieved using (35). This data augmentation algorithm updates
all variables in two sampling steps compared to T+ L − 1 for
the single-site Gibbs sampler. Intuitively, one might think that
consequently data augmentation is more efficient. However, this
is not always the case. In particular, if the SNR is high, then the
distributions p(b2−L:T|y1:T, h, σ 2) and p(h, σ 2|y1:T, b2−L:T) are
very peaky and the Markov chain does not mix well. It is often
preferable to use the single-site or block Gibbs sampler. If the
chain does not mix, simulated tempering can be used. Finally, to
maximize the joint distribution p(b2−L:T|y1:T), one can use a
simulated annealing version of the single-site or block Gibbs
sampler. To maximize p(h, σ 2|y1:T), it is possible to use the
SAME algorithm.

Note that for this problem, one has p(b2−L:T|y1:T) =
p(−b2−L:T|y1:T) for any sequence b2−L:T, as there is an identifi-
ability problem. It follows that p(bk|y1:T) = 0.5 for any bk.
There are two ways to solve this problem. We can find a maxi-
mum p(b2−L:T|y1:T) and recover the phase using differential
encoding. An alternative is to set a prior on the channel h,
enforcing say the positivity of its first coefficient h0. In this case,
it is not possible to compute p(b2−L:T|y1:T) up to a normalizing
constant anymore, so the single-site and block Gibbs samplers
cannot be used, but the data augmentation algorithm can still
be applied (suitably modified so as to ensure the constraint).

Blind equalization using MCMC was first proposed in [10].
Its application in the context of blind turbo equalization in
coded communication systems with either Gaussian or non-
Gaussian ambient noise was developed in [49]. In [13], the con-
vergence properties of the various MCMC schemes discussed
above are examined for several blind data detection problems
found in digital communications, such as blind equalization and
blind multiuser detection.

Simulation example: We next provide simulation examples
to illustrate the performance of the MCMC blind equalizer based
on the single-site Gibbs sampler. We consider a four-tap ISI
channel with complex tap coefficients

h = [−0.1611 − j 0.4270, 0.0467 + j 0.4429,

− 0.6204 + j 0.4436, 0.1072 − j 0.0140]T.

(Note that the channel is normalized to have unit norm, i.e.,
‖h‖ = 1.) To resolve the delay and phase ambiguities inherent to
the blind equalizer, in the Gibbs sampler, we impose the con-
straints that |h3| > |hl| for l ∈ {1, 2, 4} and π

2 < � h3 ≤ π . The
channel code is a rate 1/2 constraint length-5 convolutional code
(with generators 23, 35 in octal notation). The interleaver is



generated randomly and fixed for all simulations. The block size
of the information bits is 128 (i.e., M = 256). The code bits are
binary phase shift keying (BPSK) modulated, i.e., bk ∈ {+1,−1}.
In computing the symbol probabilities, the Gibbs sampler is iter-
ated 100 runs for each data block, with the first 50 iterations as
the burn-in period. The following noninformative conjugate
prior distributions are used in the Gibbs sampler.

h(0) ∼ N (0, 1000 σ 2(0)
I), σ 2(0) ∼ IG(1, 0.1).

In blind turbo equalization, for the first iteration, the prior
symbol probabilities p(bk = +1) = 1/2 for all symbols; in the
subsequent iterations, the prior symbol probabilities are provided
by the channel decoder. The decoder-assisted convergence assess-
ment is employed. Specifically, if the number of bit corrections
made by the decoder exceeds 1/3 of the total number of bits (i.e.,
M/3), then it is decided that convergence is not reached and the
Gibbs sampler is applied to the same data block again [49].

We first illustrate the performance of the MCMC blind
equalizer in Gaussian ambient noise. In Figure 1, the first 100

samples drawn by the Gibbs sam-
pler for the channel taps
(h1, h2, h3, h4) and the noise vari-
ance σ 2 are shown. The corre-
sponding true values of these
quantities are also shown in the
same figure as the dotted lines. It
is seen that the Gibbs sampler
reaches convergence rapidly (with-
in about 20 iterations). Figure 2
illustrates the bit error rate per-
formance of the MCMC blind
turbo equalizer. The code bit error
rate at the output of the blind
equalizer is plotted for the first
three iterations. The curve corre-
sponding to the first iteration is
the uncoded bit error rate at the
output of the blind equalizer. The
uncoded and coded bit error rate
curves in an additive white
Gaussian noise (AWGN) ISI-free
channel are also shown in the
same figure (as, respectively, the
dashed and solid lines). It is seen
that by incorporating the extrinsic
information provided by the chan-

nel decoder as the prior symbol probabilities, the MCMC blind
equalizer achieves performance that is close to the receiver per-
formance in an ideal AWGN channel in a few iterations.

