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ECG Signal Analysis Through Hidden Markov
Models

Rodrigo V. Andredo*, Bernadette Dorizzi, and Jérome Boudy

Abstract—This paper presents an original hidden Markov model
(HMM) approach for online beat segmentation and classification
of electrocardiograms. The HMM framework has been visited
because of its ability of beat detection, segmentation and classifi-
cation, highly suitable to the electrocardiogram (ECG) problem.
QOur approach addresses a large panel of topics some of them
never studied before in other HMM related works: waveforms
modeling, multichannel beat segmentation and classification, and
unsupervised adaptation to the patient’s ECG. The performance
was evaluated on the two-channel QT database in terms of wave-
form segmentation precision, beat detection and classification.
Our waveform segmentation results compare favorably to other
systems in the literature. We also obtained high beat detection
performance with sensitivity of 99.79% and a positive predictivity
of 99.96 %, using a test set of 59 recordings. Moreover, premature
ventricular contraction beats were detected using an original
classification strategy. The results obtained validate our approach
for real world application.

Index Terms—Ambulatory electrocardiography, hidden Markov
models, on-line adaptation, PVC detection, signal segmentation.

1. INTRODUCTION

HE automatic analysis of the electrocardiogram (ECG) has

been the subject of intense research during the last three
decades and is well-known in the biomedical engineering field.
The particular interest for ECG analysis comes from its role
as an efficient noninvasive investigative method which provides
useful information for the detection, diagnosis and treatment of
cardiac diseases [1].

Presently, the ambulatory electrocardiography (AECG) is
particularly studied since it provides precise and rich infor-
mation from the clinical point of view for the diagnostic of
cardiac diseases. The automatic analysis of the AECG can
considerably help the physician, reducing the time spent to
analyse recordings of 24 and 48 h of duration [2].

The ECG signal has a time periodicity allowing to define an
elementary beat composed by specific waveforms, appearing
periodically in time. Fig. 1 shows a heartbeat and its respec-
tive waveform labels. The study of the waveform amplitudes
and patterns constitutes the basis of the ECG signal analysis.
For instance, one can easily show that the heart rate is esti-
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Fig. 1. Heartbeat observed on an ECG with its elementary waveforms and in-
tervals identified.

mated after detecting the QRS-complex from a beat sequence.
In the same way, the time-distance between two consecutive
QRS-complexes, known as RR-interval, is used to detect pre-
mature beats. We can extend this analysis to other conditions
like the ST-segment deviation from a long period, necessary to
early diagnosis of ischemia. As a result, reliable ECG analysis
depends directly on the ECG beat segmentation results [1], [3].

Most works in this field employ heuristic rules to segment
heartbeat automatically from the ECG signal after performing
a suitable preprocessing technique [4]-[9], and many authors
underline the advantages of the wavelet transform. The mul-
tiscale decomposition improves robustness, when the signal is
corrupted by noise [6], [10], [11]. On the other hand, regarding
the beat classification task, a large number of methods have al-
ready been proposed. In general, the classification approaches
are heuristic [12]-[14], namely decision trees and fuzzy logic
[15], and statistics, namely discriminant analysis [15], hidden
Markov models (HMMs) [16], neural networks [17]-[21], and
statistical ruled based systems [22]. Among the statistical ap-
proaches, the HMMs have drawn attention since Coast’s pio-
neer work [23], [16].

In the approach of Coast et al., the HMM topology keeps the
beat structural characteristics while the model parameters take
into account the statistical nature of the observations [16]. The
HMMs can model a waveform sequence namely, the duration
of each waveform and interval within a beat [16]. Moreover, the
intra-individual variability of the beat length, particularly due
to the heart rate variations, can be incorporated into the model
state transitions. Another advantage of the HMMs is their ability
to carry out at the same time three different tasks: beat detec-
tion, segmentation and classification. Furthermore, the HMMs
replace the heuristic rules commonly used for waveform detec-
tion, which generally requires thresholds. Following Coast et
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al., other works using HMMs were implemented specially to
the isolated beat segmentation problem aiming at detecting the
P wave [24], [25].

In this paper, the HMMs are used to carry out beat detection
and segmentation. Our main contributions are based on the fol-
lowing [26], [27].

