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Abstract
The development of an advanced human–machine interface has always been an interesting research topic in the field of rehabilitation, in which

biomedical signals, such as myoelectric signals, have a key role to play. Myoelectric control is an advanced technique concerned with the detection,

processing, classification, and application of myoelectric signals to control human-assisting robots or rehabilitation devices. This paper reviews

recent research and development in pattern recognition- and non-pattern recognition-based myoelectric control, and presents state-of-the-art

achievements in terms of their type, structure, and potential application. Directions for future research are also briefly outlined.
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1. Introduction

As many disabled people have difficulty accessing current

assistive robotic systems and rehabilitation devices, which have

a traditional user interface (such as joysticks and keyboards),

more advanced hands-free human–machine interfaces are

necessary. Myoelectric signals (MES) contain rich information

from which a user’s intention in the form of a muscular

contraction can be detected, using surface electrodes. It is clear

that amputees or disabled people are able to generate

repeatable, but gradually varying, myoelectric signal patterns

during different levels of static muscle contraction or dynamic

limb motion. These patterns can be used in a control system,

known as a myoelectric control system (MCS), to control

rehabilitation devices or assistive robots.

The most important advantage of myoelectric control over

other types of control system, such as body-powered mechanical

systems, is its hands-free control; according to a user’s intention.

MES is non-invasively detected from the surface of skin, and can

be adapted for proportional force or speed control in a control

scheme. In myoelectric control, the muscle activity, which is

required to provide a control signal, is relatively small and can

resemble the effort required from an intact limb. Myoelectric

control is now a competent alternative for mechanical body-

powered systems in commercial functional prosthesis. It

provides more proximal functions and cosmetic appearance.

Moreover, wide spread potential applications for myoelectric

control have been reported; including multifunction prosthesis

[1,2], wheelchairs [29,33,34], gait generation [7,14], grasping

control [15,25,35], virtual keyboards, gesture-based interfaces

[28], virtual worlds [26], and diagnoses and clinical applications,

such as functional neuromuscular stimulation (FNS) [12,16], and

detection of preterm births based on uterine myoelectric signals

[23]. However, despite many advances, capabilities and

potentials, myoelectric control has a significant distance from

professional and commercial applications. It needs complemen-

tary interfaces to deal with all requirements for fine control and

suffers a lack of sensory feedback in comparison to traditional

control methods.

Since the 1960s when the first clinically viable myoelectric

prosthesis was presented by Russian experts, myoelectric

control has not seen any revolutionary development, rather

incremental evolution. Important achievements in the last 40

years have mainly been pioneered by universities in North

America, such as North-Western University, Temple Univer-

sity, Chalmers University, the University of California, the

University of New-Brunswick, and Massachusetts Institute of

Technology; as well as some Japanese and Italian universities

[45]. Achievements in myoelectric control can be summarized

in three distinct generations. The first generation often offers

ON/OFF control schemes with a single speed or single rate of

actuation. The second generation includes a state machine,

large-scale threshold manipulation, signal amplification, the

adjustment of muscle contraction rate, and proportional control.

The third generation incorporates programmable micropro-

cessors that allow an infinite range of adjustment of myoelectric

characteristics.
Application of a microprocessor in myoelectric control

(which is growing notably) benefits both functionality and cost. It

provides the ability to employ advanced signal processing

methods, and artificial intelligence (AI), as part of a control

system; as well as adapting easily, control options, and adjusting

input characteristics. It also allows more complex filtering of

signals, which results in increased responsiveness. Most

importantly, it accommodates pattern recognition-based control

schemes, which increase the variety of control functions, and

improve robustness. Myoelectric control systems can be divided

into two groups: pattern recognition- and non-pattern recogni-

tion-based [32]. In the former group, the desired classes of

functions are discriminated from signal patterns by classifiers,

and the variety of functions depends directly on classification

performance. In contrast, non-pattern recognition-based con-

trollers, which are mainly constructed on threshold control and/

or finite state machines, merely output limited and pre-defined

control commands based on a sequence of input signal patterns.

This paper reviews part of the numerous literatures that has

been published in the last 15 years, to clarify the state-of-the-art

in myoelectric control. It describes and categorizes the structure

of myoelectric control systems, and demonstrates various

approaches and methods applied to its components. It also

counts some potential applications that have been employed in

research works. The remainder of this paper is organized as

follows: the structure of pattern recognition-based myoelectric

control system is introduced in Section 2. Its components,

namely data segmentation, feature extraction, and classification

modules, are presented and analyzed in Sections 3–5. Online

training of a classifier is discussed as a subsection in Section 5.

Non-pattern recognition-based controllers are briefly discussed

in Section 6. Section 7 introduces potential applications and

open problems. Finally, conclusion, and future directions are

presented in Section 8.

2. Pattern recognition-based myoelectric control

Fig. 1 depicts the main components of typical pattern

recognition-based myoelectric control. Surface myoelectric

signals (MES) are collected by electrodes placed on the skin

over a user’s muscle. Electrodes are often accompanied by

miniature pre-amplifiers to differentiate small signals of

interest. Signals are then amplified, filtered, digitized via

standard EMG instruments, and finally transferred to a

controller, which includes four main modules:
� D
ata segmentation: Comprises various techniques and

methods that are used to handle data before feature extraction

to improve accuracy and response time.
� F
eature extraction: This module computes and presents pre-

selected features for a classifier. Features, instead of raw

signals, are fed into a classifier to improve classification

efficiency. Selection or extraction of highly effective features

is one of the most critical stages in myoelectric control

design.
� C
lassification: A classification module recognizes signal

patterns, and classifies them into pre-defined categories. Due



Fig. 1. A myoelectric control system based on pattern recognition.
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to the complexity of biological signals, and the influence of