DECONVOLUTION OF IMPULSIVE SEQUENCES
We consider now the model described in the section
“Deconvolution of Impulsive Sequences.” First consider the case
where the parameters θ are known. We are interested in sam-
pling from p(i2−L:T, b2−L:T |y1:T). A simple strategy would con-
sist of using the following Gibbs sampling algorithm.

ALGORITHM 3—DATA AUGMENTATION
Initialization.
■ Select randomly or deterministically (h(0), σ 2(0)).

Iteration n (n ≥ 1).
■ Sample b(n)

2−L:T ∼ p(·|y1:T, h(n−1), σ 2(n−1)) using the 
forward-backward sampling formula.
■ Sample (h(n), σ 2(n)) ∼ p(·|y1:T, b(n)

2−L:T).
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[FIG2] Bit error rate performance of the MCMC blind turbo
equalizer in a Gaussian ISI channel.

[FIG1] Samples drawn by the MCMC blind equalizer in a Gaussian ISI channel. Eb/No = 2 dB.
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In this case, it is possible to sample from
p(b2−L:T |y1:T, i2−L:T) using the forward-filtering backward-
sampling formula [9]. To sample from p

(
i2−L:T

∣∣ y1:T, b2−L:T
)
,

we note that

p(i2−L:T |y1:T, b2−L:T) =
T∏

k=2−L

p
(

ik| bk
)
.

This Markov chain admits p(i2−L:T, b2−L:T |y1:T) as invariant
distribution but does not converge towards it! Indeed, assume
one has i(n−1)

k = 0, then it follows that b(n−1)

k = 0 because of
(5). Now given b(n−1)

k = 0, one has p(ik = 0|b(n−1)

k ) = 1 so
i(n)

k = 0. The Markov chain cannot get out of this trapping
state and cannot converge towards its invariant distribution. A
simple way to avoid this problem is to sample from the mar-
ginal distribution p(i2−L:T |y1:T), which is known up to a nor-
malizing constant. A single-site Gibbs sampler would proceed
as follows.

ALGORITHM 2—SINGLE-SITE GIBBS SAMPLER
Initialization.
■ Select randomly or deterministically i(0)

2−L:T.

Iteration n(n ≥ 1).
■ For k = 2 − L : T

– Sample i(n)

k ∼ p( ·| y1:T, i(n)

2−L:k−1, i(n−1)

k+1:T).

End For

This chain provides samples {i(n)
2−L:T} asymptotically distrib-

uted according to p(i2−L:T |y1:T). If we are interested in obtain-
ing samples from the joint distribution p(i2−L:T, b2−L:T |y1:T),
then we can sample b(n)

2−L:T ∼ p(·|y1:T, i(n)
2−L:T) using the simula-

tion smoother.
Now consider the case where the parameters θ are unknown

and have selected the prior distribution given by (6). In this
case, we could use the following algorithm to sample from
p(i2−L:T, θ |y1:T). 

ALGORITHM 3—MCMC ALGORITHM (GIBBS + MH STEPS) 
Initialization.
■ Select randomly or deterministically (i(0)

2−L:T, θ
(0)).

Iteration n (n ≥ 1).
■ For k = 2 − L : T

– Sample i(n)

k ∼ p( ·| y1:T, θ
(n−1), i(n)

2−L:k−1, i(n−1)

k+1:T).