1) Waveform modeling (and not beat modeling) using generic
HMM (trained through examples from several individ-
uals). In this way, HMMs are trained taking into account
the morphology diversity of each waveform.

2) Better waveform segmentation precision by adapting a
generic model to each individual. The model adaptation
is done in an unsupervised way, eliminating waveform
manual labeling [16].

With regard to the classification problem, our system takes
advantage of two complementary approaches: statistical and
heuristic. As a result, it was not necessary to model before-
hand different beat abnormalities using specific HMM. Each
abnormal beat class (e.g., premature ventricular beats) can be
taken into account by only adding new rules associated to it.

Finally, a fusion strategy which explores information
obtained from multiple channels is proposed to be a postpro-
cessing phase aiming at making the beat segmentation and
classification tasks more reliable and efficient.

This paper is organized as follows. In Section II, we describe
our beat segmentation approach based on HMMs. Section III
presents our ECG analysis system which performs both beat
segmentation and classification. Section IV validates the system
through experiments on the QT database. The paper ends with
conclusion and future works.

II. MARKOVIAN APPROACH TOWARDS AUTOMATIC ECG
SEGMENTATION

A. HMM Overview

A HMM is a stochastic state machine, characterized by the
following parameter set:

A=(A,B,) ()

where A is the matrix of state-transition probabilities, B is the
observation probability, and = is the initial state probability.

One way to characterize HMMs is by the structure of the tran-
sition matrix A, which can be fully connected (ergodic). How-
ever, the left-right structure is more appropriated to model the
ECG signal (see Section II-C).

The observations of a HMM O = (0102 ... or)are con-
tinuous signal representations (signal features), modeled by a
Gaussian probability density function of the form

TU'_l

1 1
bj(Ot)— WGXP{—i(Ot—M) j (Ot—ﬂj)}

2

where o, is the observation vector at time ¢, g, is the mean
vector, and Uj is the covariance matrix at state j. The size of
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the observation vector o; is related to the number of distinct ob-
servation symbols (continuous or discrete) used to represent the
signal.

The parameters estimation can be seen as an optimization
problem. The solution of this problem can be obtained by max-
imizing locally the likelihood P(O|A) of the model A using an
iterative procedure such as the Baum-Welch method (which is
a particular case of the expectation-maximization method) or
using gradient techniques [28]. In the speech recognition field,
where the HMMs became so popular, the Baum-Welch method,
also called as forward-backward algorithm, is considered a stan-
dard for HMM training. Furthermore, in biomedical applica-
tions using HMMs, this method is also widely employed [29].

B. Parameter Extraction

This phase allows the representation of the ECG signal by
an observation sequence. We have chosen to use a continuous
wavelet transform to perform this task, corresponding to dif-
ferent frequency bands [30].

The mother wavelet must match as much as possible the shape
presented in the signal. According to the work of Torrence and
Combo [31], the Mexican Hat is more suitable to peak detec-
tion because of its shape and good time resolution. However,
few works have explored so far this wavelet function to ECG
analysis (particularly in the QRS detection problem) [21], [32],
remaining more predominantly the choice of other functions
like the quadratic spline [6], [11] and the first derivative of the
Gaussian function [10].

The Mexican Hat function is defined as

M—1
W)= 3 1 lm] x 5 [m — n]
m=0
3)
- 1 2 n\2 1 ;
Piln] = N [1 - (2—]) } exp [5 X (n/ZJ)Q}
“

where f is the sampled signal composed of M samples, 1); is the
Mexican Hat wavelet function at the dyadic scale j for j € N,
and —5 < n < 5 for n € Z. Besides the wavelet type, it is
necessary to specify the scales to be employed. We have noted
that the first 4 dyadic scales (scale s = 27, where j =1, 2, 3 and
4) contain most of the signal information, and that the scales
higher than s = 24 can be excluded. Moreover, we have also
observed after performing some experiments that the scale 7 =1
is very affected by noise and that its elimination does not imply
a loss of performance. For more details on wavelet transforms,
the reader may refer to [33].