physiological and physical conditions, the classifier should be

adequately robust and intelligent. It should be able to adapt

itself to changes during long-term operation, by exploiting

offline and/or online training.
� C
ontroller: Generates output commands based on signal

patterns and control schemes. Post-processing methods, such

as majority voting, which are often applied after classification

to eliminate destructive jumps and make a smooth output, are

included in this module too. Although some closed loop

control schemes, such as obstacle avoidance, can be

implemented using sensory feedback, myoelectric control

structurally suffers from a lack of feedback. High-level

feedback, such as visual or sensation information, can

improve the quality of control and dexterity. Due to limits in

applying feedback to a neuromuscular system, data fusion

applied in MES, and complementary sensory feedback, can

improve control performance. Each mentioned module has an

important and inevitable function. However, in some cases

modules may be omitted or merged together. For example in

Ref. [16], a time-delayed artificial neural network (TDANN)

was fed directly by raw signals. Hence, data segmentation

and feature extraction modules were merged into a complex

classifier.

Myoelectric control should provide a high degree of intuitive

and dexterous control, and offer a high level of performance.

Three important aspects of controllability in myoelectric

control are: (i) the accuracy of movement selection, (ii) the

intuitiveness of actuating control, and (iii) system response time

[2]. System accuracy is essential to a realistic realization of user

intention. It must be as high as possible, though it is difficult to

define a threshold of acceptability, as no definitive clinical

attempts have addressed this issue. With reference to the ‘‘hot

coffee problem’’, the slipping of a cup of hot coffee in a
prosthetic hand is not acceptable, even though the holding of a

cup succeeds in 99.9% of laboratory tests. Accuracy is a key

factor in developing a multifunction controller, and can be

improved by extracting more information from muscle states,

and adopting a powerful classifier that is capable of exploiting

this information. Furthermore, increasing the number of active

muscles that are used in data collection, and developing a

feature set with rich information, leads to a boost in system

accuracy.

The lack of intuitiveness originates in a gap between a user’s

current and required knowledge to perform an action. It is

achievable by increasing user’s knowledge, or by reducing the

required knowledge to perform an action. The former needs

extensive training, while the later necessitates the development

of powerful and intelligent user interfaces. Therefore, myo-

electric control should be capable of learning muscle activation

patterns that are used in a natural way to actuate motions. They

need to be adequately robust against varying conditions during

operation, and highly efficient in confronting novel data or

patterns. Intuitiveness relieves the mental burden on a user

during long-term operation and natural daily work.

The response time of a control system should not create a

delay that is perceivable by a user during operation. Having

smooth and continuous control imposes real-time constraints

on myoelectric control systems. There is a trade-off between

response time and accuracy; this will be discussed in detail in

the next section.

3. Data segmentation

A segment is a time slot for acquiring myoelectric data

considered for feature extraction. Due to real-time constraints,

an adjacent segment length plus the processing time of

generating classified control commands should be equal or less

than 300 ms. Furthermore, a segment length should be



Fig. 2. Classification error compared to segment length [1].
Fig. 3. Adjacent windowing techniques [2].

Fig. 4. Overlapped windowing techniques [2].
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adequately large, since the bias and variance of features rise as

segment length decreases, and consequently degrade classifica-

tion performance. Therefore, as depicted in Fig. 2, a trade-off in

response time and accuracy exists. However, Englehart and

Hudgins [2] highlighted that by adopting continuous segmenta-

tion on a steady state signal, segment length can be reduced to

128 ms, or even 32 ms, without a considerable decrease in

accuracy. Because of real time computing and high-speed

microprocessors, processing time is often less than 50 ms, and

segment length can vary between 32 and 250 ms.

A myoelectric signal comprises two states: (i) a transient

state emanating from a burst of fibers, as a muscle goes from

rest to a voluntary contraction level and (ii) a steady state

emanating during a constantly maintained contraction in a

muscle. Hudgins et al. [31] were the first to consider the

information content of a transient signal that comes with the

onset of a contraction. Although features extracted from a

transient state, roughly 100 ms after onset, show a high

capability for classification, it is not clear whether this is

because of electrophysiological determinism or other reasons,

such as skin stretch potentials or electrode motion. The main

weakness in using a transient state in myoelectric control is that

contractions should be initiated from rest. This prohibits

switching from class to class in an effective or intuitive manner,

and impedes the coordination of complex tasks involving

multiple degrees of freedom. Therefore, it is attractive to

consider the application of a steady-state signal in real-time

control.

Englehart et al. [1] showed that steady-state data is classified

more accurately than transient data, and classification suffers

less degradation with shorter segment lengths (Fig. 2). The rate

of classification degrades more quickly as the segment length of

transient data is decreased, than with steady-state data.

Therefore, steady-state data with a shorter segment length,

such as 128 ms, is more reliable if a faster system response is

required. A myoelectric signal has an undetermined state

during transition between different levels of contractions;

therefore, most errors in classification occur when switching

between classes. In addition, due to the intrinsic inertia of

devices, robots would not be able to respond to transitory states.

As a result, the detection and elimination of data segments
belonging to a transition period, can improve accuracy in a

controller. This can be most applicable when generating a

reliable training data set. Huang et al. [3] omitted three

segments of training data during each motion changeover; in

order to improve the quality of training data.

After segment length and the state of data, a third important

point in data segmentation is the data windowing technique.