■ Sample θ∗ ∼ q
( ·| θ(n−1)

)
. With probability 

min


1,

p
(

i(n)
2−L:T, θ

∗
∣∣∣ y1:T

)
q
(
θ(n−1)

∣∣ θ∗)
p
(

i(n)
2−L:T, θ

(n−1)
∣∣∣ y1:T

)
q
(
θ∗| θ(n−1)

)



set θ(n) = θ∗; otherwise  θ(n) = θ(n−1) .
It appears impossible to sample from p(θ |y1:T, i2−L:T) exact-

ly, so we propose to update the parameter values using an MH
step. Unfortunately, the design of a good proposal distribution
q ( ·| ·) might be difficult. An alternative is given by the following
(collapsed) Gibbs sampling algorithm.

ALGORITHM 4—COLLAPSED GIBBS SAMPLER
Initialization.
■ Select randomly or deterministically i(0)

2−L:T, .

Iteration n(n ≥ 1).
■ For k = 2 − L : T

– Sample i(n)

k ∼ p( ·| y1:T, θ
(n−1), i(n)

2−L:k−1, i(n−1)

k+1:T).

End For
■ Sample b(n)

2−L:T ∼ p( ·| y1:T, i(n)
2−L:T).

■ Sample θ(n) ∼ p( ·| y1:T, i(n)
2−L:T, b(n)

2−L:T).

This algorithm is a so-called collapsed Gibbs sampler
since we do not sample the latent variables i2−L:T conditional
on b2−L:T, but integrate out these variables. After having
sampled i(n)

2−L:T, we sample b(n)
2−L:T as the conditional distribu-

tion p(θ |y1:T, i2−L:T, b2−L:T) admits a simple form. Indeed,
using (6), we obtain

p
(

θ | y1:T,i2−L:T, b2−L:T

)
= p

(
h, σ 2, λ, σ 2

b

∣∣∣ y1:T, i2−L:T, b2−L:T

)
= p( h, σ 2

∣∣∣ y1:T, i2−L:T, b2−L:T)

× p
(
λ| i2−L:T

)
p
(

σ 2
b

∣∣∣ i2−L:T, b2−L:T

)
,

where

σ 2 ∼ IG
(

T+ γ0

2
,

υ0 + yT
1:Ty1:T − mT (

b2−L:T
)
�−1 (

b2−L:T
)

m
(
b2−L:T

)
2

)
,

h
∣∣ σ 2 ∼ N

(
m

(
b2−L:T

)
, σ 2�

(
b2−L:T

))
,

λ ∼ B(ζ + n(i2−L:T), τ + T+ L − 1 − n(i2−L:T)),

σ 2
b ∼ IG

(
γb + n

(
i2−L:T

)
2

,
υb + ∑T

k=2−L ikb2
k

2

)
.

To maximize the marginal distribution p
(

i2−L:T
∣∣ y1:T

)
or

p( θ | y1:T), one can use the SAME algorithm.

SEQUENTIAL MONTE CARLO METHODS
All the methods we have described thus far enable sampling approx-
imately from a distribution π (x) or a sequence of distributions
{πn (x)} varying slowly over time (like in the simulated annealing
case). Clearly, this type of algorithm is not well adapted to problems
such as optimal filtering; as mentioned earlier, in optimal filtering,
we are interested in estimating a sequence of potentially quickly
varying distributions whose dimension is increasing over time.

Sequential Monte Carlo (SMC) methods are a class of simula-
tion-based methods solving this type of problem. More precisely,
SMC methods approximate a sequence of probability distribu-
tions {πn (x1:n)}, with each distribution πn being defined on
X n. These methods have become very popular over the last few
years as they help solve numerous optimal filtering problems;



see [22] for a review of the literature illustrated by many appli-
cations. These methods are based on a combination of sequen-
tial importance sampling and resampling mechanisms.

Assume that at time (n − 1) we have a set of N weighted ran-
dom samples named particles {x(i)

1:n−1, w(i)
n−1} [w(i)

n−1 > 0 and∑N
i=1 w(i)

n−1 = 1]approximating the target distribution πn−1, i.e.,

π̂n−1(x1:n−1) =
N∑

i=1

w(i)
n−1δ

(
x1:n−1 − x(i)

1:n−1

)

and for any test function ϕn−1 : X n−1 → R

∫
ϕn−1(x1:n−1)π̂n−1(x1:n−1)dx1:n−1

=
N∑

i=1

w(i)
n−1ϕn−1(x1:n−1)→Eπn−1(ϕn−1), N → ∞.