C. Heartbeat Modeling

As shown previously (Fig. 1), a heartbeat can be seen as a
waveform sequence, separated by isoelectric segments (PQ and
ST segments). Moreover, these waveforms are produced cycli-
cally. Therefore, it is reasonable to consider each waveform or
segment as a state of a left-right Markov model. From this anal-
ysis, Coast et al. proposed the use of a HMM to segment the
ECG signal [16] (see Fig. 2).
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Fig. 2. Left-right HMM model of a normal beat [16].
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Fig. 3. Beat model composed of connected HMM of each beat waveform and
segment. The transition from P to ISO models ECG signals with P waves not
conducted by a ventricular activity. The transition from ISO to PQ models ECG
signals with supraventricular arrhythmias without visible P wave.

The HMM topology of Fig. 2 is suitable to model a normal
beat. By removing some states from this topology, other beat
types can be modelled. Coast et al. underlined, however, one
drawback of their model, where for example an atrial activity
not conducted (i.e., a heartbeat where the P wave is not followed
by a QRS complex) cannot be modeled [16]. Another drawback
is related to the way the model is trained. It means that, if one
wants to model a new P wave morphology (or a QRS complex),
a complete new beat model must be built. Thus, when several
morphological classes of one beat waveform are present, several
beat models have to be built, increasing the complexity substan-
tially.

These remarks drove us to conceive one beat model based on
connected elementary HMMs of each waveform and segment,
called elementary waveform models (see Fig. 3). Consequently,
we will be able to model a great variety of beats simply by com-
bining the elementary waveform models.

The beat model of Fig. 3 can take into account other beat types
through the arcs or transitions among the waveform models, as
follows.

1) Transition from P wave model to ISO model: This transi-
tion represents P waves not conducted by a ventricular ac-
tivity (typical symptom of bundle block [34]).

2) Transition from ISO to QRS model, skipping P wave model:
In this case, ventricular and supraventricular arrhythmias
without visible P wave can be modeled [34].

The transitions are equiprobable and considered to be equal

to one. It is important to point out that this model is consistent
with the constraints of the heart electrical activity.

D. Generic Model

Our first goal is to build a generic system which is adapted
to a population. Certainly, considering the ECG signal diver-
sity among different individuals, we cannot expect from such
a system an optimal result for each individual. Therefore, this
generic system will be the starting point before building, for
each individual, a more adaptive model.
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1) Training: The HMM training consists of estimating the
model parameter set A = (A, B,r) from the observation se-
quence O. The HMM parameter estimation is carried out by the
Baum-Welch method (expectation-maximization method) [28],
[36]. Each HMM is adapted to its respective waveform patterns.
The number of states of each model was specified empirically
after some simulations. Starting with one state per model, we
increased the number of states until we achieve a good compro-
mise on complexity versus performance: 3 states for the ISO, P
wave, and QRS-complex models; 2 states for the PQ and ST seg-
ment models; 6 states for the T wave model. It must be pointed
out that the number of states must be proportional to the du-
ration of each beat waveform [34]. Additionally, histograms of
the observations values for every state of every HMM were con-
structed. It was observed that most of the histograms appeared
to be well fitted by a single Gaussian. For this reason, we con-
sidered only one Gaussian density function per state.

After training one HMM for each waveform, the multiple
model training procedure starts. The number of models for each
waveform depends on the variety of morphologies present in
the training set. The number of models used to represent the
QRS-complex is greater than the number of models of the other
waveforms due to its variability. The training algorithm is called
HMM likelihood clustering, and it was firstly applied by Ra-
biner to the speech recognition problem [35]. We have used 4
HMMs for the QRS complex waveforms, 2 HMMs for each of
the other waveforms, and 1 HMM for the ISO model.

2) Automatic ECG Segmentation: The ECG segmentation
can be seen as the decoding procedure of an observation se-
quence in terms of beat waveforms. The main point of our
decoding procedure is the use of the one-pass algorithm [28],
which was originally conceived to perform online decoding
when working with connected HMMs. This method has been
widely employed in the speech recognition field [28] to reduce
significantly the complexity of the decoding problem. It works
on two dimensions: time and level. In our case, we have as-
sociated the level to the waveform position in the beat model.
Hence, level 1 represents the isoelectric line or ISO model, level
2 the P wave model, and so on until level 6 which represents
the T wave model.

The main idea of the method is to do a time warping between
the observation sequence and the connected HMMs through a
Viterbi decoding procedure. However, to pass from one level [
to another level /41, we only consider the most likely model
from level /.