There are two major techniques in data windowing: adjacent

windowing and overlapped windowing. In adjacent windowing,

as shown in Fig. 3, adjacent disjoint segments with a pre-

defined length are used for feature extraction; and a classified

intended motion emerges after a certain processing delay. Since

processing time is a small portion of segment length, the

processor is idle during the remaining time of the segment

length. The second technique uses the mentioned idle time of

the processor to generate more classified outputs. In this

technique, as shown in Fig. 4, the new segment slides over the

current segment, with an increment time less than the segment

length. This should be greater than the processing time, because

the processor must compute the feature set and generate a

decision, before the next segment arrives. Englehart and

Hudgins [2] investigated the effect of a segment increment on

classification performance. A smaller segment increment

produces a more dense but semi-redundant stream of class
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decisions that could improve response time and accuracy [2].

Farina and Merletti [36] showed that overlapped segments

merely increase processing time, without providing a sig-

nificant improvement in the accuracy of spectral features, such

as autoregressive coefficients. They also showed that a segment

length less than 125 ms, leads to high variance and bias in

frequency domain features.

3.1. Continuous segmentation

Continuous segmentation or continuous classification, was

presented by Englehart and Hudgins [2]. It performs full

utilization of the computing capacity of a processing system,

and produces classification results very fast. In continuous

segmentation, a dense stream of decisions is produced using

overlapped segments. Continuous segmentation relies on both

transient and steady-state myoelectric data. Post-processing

methods are designed to manage excessive classified output,

and improve system performance.

Majority voting (MV) is post-processing that was applied in

Ref. [2] after classification, to make a smooth and reliable

decision from a dense stream of class decisions. It includes the

last and next m-decisions for a given point, to generate a new

decision. The final decision of each point is merged based on

the greatest number of occurrences in 2m + 1 decision points.

The number of decisions used in MV is determined by

processing time and acceptable delay. Acceptable delay for a

system is the duration between signal onset for an activity, and

the first generated decision. It would be equal to the processing

time, if no post-processing was done, and would be equal to or

more than the processing time of an m-decision, if MV were

performed. The delay to compute the next m-decision for MV

should be less than the acceptable delay time of the system. As

mentioned, the accuracy of myoelectric control degrades

rapidly when decreasing segment length. Englehart and

Hudgins [2] point out that this degradation would be prevented

if majority voting were applied as post-processing after

classification. This is justified by the fact that further decisions

are available with shorter segments. Fig. 5, in which Ta and Td

represent segment length and acceptable delay, respectively,
Fig. 5. Classification error vs. segment length with/without MV [2].
indicate that classification rate remains approximately constant

when decreasing segment length (Ta).

Performance improves when a longer acceptable delay is

prescribed, as this allows more decisions in MV processing at

the expense of response time. Perhaps surprisingly, the best

performance is achieved when a segment length of 32 ms [2] is

employed. The implication is that with a very short analysis,

segment accuracy is not compromised, and very little storage

space is needed for necessary computations. This is very

important with regard to the implementation of a classifier as an

embedded system, where memory is usually a scarce resource.

Moreover, at 32 ms, system accuracy does not degrade

substantially; as acceptable delay is reduced from 256 to

128 ms, allowing a system to be much more responsive.

4. Feature selection

Feeding a myoelectric signal presented as a time sequence,

directly to a classifier, is impractical, due to the large number of

inputs and randomness of the signal. Therefore, the sequence

must be mapped into a smaller dimension vector, which is called

a feature vector. Features represent raw myoelectric signals for

classification, so the success of any pattern recognition problem

depends almost entirely on the selection and extraction of

features. A wide spectrum of features has been introduced in

literature for myoelectric classification. Features fall into one of

three categories: time domain, frequency (spectral) domain, and

time-scale (time–frequency) domain [44].

There are two approaches to feature evaluation: structural

and phenomenological approaches. In the former, features are

evaluated based on physical and physiological models,

considered in a signal generating process. In this approach,

selected features can be evaluated using synthetic signals

generated by mathematical models. Some characteristics of

features, such as bias, variance, and the level of sensitivity to

noise, can be measured in this approach. The phenomenolo-

gical approach roughly interprets stochastic signal notwith-

standing its generating structure. In this approach, which is

occasionally called the empirical approach, features are mainly

evaluated based on a rate of classification performance, and

their robustness.

4.1. Structural analysis

A myoelectric signal is formed by the superimposition of

individual action potentials (AP), generated by irregular

discharges of active motor units (MU) in a muscle. Merlo

et al. [24] modelled a surface myoelectric signal as

sðtÞ ¼
X

j

MUAP T jðtÞ þ nðtÞ

¼
X

j

X
i

k j f

�
t � ui j

a j

�
þ nðtÞ

where kj is an amplitude factor for the jth motor unit, f(�) the

shape of the action potential discharge, uij the occurrence time
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of MUAP, aj a scaling factor, and finally n(t) is the additive

noise.

Due to a high number of overlapped motor unit action

potentials (MUAP), and the irregular nature of MU discharge, a

surface signal might be considered a complex and non-

stationary stochastic signal. Characteristics of the signal are

extremely dependent on the level and duration of contraction,

dynamic or static muscle states, fatigue, and sweat from skin.

Surface myoelectric signals, particularly at higher contraction

levels, have frequently been assumed Gaussian processes with a

zero-mean value. Some studies have found that the distribution

is more sharply peaked near zero than Gaussian. Certainly, at

low levels of contraction, or near muscle fatigue, a signal is

more likely to be a Laplacian process with a zero-mean value

[42]. Bonato et al. [41] used a truncated Gaussian for signal

synthesis. Farina and Merletti [36] considered Shwedyk’s

model, and simulated a signal by filtering with Gaussian noise.

They made the simulated signal non-stationary by varying

generating parameters over time.