At time n, our objective is to derive a simple mechanism to
obtain N weighted particles {x(i)

1:n, w(i)
n } approximating πn.

SEQUENTIAL IMPORTANCE SAMPLING 
AND RESAMPLING
Given the weighted particles {x(i)

1:n−1, w(i)
n−1} approximating

πn−1, we consider extending each path x(i)
1:n−1 by sampling

x(i)
n ∼ qn

(
·| x(i)

1:n−1

)
.

It follows that the weights of each particle should be updated
according to

w(i)
n ∝ w(i)

n−1

πn

(
x(i)

1:n

)
πn−1

(
x(i)

1:n−1

)
qn

(
x(i)

n

∣∣∣ x(i)
1:n−1

)
︸ ︷︷ ︸

incremental weight

with 
∑N

i=1 w(i)
n = 1. Indeed, this method is nothing but a sim-

ple instance of importance sampling with importance distribu-
tion given at time n by

qn (x1:n) = µ (x1)

n∏
k=2

qk
(

xk| x1:k−1
)
.

The importance weight expression follows from

wn (x1:n) = πn (x1:n)

qn (x1:n)

= πn−1(x1:n−1)

qn−1(x1:n−1)

πn (x1:n)

πn−1 (x1:n) qn( xn| x1:n−1)

= wn−1(x1:n−1)
πn (x1:n)

πn−1 (x1:n) qn( xn| x1:n−1)
,

where wn (x1:n) denotes the unnormalized weight at time n.

The efficiency of this method depends crucially on the selec-
tion of the importance distribution qn ( ·| ·). It can be easily
established that the distribution minimizing the variance of the
incremental weight conditional on {x(i)

1:n−1} is given by

qopt
n (xn |x1:n−1) = πn(xn |x1:n−1).

In this case, the incremental weight is given by

πn(x1:n)

πn−1(x1:n−1)πn(xn |x1:n−1)
= πn(x1:n−1)

πn−1(x1:n−1)
. (36)

Typically, it is difficult to sample from πn(xn |x1:n−1), and the
associated incremental weight cannot be computed in closed
form. So a standard strategy consists of using an approximation
of πn(xn |x1:n−1) as an importance distribution [20], [22].
However, whichever importance distribution is used, the vari-
ance of the importance weights typically increases over time.
Intuitively, this is because typically the discrepancy between the
importance distribution qn (x1:n) and πn (x1:n) increases over
time in real-world applications. Consequently, after a few time
steps, all particles but one have a weight close to zero and the
remaining one has a weight close to one. This results in worth-
less Monte Carlo estimates having a huge variance.

To make this method efficient, it is necessary to introduce a
resampling step so as to control the variance of the importance
weights. If at time n the variance of the importance weights is
high, then we resample N times from the current weighted
approximation

π̂n (x1:n) =
N∑

i=1

w(i)
n δ

(
x1:n − x(i)

1:n

)

to obtain a new approximation

1
N

N∑
i=1

δ
(

x1:n − x̃(i)
1:n

)
,

where {̃x(i)
1:n} are the resampled particles. This was first sug-

gested in the optimal filtering context in [28], and this is the key
step of SMC methods. In this new approximation, it is possible
to have ̃x(i)

1:n = x̃( j)
1:n for i �= j. The resampling step has the effect

of concentrating the computational efforts on the relevant zones
of the state-space. Locally (in time), it does introduce some vari-
ance, but it is beneficial in the next time steps. A standard meas-
ure of variation for the importance weights is the effective
sample size (ESS) proposed in [36]

ESS
({

w(i)
n

})
=

(
N∑

i=1

(
w(i)

n

)2
)−1

.
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This quantity takes values between 1 and N; the larger, the bet-
ter. Resampling is typically performed when this measure is
below a threshold equal to say N/2.

Note that the resampling step consists of performing an
approximation of ̂πn (x1:n) by

N∑
i=1

N(i)
n

N
δ
(

x1:n − x(i)
1:n

)
,

where N(i )
n is the number of copies of x(i )

1:n; each being given a
weight 1/N. If one resamples N times from π̂n (x1:n), then
{N(i )

n } are distributed according to a multinomial distribution of
parameters {w(i )

n } and thus satisfy E(N(i )
n ) = Nw(i )

n . It is possi-
ble to reduce the variance of the resampling scheme. Many
methods have been proposed in the literature [22]. To sum up,
the sequential importance sampling and resampling (SISR)
algorithm proceeds as follows.