E. Individualizing the Generic Model

Generic model is able to provide waveform segmentation of a
beat sequence no matter the individual, even if the individual is
not present in the training set. However, the performance of the
system in terms of segmentation precision (particularly of the P
wave) decreases when working on signals very different from
those present in the training set. For this reason, we expect a
significant performance improvement after adapting the generic
model to the individual’s specific waveforms.

The individualization of the generic model corresponds to the
re-estimation of each generic HMM on a new training set (spe-
cific to the individual) via Baum-Welch method. The training set
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is built from the segmentation and labeling of the ECG signal
in an unsupervised way by the one-pass algorithm (see Sec-
tion II-D). We propose a HMM adaptation strategy divided into
the following two stages.

1) Stage 1: The generic models are adapted one time to the
ECG signal morphologies of the individual using the first
frame (20 s.) of the ECG signal. At this stage, we match
the segmentation results generated by the generic model
with those generated by a heuristic approach in order to
fit more precisely the different parts of the heartbeat to
the individual’s specific waveforms. It will be described in
more detail later.

2) Stage 2: This stage aims at adapting the Markov model
to the individual’s signal fluctuations which can happen
during long-term recordings. The Markovian approach is
already able to precisely segment new individual’s heart-
beats. The covariance matrices of the Gaussian density
functions are updated only when the matrix coefficients are
larger than the previous one.

Stage 1 adaptation is performed on the observation sequence
extracted from the ECG and more precisely on the scale j =2, on
which the QRS-complexes are in general better detected. One
simple threshold corresponding to 25% of the maximum am-
plitude is then employed to detect the QRS peaks. It is enough
to detect true QRS complex and to reject low amplitude peaks
due to artifacts. Afterwards, the RR interval between consecu-
tive peaks is checked. For RR intervals below 200 ms, only the
highest peak is considered [13], [14]. The second goal of the
heuristic approach is to adjust the waveform onset and offset
labeled by the generic model according to the waveform ampli-
tudes specific to the individual. The following two algorithms
were implemented.

1) QRS-complex onset and offset correction: This procedure
consists of following the ECG signal slope around the
QRS-complex onset and offset (labeled by the generic
model) until the slope value is small enough and the signal
amplitude decreases below 0.02 mV [37]. Then a new
value of onset or offset is calculated. The ECG signal
is processed beforehand by a low-pass filter in order to
reduce the high frequency noise [37].

2) P wave onset and offset correction: P wave correction is
carried out at scale 5 =2 of the Mexican Hat wavelet trans-
form. We have considered the P wave peak as the local
maxima before the QRS-complex onset and the P wave
onset and offset as two negative local minima located, re-
spectively, before and after the local maxima.

Since the magnitude of one ECG recording is not necessarily
the same as the one of the training set of the models, we com-
pute a gain factor G during the first ECG signal frame. The gain
factor GG is obtained by dividing the peak-to-peak mean ampli-
tude of the QRS-complexes of the training set by the peak-to-
peak mean amplitude of the QRS-complexes detected at the first
recording frame.

III. AUTOMATIC BEAT SEGMENTATION AND CLASSIFICATION

Our HMM approach described in Section II becomes layer O
of a two-layer architecture as follows (see Fig. 4): In layer 1,
the waveforms are gathered to build a beat sequence. Each beat
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Fig. 4. General block diagram of our beat segmentation and classification
system.
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Fig. 5. Graphical illustration of the certainty and uncertainty regions of three
beat classes employed to classify the RR intervals: (a) certainty regions: prema-
ture, normal, and escape beat; (b) uncertainty regions: neither-normal-nor-pre-
mature and neither-normal-nor-escape beat.

is then classified as normal or abnormal. Only two classes were
considered: normal beats and premature ventricular contraction
(PVC) beats.

A. Premature Ventricular Beat Detection

PVC beats have two well defined features which are sufficient
to distinguish this abnormality from the other ones: beat prema-
turity and enlarged QRS morphology.

1) Premature Beats: One beat is premature (earlier than ex-
pected) when the length of its interval RR is below a threshold
TrRr. On the other hand, when the interval RR length is above
a threshold Ty, the beat is classified as normal or escape beat
(later than expected). We compute the threshold Trr adaptively
taking the mean value prg of the last Ngr normal RR intervals.