Data features computed over a time segment are inherently

an approximation of the true value of a feature, with an

associated bias and variance. They depend intensively on the

segment length, as discussed in Section 3, and the method of

feature extraction. Amplitude and power spectrums are two

main characteristics of a signal that are mostly employed in

feature extraction. Amplitude and its related features are often

investigated in time domain analysis, while a power spectrum is

usually studied in a frequency domain analysis. Using wavelet

tools, powerful signal features are extracted in a time-scale

domain. Fig. 6 illustrates the key parameters in each domain of

signal analysis.

4.1.1. Time domain features

Because of their comparative computational simplicity, time

domain features are the most popular in myoelectric

classification, and are based on signal amplitude. Considering

myoelectric as a zero-mean stochastic signal, amplitude can be

defined as the time-varying standard deviation (STD) of a

signal, which is proportional to the number of active motor

units and rate of their activation. Amplitude, which is
Fig. 6. Different domains of signal analysis [43].
represented by the features, indicates signal energy, activation

level, duration, and force. It is influenced by factors such as

electrode location, the thickness of tissues, the distribution of

motor units in muscle fiber, muscle conduction velocities, and

the detection system used to acquire the signal. To judge the

quality of amplitude features, the signal-to-noise ratio (SNR) is

defined as the mean value of samples in a segment divided by

their standard deviation. This ratio is a measure of random

fluctuation in signal amplitude, and higher SNR yields better

features. When force or posture is changing, this is no longer a

useful measure.

Mean absolute value (MAV) and root mean square (RMS)

are two well-known time domain features that are compared in

Ref. [42]. Theoretically, when a signal is modelled as a

Gaussian random process, RMS provides the maximum

likelihood estimation of amplitude in a constant force and

non-fatiguing contraction. In this model, SNRffi
ffiffiffiffiffiffi
2N
p

, where N

is the number of statistical degrees of freedom. MAV provides a

maximum likelihood estimate of the amplitude, when a signal

is modelled as a Laplacian random process. In this case

SNRffi
ffiffiffiffi
N
p

, which is 32% lower than a Gaussian-based model.

A Gaussian model and consequently RMS, fit better at a high

level of contraction; while a Laplacian model and MAV fit well

for low contractions and fatigued muscles. Clancy et al. [42],

experimentally found that a myoelectric signal model for a

constant-force, constant-posture, non-fatiguing contraction,

falls between Gaussian and Laplacian models; and on average

the Gaussian model fits better. They concluded that amplitude

estimated via MAV, may be at least as justified as RMS (both

from a theoretical and experimental perspective), and there is

little reason to argue between them.

Clancy et al. [42] also pointed out that signal whitening and

the application of multi-channel signals, reduce the variance in

amplitude features without increasing bias; while smoothing

reduces variance at the expense of increased bias. Farina and

Merletti [36] also performed a structure-based comparative

review of MAV and RMS. They established that pre-whitening

improves considerably amplitude features (by decreasing their

variance), though it causes a problem when recording a

calibration signal. They recommended an Autoregressive filter,

with an order of 3–5 for signal pre-whitening.

4.1.2. Frequency domain features

Spectral (frequency domain) analysis is mostly used to study

muscle fatigue, and infer changes in MU recruitment. A signal

spectrum is influenced by two factors: the firing rate of a

recruited MU in the low-frequency range (below 40 Hz), and

the morphology of the action potential travelling along a

muscle fiber in a high-frequency range (above 40 Hz) [21]. It is

time variant, and directly depends on the contraction force,

muscle fatigue, and inter-electrode distance. During a constant

voluntary contraction, even when there is no voluntary change

of muscle state, a myoelectric signal should be considered a

non-stationary signal; due to the inherent physiology of an

organ. However, it was shown in Refs. [22,37], that during

relatively low-level (20–30% MVC), and short-time contrac-

tions (20–40 s), it can be assumed to be wide-sense stationary.
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Moreover, at higher levels, 50–80% of MVC, it can only be

assumed locally stationary for a period of 500–1500 ms.

Therefore, a myoelectric signal can be assumed stationary in

real-time applications, even if it has variant spectral

characteristics.

Power spectral density (PSD) plays a major role in spectral

analysis. In wide-sense stationary stochastic signals, PSD is

defined as a Furrier transform of the autocorrelation function of

a signal. Its two characteristic variables, the mean and median

frequency ( fmn, fmd), provide some basic information about

signal spectrum and its change over time. Spectral analysis

based on a Fourier transform is widely developed using either

periodogram or parametric methods. In periodogram, PSD is

estimated using the square of a Fourier transform of a signal,

divided by signal length. This method has four problems,

namely (i) frequency leakage related to pre-windowing, (ii)

frequency resolution related to short-time segments (to

preserve a stationary signal), (iii) large estimation variance,

and (iv) an assumption of signal periodicity or signal zero equal

to outside an analysis interval.

In a parametric method, an autoregressive (AR) model is

used for PSD estimation. This may avoid the problems listed

above, but the main problem is the determination of its order.

There are several algorithms to determine this: including

Akaike information criterion (AIC), and the minimum

description length (MDL). However, neither of these work

very well for non-AR data. Moreover, they tend to model some

noise, especially certain motion artifacts, rather than a signal.

Farina and Merletti [36] presented a comparative review of

mean and median frequency estimation, using periodogram and

parametric methods in stationary and non-stationary conditions.