SEQUENTIAL IMPORTANCE SAMPLING AND RESAMPLING
Initialization.
■ Sample x( i)

1 ∼ q1 for i = 1, . . . , N.

■ Compute and normalized the weights 

w(i)
1 ∝

π1

(
x(i)

1

)
q1

(
x(i)

1

) .

■ If ESS ({w(i)
1 }) < Threshold, resample {x(i)

1 , w(i)
1 } to obtain

{x(i)
1 , N−1}.

Iteration n(n ≥ 2).
■ Sample x(i)

n

∣∣∣ x(i)
n−1 ∼ qn( ·| x(i)

1:n−1) for i = 1, . . . , N.

■ Compute and normalized the weights

w(i)
n ∝ w(i)

n−1

πn

(
x(i)

1:n

)
πn−1

(
x(i)

1:n−1

)
qn

(
x(i)

n

∣∣∣ x(i)
1:n−1

) .

■ If ESS ({w(i)
n }) < Threshold, resample {x(i)

1:n, w(i)
n } to

obtain {x(i)
1:n, N−1}.

To simplify notation, we use {x(i )
1:n} for the particles before

and after resampling rather than using {̃x(i )
1:n}. This algorithm

has a computational complexity of order O (N).
There are multiple variants of this algorithm; further details

are given in [22]. Many convergence results are available on
SMC algorithms; a complete review of these is presented in [16].
For a more accessible treatment, an introduction to conver-
gence results for engineers is presented in [14] and [15].

APPLICATION TO OPTIMAL FILTERING

FILTERING IN GENERAL STATE-SPACE MODELS
We detail here the application of the SISR methodology to the
optimal filtering problem discussed in the section “Optimal
Filtering in State-Space Models.” In this example, one is inter-
ested in estimating an unobserved Markov process {xn}n≥1 of

initial density µ and transition density xn| xn−1 ∼ f(·|xn−1).
The observations {yn}n≥1 are conditionally independent given
{xn}n≥1 of marginal density yn| xn ∼ g( ·| xn). In this case, the
sequence of target distributions of interest {πn}n≥1 is given by

πn (x1:n) = p( x1:n| y1:n)

∝ µ (x1)

n∏
k=2

f
(

xk| xk−1
) n∏

k=1

g( yk| xk) .

The importance sampling distribution can only depend at time
n on the observations until time n, i.e., one has an importance
distribution of the form qn(xn |y1:n, x1:n−1) . The optimal
importance distribution is given in this case by

πn(x1:n |x1:n−1) = πn(x1:n)

πn(x1:n−1)
= p(x1:n|y1:n)

p(x1:n−1 |y1:n−1)

= p(xn |xn−1, yn)

= f(xn |xn−1)g(yn |xn)∫
f(xn |xn−1)g(yn|xn)dxn

and its associated incremental importance weight (36) is pro-
portional to

p(yn |xn−1) =
∫

f(xn|xn−1)g(yn|xn)dxn.

In practice, we always limit ourselves to distributions of the
form q(xn |yn, xn−1), and in this case the general form of the
incremental weight is given by

p( x1:n| y1:n)

p
(

x1:n−1
∣∣ y1:n−1

)
q
(

xn| yn, xn−1
) ∝ f

(
xn| xn−1

)
g( yn| xn)

q
(

xn| yn, xn−1
) .

Typically, one selects q(xn |yn, xn−1) as an approximation of
p(xn |yn, xn−1) using the extended Kalman filter (EKF) or
unscented Kalman filter (UKF) [20], [46]. To sum up, the SISR
algorithm for filtering state-space model proceeds as follows.

SISR for Optimal Filtering
Initialization.
■ Sample x(i)

1 ∼ q1 for i = 1, . . . , N.

■ Compute and normalized the weights 

w(i)
1 ∝

µ
(

x(i)
1

)
g
(

y1| x(i)
1

)
q
(

x(i)
1

∣∣∣ y1

) .

■ If ESS ({w(i)
1 }) < Threshold, resample {x(i)

1 , w(i)
1 } to obtain

{x(i)
1 , N−1}.