Beat classification in terms of the RR interval is very sensi-
tive to the threshold. The most suitable way to overcome this
problem relies on the definition of an uncertainty region at the
class boundary (see Fig. 5). Thus, the system becomes more ro-
bust to interval RR variations closer to the threshold. The new
boundaries are placed in positions (1 +¢) x prR around the
mean value p g R. The value ¢ is empirically estimated after sim-
ulations on a training set composed of 19 recordings (see Sec-
tion IV-A).

In addition, we added a decision logic to manage the cases
where the RR interval falls in the uncertainty region: a) when
two consecutive intervals RR[n — 1] and RR[n] are in the same
uncertainty region, the beat n — 1 becomes normal; b) when
beat n — 1 is neither-normal-nor-premature and the beat n is
neither-normal-nor-escape beat, beat n — 1 becomes premature.
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The decision logic b) classifies a doubtful beat as premature,
since this beat is followed by a compensatory pause at time 7.

2) Ventricular Beats: A ventricular beat is characterized by
a QRS-complex wider than the normal size due the existence
of a depolarization wave originating in an ectopic pacemaker in
the ventricles, instead of taking the fast and normal pathway of
the conduction system [34], [40]. To classify a ventricular beat,
it is necessary to estimate the individual’s normal shape of its
QRS-complex.

In this paper, the QRS-complexes are labeled normal or ab-
normal by the likelihood of each QRS-complex given by the
HMM. The normal QRS is defined as the individual’s dominant
model A\; among several slightly different generic QRS-com-
plex HMMs in the first 20 s. of the ECG recording. The HMM
which has segmented most of the QRS-complexes is defined
as the individual’s dominant HMM MA,. Then, the likelihood
P(O]Ay) of every QRS-complex observation O given the dom-
inant model A4 is computed. An abnormal QRS is defined in the
remaining of the ECG recording when the likelihood values of
the observation sequence O of each QRS-complex segmented
given the dominant model A, is smaller than 7qrs. If the QRS
complex is normal the decision threshold TqRrs is readapted.

B. Multichannel Fusion

Our system was conceived for a single-channel context. How-
ever, when multichannel information is available, it is possible
to explore the complementarity of the information among chan-
nels in order to improve performance. For instance, a beat de-
tection error can occur in only one lead, since the QRS shape
and the signal to noise ratio may differ among channels. In this
situation, the only way to certify that a beat has been well de-
tected is by comparing the information from different leads.

Even though we guarantee that all beats were correctly de-
tected, the classification task is still prone to errors when only
one channel is available. Indeed, the QRS shape of some ab-
normal beats may not be identified in some leads (e.g., prema-
ture ventricular beats may be misclassified whenever the QRS
shape is not clearly wider that the normal one).

The discussion above leads us to take advantage of multiple
leads. For this reason, we performed two types of fusion, namely
one at layer 0 and another at layer I of our system. The fusion
strategy at layer 0 aims at confirming beat detection, whenever
itis detected in all channels available. We have considered that a
beat detected in one channel corresponds to the one detected in
another channel when the distance between the labels is shorter
than 200 ms (the label is placed on the QRS-complex peak of
highest amplitude). In that case, a simple logic AND operation
is used. On the other hand, the goal of the fusion strategy at layer
1 is to use the complementarity of each channel. In fact, some
abnormal beats are not detected in all leads. Thus, by using a
simple logic OR, a beat is classified as abnormal only if there
exist at least one lead where such a phenomena occurs.

IV. EXPERIMENTS

A. QT Database

The QT database fills a gap in the available ECG databases,
since it provides manual labels of the beat waveforms: P wave,
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TABLE 1
NUMBER OF EXAMPLES OF EACH BEAT WAVEFORM IN THE TRAINING SET

QTDB — HMM training

Waveform Number of examples
P wave 660
PQ segment 719
QRS-complex 770
ST segment 339
T wave 760
ISO (isoelectric line) 697

TABLE II
NUMBER OF NORMAL (N) AND PVC BEATS IN BOTH TRAINING AND TEST SETS

Corpus Normal beats PVC beats

Training 20809 321
Test 60168 1375
Total 80977 1696

QRS-complex, T and U waves [39]. It also gathers several
recordings from different databases belonging to the Physionet
Bank [40], including the MIT-BIH Arrhythmia Database, the
European Society of Cardiology ST-T Database, and several
other ECG databases collected at Boston’s Beth Israel Dea-
coness Medical Centre. Additional recordings were also chosen
from patients who experienced sudden cardiac death, and
age-and-gender matched patients without diagnosed cardiac
disease.