They showed that the order of AR models in spectral estimation is

not critical, and a model with an order of 10 works appropriately

for any segment length (Fig. 7). To reduce the computational

cost, AR models with an order 6, are the optimal choice in real-

time applications with a segment length of 250 ms. An AR model

outperforms the periodogram method in a short segment length;

both under stationary and non-stationary conditions. They point
Fig. 7. Changes in PSD features vs. AR model order [36].
out that a segment length of 250–500 ms for non-stationary

conditions is suitable for achieving less variance and bias in

estimation, but lengths shorter than 125 ms are to be avoided,

because they lead to high variance and bias. Segment overlapping

is not recommended, as it increases computation without

providing significant improvements in the quality of feature

estimation.

4.1.3. Time-scale features

In spectral analysis, a Fourier transform (FT) loses signal

time domain information, and cannot tell when a particular

event took place. This is acceptable for stationary signals, as

their properties do not change over time. However, myoelectric

signals contain numerous non-stationary or transitory char-

acteristics. A short-time Fourier transform (STFT), maps a

signal into a two-dimensional function of time and frequency;

but it merely obtains this information with limited precision

determined by the size of the analysis window. A wavelet

transform (WT) enables local analysis to be performed, i.e. to

analyze a localized area of a larger signal. Wavelet analysis

reveals data aspects that other techniques miss, such as trends,

breakdown points, discontinuities in higher derivatives, and

self-similarity. Furthermore, wavelet analysis can often

compress or de-noise a signal, without appreciable degradation.

Fig. 6 illustrates different domains in signal analysis.

There is a correspondence between scale and frequency in

wavelet analysis: a low scale shows the rapidly changing details

of a signal with a high frequency and a high scale illustrates

slowly changing coarse features, with a low frequency.

Therefore, WT acts as a ‘‘mathematical microscope’’, in which

one can monitor different parts of a signal by just adjusting

focus. As a generalization of WT, a wavelet packet transform

(WPT) allows the ‘‘best’’ adapted analysis of a signal in a time-

scale domain. The fundamental difference between STFT, WT,

and WPT is the way they partition the time-scale axis. STFT has

a fixed partitioning ratio; each cell has an identical aspect ratio

in time and frequency. The partitioning ratio of WT is variable;

the aspect ratio of cells varies such that frequency resolution is

proportional to centre frequency. This partitioning has been

shown to be more appropriate for many physical signals, but the

partition is nevertheless still fixed. WPT provides adaptive

partitioning; a complete set of partitions are provided as

alternatives, and the best for a given application is selected.

Fig. 8 shows three partitioning methods used in STFT, WT, and

WPT. Besides feature extraction, time-scale analysis can be

used for signal de-noising, identifying fatigue in long-term
Fig. 8. Three partitioning methods used in Ref. [27]: (a) STFT, (b) WT, and (c)

WPT.



Fig. 9. Classification error for different features [1].
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activity, and isolating coordinated muscle activities. Recon-

structed de-noised [38] myoelectric signals can show muscle

activity more clearly.

Karlsson et al. [21,22] presented two independent investiga-

tions in using WT and WPT for myoelectric signal analysis

during static and dynamic contractions. It was shown that a

wavelet shrinkage method is a very useful tool in signal analysis

during static contractions, because of its de-noising character-

istics. Wavelet shrinkage in WPT and FFT significantly reduced

the mean square error of spectral estimates. In dynamic

contraction, the non-stationary properties of a signal become

dominant. This is because of a change in the number of active

motor units, the spatial distance between electrodes, and the

innervated zone and changes in fiber length. Karlsson et al. [22]

compared the accuracy and reliability of the continuous wavelet

transform (CWT) method with other time-frequency methods

during dynamic contraction. The results suggest that CWT

shows better statistical performance than any other time-scale

analysis method used in their study on simulated signals. It was

concluded that CWT is a useful tool for the analysis of MES, in

spite of its computational inefficiency.

4.2. Phenomenological analysis

The common theme in all phenomenological methods is that

they provide a feature set that improves signal classification

performance. This can mainly be achieved in two ways: feature

subset selection and feature projection. The former approach

searches all existing features in a feasible feature space in order

to choose an optimal subset that result in the highest

classification rate. The later approach creates a subset of

new features via a combination of existing features based on a

linear or nonlinear mapping.

Feature subset selection requires a search strategy that

selects a candidate subset, and an objective function that

evaluates these candidates. There are many search strategies for

feature subset selection, such as sequential forward selection,

sequential backward selection, and sequential floating selec-

tion; as well as random search strategies such as branch and

bound, simulated annealing, and Genetic algorithms. An

objective function can be either a geometric separability

measure, or the hit rate of a classifier. The authors [46]

presented feature subset selection, to find an optimal subset of

myoelectric features using cascaded genetic algorithms as a

search strategy, and a Davies–Bouldin index as a class

separability measure.

Feature projection is mostly applied to cope with the curse of

dimensionality that occurs when using time-scale features. A

wavelet transform generates many coefficients to represent

time-scale features. These need to be mapped into a lower

dimension, while preserving the most discriminative informa-

tion. Principal component analysis (PCA) and linear dis-

criminant analysis (LDA) are the two main linear mapping

functions that are used for feature projection. The former is

based on signal representation criterion, and the later on

classification criterion. Englehart et al. [1,27], presented a

comparative investigation into applying linear projection in
time-scale features; and Chu et al. [5] proposed a linear–

nonlinear projection method composed of PCA and a self-

organized feature map (SOFM). These are both discussed in the

next section.

4.2.1. Time-domain and time-scale features

Hudgins et al. [31] applied five time-domain features of

transient myoelectric signals for classification. The features

were the mean absolute value (MAV), mean absolute value

slope (MAVS), zero crossing (ZC), slope sign changes (SSC),

and waveform length (WL). They are based on signal

amplitude, though the resultant values give a measure of

signal amplitude, frequency, and duration. This set gained a rate

of 91% accuracy via MLP neural networks.