Iteration n (n ≥ 1).
■ Sample x(i)

n ∼ q( ·| yn, x(i)
n−1) for i = 1, . . . , N.



■ Compute and normalized the weights

w(i)
n ∝ w(i)

n−1

f
(

x(i)
n

∣∣∣ x(i)
n−1

)
g
(

yn| x(i)
n

)
q
(

x(i)
n

∣∣∣ yn, x(i)
1:n−1

) .

■ If ESS ({w(i)
n }) < Threshold, resample {x(i)

1:n, w(i)
n } to

obtain {x(i)
1:n, N−1}.

MIXTURE KALMAN FILTER FOR CONDITIONALLY LINEAR
GAUSSIAN STATE-SPACE MODELS
For a few important classes of state-space models, it is possible
to come up with more efficient SMC methods. This includes
conditionally linear Gaussian state-space models [11], [20], [21]
and partially observed Gaussian state-space models [5]. Consider
the case where

xn| xn−1 ∼ f
( ·| xn−1

)
,

zn = A(xn) zn−1 + B(xn) vn,

yn = C (xn) zn + D (xn) wn,

where x1 ∼ µ , z0 ∼ N (m0,�0) , and vn ∼i.i.d.N
(
0, Inv

)
and

wn ∼i.i.d.N
(
0, Inw

)
are two mutually independent sequences. In

this model, {xn} and {zn} are
unobserved whereas {yn} is
observed. Clearly, this model
is just a particular case of
the model discussed in the
previous section if one sub-
stitutes for xn the extended
state (xn, zn) ∈ X × Z and
considers the sequence of posterior distributions
{p( x1:n, z1:n| y1:n)} . However, it is possible to come up with a
better algorithm. Indeed, one has

p( x1:n, z0:n| y1:n) = p( z0:n| x1:n, y1:n) p( x1:n| y1:n) , (37)

where p( z0:n| x1:n, y1:n) is a Gaussian density whose parame-
ters can be computed using Kalman filtering techniques and
p( x1:n| y1:n) is known up to a normalizing constant

p( x1:n| y1:n) ∝ p( y1:n| x1:n) p(x1:n) .

Indeed, the likelihood p( y1:n| x1:n) is given by

p( y1:n| x1:n) = p( y1| x1)

n∏
k=2

p(yk |y1:k−1, x1:k)

and each term p
(

yk| y1:k−1, x1:k
)

can be computed using the
Kalman filter given x1:k.

It follows that it is possible to use SMC methods to estimate
the sequence of marginal distributions {p( x1:n| y1:n)} instead of
{p( x1:n, z1:n| y1:n)}. Based on estimates of {p( x1:n| y1:n)}, one
can estimate {p( x1:n, z1:n| y1:n)} using (37). This strategy is
more efficient as it does not require sampling particles in Z .
The size of the state-space to explore via Monte Carlo simulation
is smaller, thus improving the efficiency of the method.

At first glance, it appears that this technique requires storing
the entire paths {x(i)

1:n} at time n. If this was the case, the memory
requirements would increase over time and the procedure would
be practically useless. Fortunately, this is not the case for all sen-
sible choices of q

(
xn| y1:n, x1:n−1

)
. Let us, for example, consid-

er the optimal importance distribution given in this case by

p(xn |y1:n, x1:n−1) ∝ p(yn |y1:n−1, x1:n) f(xn |xn−1).

The term p(yn |y1:n−1, x1:n) is a Gaussian distribution whose
mean yn|n−1 (x1:n) and covariance S n|n−1 (x1:n) can be com-
puted using the Kalman filter. This suggests that all SMC imple-
mentations in this context depend on y1:n and x1:n only through
a set of fixed-dimensional sufficient statistics. The resulting
algorithm corresponds to a random mixture of Kalman filters;
see [11], [20], and [21] for details. A similar approach can be

adopted to develop an effi-
cient algorithm for condi-
tionally finite state-space
HMMs (the Kalman filter
being replaced by an HMM
filter) [20] and for partially
observed linear Gaussian
state-space models [5] which

have applications for quantized observations.
Simulation Example (Blind detection in fading channel):