This database contains 105 two-channel recordings of 15 min,
sampled at 250 Hz. All recordings include labels of waveform
peaks and boundaries of at least 30 beats, given a total of 3623
beats. Two independent set of annotations were made by two
cardiologists. The first expert annotated all recordings while the
second one annotated only 11 recordings. The second set of an-
notations was not used in this paper because it was less represen-
tative [11]. Finally, 82 files have all their QRS complexes man-
ually labeled and the beat class specified among more than 13
different beat families. These labels correspond to the original
annotations provided by the source database. It is important to
note that the type of the ECG leads associated to each channel is
different for each recording, according to the physician’s choice.
Additional labels generated by the Laguna’s approach are sup-
plied with the database [5], [39].

We divided the QT database in different training and test sets
as described below.

1) Layer 0—HMM Training and Test Sets: The QT data-
base offers a great variety of beat morphologies and noise
background. The training set is composed of 77 recordings,
where 10 labeled beats were randomly selected from channel
1 of each recording. Then, the selected beats were segmented
in both channels 1 and 2 by means of the waveform labels. P
waves masked by noise were removed from the corpus. Table I
summarizes the training set, used to train the generic models.
Furthermore, a second random selection of 10 labeled beats
from each recording was necessary to carry out supervised
training of the individual’s HMM. Finally, a test set including
all 105 recordings of the QT database was used to evaluate the
system performance.
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TABLE III
‘WAVEFORM SEGMENTATION PRECISION IN MILLISECONDS (MEAN gt AND STANDARD DEVIATION ) BETWEEN THE AUTOMATIC APPROACHES AND THE
MANUAL LABELS OF THE QT DATABASE, USING ALL 105 RECORDINGS

Precision in ms
P wave QRS-complex T wave
Approach Onset Offset Onset Offset Onset Offset
H c M o M c M c H c H c
(1) generic HNVM training 160 | 182 | -23 | 152 | 11,7 | 84 29 10,5 || -15.1 | 240 | 3.1 299
(it) individual's HMM traning | 1.2 144 | -54 | 110 4,7 7.8 -4.2 89 | -13.9 | 18.0 | 149 | 240
(1) generic HMM adaptedto | ) ¢ | 136 | 61 | 117 | 91 | 76 | 26 | 102 | 08 | 93 | 121 | 215
each individual
Laguna 140 | 133 | 01 | 123 | -3.6 8.6 -1.1 83 - - 13.5 | 270
Martinez 2.0 14.8 19 12.8 4.6 7.7 0.8 8.7 - - -1.6 18.1
2) Layer 1—Training and Test sets: The QT database aims TABLE IV

particularly at evaluating segmentation approaches. However,
the number of beats labeled as PVC in this database (1696 beats)
is sufficient to test a PVC classification approach.

We took 19 out of the 82 recordings containing beat labels
with the purpose of estimating the parameters employed in our
PVC detection approach. The other 59 recordings compose our
test set. The total number of normal and PVC beats is shown in
Table II. We point out that the beats which are neither normal
nor PVC were considered as normal in our experiments, which
introduces a bias in the results. In fact, these beats correspond to
3% of the number of normal ones, which validates the protocol.

Three HMM training methods have been implemented: 1)
Generic model training (Section II-D); 2) Individual’s model
training; 3) Generic models adapted to each individual (Sec-
tion II-E). The individual’s model training method is similar to
the generic model training, except that the training set is taken
from a single individual. Given the fact that the individual’s
training method works with a restricted number of examples for
each individual, only one HMM per waveform was employed.

B. Layer 0 Results

The experiments at layer O evaluate the segmentation perfor-
mance of our HMM approach in terms of the following two pa-
rameters.

1) Precision: The onset and offset points of every detected
waveform are compared to the manual labeled ones. As a
result, we obtain a mean p and a standard deviation o of
the errors between our approach and the physician. The
standard deviation for all recordings is computed as the
average of the standard deviation of each recording [11].