Englehart et al. [27,1] applied feature projection to

compare the final performance of classification. They

compared the performance of time-domain features used

in Ref. [31], with time-scale features comprised of a short-

time Fourier transform (STFT), wavelet transform (WT), and

a wavelet packet transform (WPT). STFT with a window

length of 64 points and overlap of 50%, WT with a fourth

order of Coiflet wavelet, and WPT using a Symmlet wavelet

of order five, were adopted as signal features. A modification

was applied on time-scale partitioning for WPT, to maximize

the ability of discrimination. It was based on using the level

of class separation as the cost function. To avoid overloading

the classifier, features were reduced in the dimension, using

principal components analysis (PCA). The classification-hit

rate was not sensitive to the dimension; but to decrease the

burden of the classifier, and achieve a required response time

it was critical to success. It was shown that PCA is superior

to other methods of dimension reduction. The results

indicated that classification performance improved in a

progression from TD, STFT, WT to WPT, indicating the

relative efficacy of the feature sets. The wavelet and wavelet

packet-based feature sets, as depicted in Fig. 9, outperformed

the other features. The best performance was obtained by

WPT features, PCA reduction, and LDA classification;

yielding an average error of 0.5% for four-class, and 2% for

six-class classification problems [1]. This was a significant

improvement over Hudgins et al. [31].



Fig. 10. Improvement of classification by applying the SOFM method [5].
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Chu et al. [5] presented an extension to the feature projection

method used by Englehart et al. [1]. They pointed out that

applying PCA prevents a separation of class distribution, and

the density functions of classes are not clearly discriminated. To

overcome this problem, a linear–nonlinear feature projection

composed of PCA and a self-organizing feature map (SOFM)

was suggested. It included two functions: dimensionality

reduction, and nonlinear mapping. Nonlinear mapping by

SOFM transforms PCA-reduced features to a new feature

space, with an improved capability of class separation. As a

result, the classifier could find a hyper-plane with an enhanced

separation margin. This scheme improved classification

performance compared to using only PCA (Fig. 10). Applying

PCA before SOFM was necessary due to real-time constraints.

Therefore, the load of offline computation was extended into

the wavelet packet transform, the eigenvectors of the

covariance matrix for PCA, and finally the weight vectors of

SOFM.

Englehart et al. [2] switched from time-scale features into

time-domain features, using Hudgins’s feature set in continuous

classification. They reasoned that time-scale features were

selected in Ref. [1], because of their temporal characteristics of

a transient signal; while continuous classification works based

on a steady-state signal, and focuses mainly on signal energy. It

was shown that time-domain features outperform time-scale

features, when a steady-state signal is processed using

continuous classification. In addition, Chan et al. [19] by

reproducing Hudgins’ experiments [31] showed that slope sign

changes (SSC) do not improve classification performance and

even cause it to deteriorate.

Hussein and Granat [20] proposed using a time-scale-based

technique for myoelectric signal feature extraction, that

decreases global delay time, and improves time spectral

analysis. It is called the Gabor matching pursuit (GMP) method,

and is used in time-scale analysis, to provide an efficient

estimation of a signal approximated by a linear combination of

basic functions that are called an atom. In the proposed method,

atoms are selected from a Gabor dictionary, and parameters

computed by matching a pursuit procedure. In classification,
the parameters of the atoms are interpreted as signal features.

Although GMP is named as a successful method for non-

stationary signal analysis, it suffers from computational

complexity. Therefore, the authors applied a genetic algorithm

(GA) to tournament selection, aiming to decrease normalized

root mean square error (MSE), between the original and

reconstructed signal. The algorithm simplifies the complexity

associated with the classical method, in which an iterative

process is based on selecting the largest inner product of the

signal with a Gabor wavelet. The modification is to encode

the parameters of each atom, and reduce the normalized root

mean square error (NRMSE) associated with them. Features

were classified using neuro-fuzzy classifiers; experimental

results verified the performance of the proposed method.

4.2.2. Time domain and frequency domain features

Vuskovic and Du [15] applied a novel feature for

myoelectric classification. It is the square of a signal processed

by a moving average finite impulse response (FIR) filter, with a

hamming windowing function of 300 ms. The resultant smooth

waveform reflected a limb’s dynamics in the form of a high

amplitude oscillation. The maximum amplitude of a first

oscillation was selected as a signal feature. It was empirically

shown that the applied feature gave a good classification-hit

rate. The long length of segment could be named as a drawback

for this feature.

Du and Vuskovic [47] also had a comparative investigation

in using a term of energy in time and frequency domains to

recognize myoelectric patterns. Signal energy plays a major

role in the success of classification, because it shows directly

the level of muscle activation. Referring to Parceval theorem,

energy can be defined either in a time or frequency domain. In a

time domain, it is represented using the Integral Square of a

signal during observation period (TS):

E ¼
Z TS

0

xðtÞ2 dt ¼
XN�1

n¼0

x½n�2; N ¼ TS

Dt

As well as a frequency domain, it is equal to the zero-

moment of a signal in a pre-defined bandwidth W. P( f) is the

power spectrum density (PSD) of a signal, and can be estimated

using the periodogram:

E ¼ M0 ¼
Z W

0

Pð f Þ d f ; Pð f Þ � 1

N

����
XN�1

n¼0

x½n� e� j2p fn
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Due to frequency leakage, an input signal is often windowed,

i.e. x[n] is replaced with x½n�w½n�, where w½n� is a time

windowing function such as a hamming window. With

reference to Parceval theorem, it can be shown that the signal

energy in the frequency domain can be calculated in the same

way as the time domain, using a multiple windowing technique.