Suppose we want to transmit binary symbols xn ∈ {+1,−1},
through a fading channel whose input-output relationship is given by

yn = αnxn + wn,

where {wn} is a sequence of i.i.d. Gaussian noise. {αn} repre-
sents the unobserved Rayleigh fading process, which can be
modeled as the output of a low-pass filter of order r driven by
white Gaussian noise,

{αn} = �(D)

�(D)
{un},

where D is the back-shift operator Dk un = un−k ;
�(z) = φrzr + · · · + φ1 z + 1 ; �(z) = ψrzr + · · · + ψ1 z + ψ0;
and {un} is a white complex Gaussian noise sequence with inde-
pendent real and imaginary components, un ∼ Nc(0, σ 2). The
inference problem is to estimate the transmitted symbols xn at
time n, based on the received signals {y1, . . . , yn+δ} for some
δ ≥ 0, with the knowledge of only the statistics of the fading
process. An SMC solution to this problem based on the mixture
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Kalman filter was developed in [12]. Here we show a simulation
example to demonstrate the performance of such an SMC blind
receiver. The fading process is modeled by the output of a
Butterworth filter of order r = 3 driven by a complex white
Gaussian noise process. The cutoff frequency of this filter is
0.05, corresponding to a normalized Doppler frequency (with
respect to the symbol rate (1/ T) fd T = 0.05, which is a fast-fad-
ing scenario. Specifically, the sequence of fading coefficients
{αn} is modeled by the following ARMA(3,3) process:

αn − 2.37409αn−1 + 1.92936αn−2 − 0.53208αn−3

= 10−2(0.89409un + 2.68227un−1

+ 2.68227un−2 + 0.89409un−3),

where un ∼ Nc(0, 1). The filter coefficients are chosen such
that Var{αn} = 1. Differential modulation is employed to resolve
the phase ambiguity. In the SMC receiver, the number of Monte
Carlo samples drawn at each time was empirically set as
N = 50. The ESS threshold for resampling is set as N/10. In
Figure 3, the bit error rate (BER) performance versus the signal-
to-noise ratio (defined as Var{αn}/Var{wn}) corresponding to
delay values δ = 0 (concurrent estimate), δ = 1, and δ = 2 is
plotted. In the same figure, we also plot the known channel
lower bound, the genie-aided lower bound, and the BER curve of
the differential detector. From this figure, it is seen that the
SMC blind receiver does not exhibit an error floor, unlike the
differential detector. Moreover, with a delay δ = 2, the SMC
receiver essentially achieves the genie-aided lower bound.

CONCLUDING REMARKS
In this article, we have introduced two sets of powerful algo-
rithms, MCMC and SMC, to sample and/or maximize high-
dimensional probability distributions. These methods enable
one to perform likelihood or Bayesian inference for complex
nonlinear non-Gaussian models, procedures which were out of
reach just a few years ago. It is our belief that these methods
have numerous potential applications in signal processing.

We have only presented here a few applications. However,
MCMC techniques have recently been applied to solve a number
of traditionally “hard” problems found in signal processing and
telecommunications. For example, the spectral analysis problem
described in the section “Spectral Analysis” is addressed in [1].
Other applications include neural networks [3], target tracking,
blind multiuser detection in various CDMA systems (such as
DS-CDMA with multipath fading channels [53], nonlinearly
modulated CDMA systems [41], and space-time coded multicar-
rier CDMA systems [51]), blind equalization in various channels
(such as impulsive noise channel [49] and systems employing
Gaussian minimum-shift-keying modulation [52]), joint syn-
chronization, channel estimation and data detection in OFDM
systems [37], and inference of network internal delay and loss
characteristics from end-to-end measurements [30].

Similarly, SMC techniques have been used to address various
signal processing problems such as chirp tracking [4] and

receiver design in fading channels [12], [32], [50]. SMC-based
adaptive receivers have also been developed for several other
communication systems, such as multiple-antenna systems
[19], [31] and OFDM systems [54]. More discussions on the
applications of SMC in communications can be found in [18].
Furthermore, SMC-based signal processing methods have also
been developed for joint mobility tracking and handoff in cel-
lular wireless networks [55] as well as for target tracking in
sensor networks [33], [45], [48]. These methods also have appli-
cations in change detection, identification, and control [6].
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