2) Waveform detection: It gives the percentage of waveforms
correctly detected, according to the labels produced by a
physician.

In the first experiment, we compare our Markovian approach
with the Laguna’s and Martinez’s heuristic approaches [5], [11],
[41], on all the 105 recordings of the QT database, as shown in
Tables IIT and IV. The generic model training method presents
good segmentation results, but they are clearly inferior to those
of the individual’s model training method. In fact, the difference
in performance is more visible on some beat waveforms (P-wave
and the T-wave offset) having low amplitude, since these cases
demand a more precise identification of the waveform onset and

PERCENTAGE OF WAVEFORMS CORRECTLY DETECTED ACCORDING TO THE
MANUAL LABELS OF THE QT DATABASE

Approach Detection (%)
Pwave [ QRS | T wave
(i1) individual’s HMM training | 98,65 | 99,92 | 99,94
(1) generic HMM training 93,80 | 99,94 [ 99,97
(iii) generic HMM adapted to 9643 | 99.92 | 99.94
each individual
Laguna 97,70 | 99,92 | 99,77
Martinez 98,87 | 99,97 | 99,00
Number of manual labels of the

QT database 3194 | 3623 3543

offset. On the other hand, the adaptation of the generic models to
each individual improved the generic model segmentation pre-
cision as expected.

Results from Table III point out that our approach reaches
similar performances to those considered as the best one in the
literature on the QT database [11] (4 ms can be seen as a seg-
mentation error of only one sample between the automatic and
the manual labeling, since the sampling frequency is 250 Hz). It
is important to remark, nevertheless, that Laguna and Martinez
computed the segmentation precision considering for each de-
tected point (onset and offset) the channel which produced the
less error [11]. Our strategy is different; we have used only one
channel per recording in order to be coherent with the fact that
the physician chooses the lead with the best signal quality be-
fore segmenting it.

Regarding the wave detection results from Table IV, we note
that the P wave detection accuracy of the generic model is 5%
less than the one of the individual’s model, while the generic
models after adaptation to each individual is only 2% less. This
accuracy reduction compared to the individual’s model did not
occur to the QRS-complex detection. Concerning the generic
model adapted to the individual, its reduced accuracy in terms
of P wave detection can be explained by the influence of three
particular recordings (sele0116, sel38, and sel40) with low am-
plitude P wave. Moreover, our amplitude control can affect in
certain cases the P wave detection accuracy, since it changes the
signal magnitude according to the average of the first QRS-com-
plex peaks.
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TABLE V
QRS-COMPLEX DETECTION PERFORMANCE (IN TERMS OF SENSIBILITY SE AND
PP) ON A TEST SET OF 59 RECORDINGS

QRS-complex detection

Channel TP FP FN  Se(%) PP (%)
1 61468 258 75 99,88 99,58
2 61444 1248 99 99,84 98,01
Fusion 61414 24 129 99,79 99,96

In some particular cases where the P wave is hardly detected,
it is convenient to perform manual labeling of these waves
yielding to a suitable P-wave model re-estimation. Indeed,
the individual’s model results showed that a small number of
examples is enough to train appropriately the HMM. All these
considerations are not valuable for the heuristic approaches.

Finally, the experiments underlined the segmentation preci-
sion of our Markovian approach. It is still possible to improve
the system by modeling explicitly the waveform duration [35].
As a result, we could avoid to segment the waveforms whose
duration deviates too much from the estimated one.

C. Layer I Results

We evaluated at layer I our system ability in detecting PVC
beats using a test set of 59 recordings from the QT database
(see Section IV-A). Only the segmentation results provided by
the adaptation of the generic models to each individual were
taken into account. Two criteria were employed in accordance
to the recommendations to assess performance of beat detection
approaches [42]: sensibility and positive predictivity (PP). Sen-
sitivity (Se) is related to the fraction of events correctly detected

TP
" TP +FN

where TP (true positive) is the number of matched events and
FN (false negative) is the number of events that were not de-
tected by our approach. The denominator of (5) gives the total
number of annotated events in the test set. On the other hand,
PP gives the ability of detecting true events

Se 5)

TP
" TP+ FP

where F'P (False Positive) is the number of events detected by
our approach and nonmatched to the manual labels. A detected
beat matches the manual label when the interval between both
labels is shorter than 150 ms [42].