This means that the signal energy for window ‘‘i’’ is obtained

using:

M0i ¼
XN�1

n¼0

ðx½n�w½n� ni�Þ2
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Literature [47] introduces multiple trapezoidal windowing,

and a short-time Thompson transform for feature extraction; in

time and frequency domains, respectively. Both outperform the

other considered features in classification performance. A

trapezoidal window is offered for signal windowing, because a

hamming window destroys energy information at the beginning

and end of each window. In addition, a Thompson transform is

preferred to a periodogram, since it generates the maximum

concentration of energy, and reduces significantly spectral

leakage and variance over a short segment length. As a

conclusion, literature [47] suggests using multiple trapezoidal

windowing on a raw signal in a time domain, over a short-time

Thompson transform (STTP) in a frequency domain; since this

provides much better time efficiency, and a lower dimension,

with only a slightly smaller classification-hit rate.

Huang et al. [3] compared three groups of features in

myoelectric classification. The groups were Hudgins’ time-

domain (TD) features, autoregressive (AR) coefficients, and

signal root mean square (RMS). Results show that a

combination of RMS with a six-order AR coefficient, yields

higher performance. AR + RMS and AR + RMS + TD, result

in a 3.7% and 3.1% average error rate, for six-class of limb

motions, respectively. The feature vector in the later is too high.

Furthermore, the combination of AR + RMS has been used by

Chan and Englehart [18] and produced a high classification rate

(about 94.63%).

Chaiyaratana et al. [10], Lamounier et al. [11], and Karlik

et al. [13], also used AR coefficients as a feature set for

myoelectric classification in prosthesis control. They referred

to recursive least squares (RLS), a discrete Hopfield network

(DHN), and PARCOR, as three algorithms that are mostly used

in AR coefficient computation. RLS is based on the principle of

minimizing the error between estimated and actual values of a

signal. This algorithm is very reliable, and has the capability to

deal with noisy signals. The extension of RLS algorithms to

accommodate multivariable AR models is proposed such that

all parameters of AR models from different signal channels can

be computed simultaneously. A discrete Hopfield network

(DHN) algorithm is used under the principle of multivariable

optimization; its convergence rate of computation is higher than

that of the RLS algorithm.

Karlik et al. [13] presented AR coefficients obtained by the

PARCOR algorithm as signal features. These features were

then clustered for different arm motions, using a fuzzy C-means

algorithm, and finally applied to a neural network for

classification. A rate of 98% was obtained for a six-class

motion classification problem. An N-order AR model

represents the correlation between N samples of signal.

Therefore, it estimates the components of an original signal

that have a frequency lower than a 1/N sampling frequency. In

other words, a six-order AR model can represent a power

spectrum 0–250 Hz of a signal, which is sampled with a

sampling rate of 1500 Hz. This is an acceptable range, because

the power spectrum of a myoelectric signal is mainly located

between 10 and 250 Hz.

Ajiboye and Weir [4] applied the root mean square (RMS) of a

signal, as a feature to a fuzzy logic classifier, in multifunctional
prosthesis control; it yielded an overall classification rate

between 94% and 99%. RMS in the transient and steady states of

a signal is an acceptable maximum likelihood estimator of

amplitude, and has been suggested as a myoelectric signal feature

(because it provides physiologically significant information

about the average power of muscles). Park and Lee [9] evaluated

the performance of six features, an integrated absolute value

(IAV), a difference absolute mean value (DAMV), variance

(VAR), an autoregressive model (AR), linear cepstrum

coefficients (LCC), and an adaptive cepstrum vector (ACV),

in myoelectric classification. IAV, DAMV, and VAR, are from

time-domain features, AR and LCC are spectral features, and

finally ACV is selected to represent the non-stationary property

of a signal. AR, LCC, and ACV features, demonstrate accurate

information about a signal power spectrum and its character-

istics. The authors applied a measure of class separability to

evaluate the feasibility of features. The measure was provided

based on a Bhattacharyya distance, which is principally used as a

measure of the separation of classes:
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where m is the separation measure, and (M1, C1) and (M2, C2),

are the mean and covariance of classes 1 and 2, respectively.

With regard to the obtained results, ACV was relatively the

most feasible feature for signal classification.

5. Classification

Extracted features need to be classified into distinctive

classes for the recognition of desired motion patterns. Due to

the nature of myoelectric signals, it is reasonable to expect

large variation in the value of a particular feature.

Furthermore, there are external factors, such as changes in

electrode position, fatigue, and sweat, which cause changes

in a signal pattern over time. A classifier should be able to

cope with such varying patterns optimally, as well as prevent

over fitting. Classification should be adequately fast, in order

to meet real-time constraints. A suitable classifier has to be

efficient in classifying novel patterns; online training can

maintain the stably of classification performance over long-

term operation.

5.1. Neural networks approach

Many literatures highlight the success of neural networks

in myoelectric classification. The main motivation for neural

networks has stemmed from a desire to use artificial

intelligence (AI) to implement tasks via learning. The

advantage of the neural network is its ability to represent

both linear and nonlinear relationships; and learn those

relationships directly from data being modelled. It also meets

real-time constraints, which are an important feature in

control systems. As pioneers in developing real-time pattern



Fig. 11. Structure of the time-delayed ANN applied in Ref. [16].
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recognition-based myoelectric control, Hudgins et al. [31,32]

used a multi-layer perceptron (MLP) neural network to

classify time domain features. It was capable of classifying

four types of limb motion, with an error rate of around 10%.

Recently, Zhao et al. [30] applied an MLP neural network

to recognise six motion patterns based on signal time-

scale features and entropy, and met an average accuracy of

about 95%.