We assessed both QRS-complex and PVC beat detection per-
formances, as shown in Tables V and VI, respectively. It can be
observed that the QRS-complex detection results after fusion
attains Se = 99.79% and PP = 99.96% (see Table V). Con-
cerning the PVC detection accuracy (see Table VI), the effect
of the fusion strategy improving both sensibility and PP is very
clear.

It can be concluded from Table V that our Markovian ap-
proach achieves high beat detection performances, confirming

PP (6)

1547

TABLE VI
PVC BEAT DETECTION PERFORMANCE (IN TERMS OF SE AND PP) ON A TEST
SET OF 59 RECORDINGS

PVC detection
Channel P FP FEN  Se(%) PP (%)
1 885 453 490 64,36 66,14
2 809 144 566 58,84 84,89
Fusion 1199 201 176 87,20 85,64

the results of layer 0 (Section IV-C). Our system was evalu-
ated in terms of PVC beat detection through a nonsupervised
classification approach. We achieved, respectively, 87.2% and
85.6% of PVC detection sensibility and PP. The previous work
of Coast [16], acting on a small test set of 6 recordings and car-
rying out supervised training of the HMM, achieved 97.3% of
sensibility and 85.7% of PP. Despite the difference in terms of
sensibility between both approaches, the good results obtained
by our approach, which uses a simple set of rules and works in
a nonsupervised way, validates it in a realistic application.

False beat detection is almost insignificant since PP attains
nearly 100%, thanks to the fusion strategy (see Table V). Re-
liable beat detection is a main issue for the automatic systems.
Likewise the fusion strategy exploring the complementary in-
formation of two ECG channels improved significantly the PVC
beat detection performance (see Table VI).

These results show that knowing only the dominant QRS
shape of each patient, and thanks to some additional rules, our
system is able to classify morphologies only from the modeling
of elementary waveforms. This is a real improvement on other
HMM approaches which perform the same classification task
using supervised statistical learning [16].

V. CONCLUSION

In this paper, we have proposed an automatic beat segmenta-
tion and classification system based on a Markovian approach.
The system carries out ECG signal analysis in two layers. At
layer 0, the ECG signal is segmented in terms of the beat wave-
forms: P wave, PQ segment, QRS-complex, ST segment and T
wave. This is performed thanks to a robust and precise wave-
form modeling through independent HMMs. Then, at layer 1,
the system identifies premature ventricular contraction beats,
thanks to the use of some simple rule based system.

Our segmentation approach is original in the sense that the
segmentation task is carried out by generic HMM of each beat
waveform. The HMMs were trained on large set of waveform
examples from different individuals. This modeling gives us a
good representation of the morphologies that can be found in
an ECG. One important feature of our approach is the generic
model adaptation strategy to each individual, which is nonsuper-
vised (there is no need of manual labels).

The use of rules plays an important role for beat classification.
Indeed, our system does not require a HMM to model every spe-
cific abnormal beat class. Instead, a set of rules is used to char-
acterize each class from the characteristics of the elementary
waves.
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Finally, we combined multichannel! complementary infor-
mations, using a fusion strategy adapted to the needs of our
system.

The observations modeled by the Markovian approach were
obtained after a wavelet transform of the ECG signal. The Mex-
ican Hat mother wavelet was chosen considering, among other
things, its ability to peak detection. It is important to remark,
however, that a quantitative study of the influence of different
wavelets in system performance is worth to be conducted. This
study will probably lead to the use of different combination of
wavelet transforms combined together, in order to take benefit
of their respective qualities.

Our system was conceived with the objective to perform au-
tomatic online ambulatory ECG analysis. This is a main chal-
lenge due in particular to the diversity of morphologies which
are most corrupted by noise and to the intra-individual wave-
form variability. So a plausible test would be to offer some tools
in this direction without supplying a global treatment by a physi-
cian. We assessed the system performances using the QT data-
base as it corresponds to the ambulatory conditions. In the first
experiment, we have studied the beat segmentation precision,
showing that our results compare favorably to other works on
the same database. Moreover, our system was evaluated in terms
of PVC beat classification, presenting once more good perfor-
mance. The performances obtained allow us to point out the ad-
vantages of our approach according to the state of the art.
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