Englehart et al. [1] compared linear discriminate analysis

(LDA) with MLP neural networks, as a myoelectric classifier. It

was observed that LDA performed similar to or better than

MLP for time-scale features; which were dimensionally

reduced using PCA. This presumably, is because PCA (applied

for dimension reduction), has the effect of linearization on

feature sets. The LDA classifier is also much simpler to

implement, and much faster to train than MLP. Chaiyaratana

et al. [10], and Lamounier et al. [11], applied MLP and RBF

neural networks for myoelectric classification, respectively.

The cost function of an MLP network is defined as

eðnÞ ¼ 1

2

XN

i¼1

eiðnÞ2; eiðnÞ ¼ diðnÞ � yiðnÞ

where di(n) and yi(n) are the desired and actual output of the ith

output node of a network, respectively. The weights were

calculated using back propagation (BP) algorithms (in order

to minimize the cost function). The cost function of an RBF

network is

eðnÞ ¼ 1

2

XN

i¼1

eiðnÞ2; eiðnÞ

¼ diðnÞ �
XMi

j¼1

wi jðnÞ exp½�ðx� t jÞTC�1
j ðx� t jÞ�

where x, ti, Cj, are the input pattern, jth centre of the radial basis

function, and jth covariance matrix, respectively. A steepest

descent algorithm was used to determine network weights.

Au and Kirsch [16], developed a time-delayed artificial

neural network (TDANN), which was fed a raw signal, rather

than features to predict the kinematics variables of a shoulder

and elbow. TDANN was capable of characterizing any linear

and nonlinear relationship between input signals and output

variables. In addition, the time-delayed input signal allowed

TDANN to capture the dynamics of input signals, which were

mostly highlighted in spectral analysis such as an AR model.

TDANN is trained via back propagation, until the sum of the

squared errors (SSE) between its output and actual kinematics

variables drop below a threshold. The structure of TDANN is

shown in Fig. 11. The numbers of layers and neurons, as well as

the number and duration of delays used in inputs were

determined empirically based on experiments. The literature

suggests that a two-layered TDANN with 20 neurons in the

hidden layer has 875 ms total delay, with 125 ms between

delayed inputs for joint angles, 625 ms total delay, and 125 ms

between delayed inputs for velocities and accelerations.
5.2. Fuzzy approach

There are many advantages to using fuzzy logic systems for

bio-signal processing and classification. Bio-signals are not

always strictly repeatable, and may sometimes even be

contradictory. Fuzzy logic systems tolerate remarkable contra-

dictions in data. Fuzzy systems are able to discover patterns

in data that are not easily detectable. Furthermore, in fuzzy

logic approaches, medical expert experience can be incorpo-

rated in processing and classification. It is possible to integrate

this incomplete but valuable knowledge into a fuzzy logic

system, because of its reasoning style. Fuzzy approaches

exploit tolerance of imprecision, uncertainty, and partial truth;

to achieve tractable, robust, and low-cost solutions for

classification.

Ajiboye and Weir [4] used a heuristic fuzzy logic approach

to multi-channel myoelectric pattern recognition, based on a

simple vernacular language that is easily understood, quickly

and automatically generated for any user, and executed in real

time, with a response time of 45 ms. The main advantage of this

system is its simplicity. The proposed classifier (the same as in

classic fuzzy systems), consists of three parts: an input

membership function (iMBF), an inference rule base (IRB), and

an output membership function (oMBF). The iMBF fuzzifies

numerical inputs by converting them into linguistic variables.

The IRB performs classification by processing linguistic inputs,

returning linguistic outputs, and associating a degree of truth.

The oMBF defuzzifies linguistic outputs by converting them

into numerical values. The iMBF converts a signal feature into

four grades of signal (i.e. OFF, LOW, MED, HIGH), as shown

in Fig. 12. The IRB, the brain of the fuzzy system, consists of

weighted vernacular language rules in an IF-THEN form. The

number of rules in an IRB depends on the different patterns

presented within training data. Rules are generated automa-

tically using a fuzzy C-means (FCM) algorithm applied to data

during training. It seeks to cluster data together, in order to

minimize the variance between data in the same cluster, and

maximize the variance between data in different clusters.

Clustering allows data to be shown based on the centre of

clusters; these represent the rules in an IRB. All data can belong

to all clusters, with a degree of membership (DOM) in each

cluster in the interval [0, 1]. The DOM is directly related to the

Euclidean distance between each data sample and cluster



Fig. 12. MES histogram used to construct input membership functions [4].
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centre. The rules are processed in parallel, and the results then

passed to the oMBF for defuzzification, using a standard mean-

of-maximum (MoM) algorithm.

Park and Lee [9] adopted an evidence accumulation (EA)

method for classification, i.e. using Dempster–Shafer theory of

evidence to estimate intended motion from a myoelectric

signal. In this method, four components, namely: evidence for

(ef), evidence against (ea), neutral evidence (n), and contra-

dictory evidence (x), were used to represent the evidence of an

event. Each component was a number in the range [0, 1]. The

accumulation of evidence for a class is illustrated in Fig. 13.

Notations a, b, c, . . . represent signal features such as IAV,

DAMV, VAR, AR, LCC, and ACV. The class that has the

maximal ‘‘evidence for’’ (ef), is chosen as the motion class

corresponding to the input signal. The components of evidence

are determined using a fuzzy mapping function, applied to the

distance between signal features and reference parameters

obtained during a training period. The literature claims that

reasonably accurate results are generated, with less computing

time and little subject training.

5.3. Neuro-fuzzy approach

Kiguchi et al. [7,8] applied a neuro-fuzzy controller to

control an assistant exoskeleton system; which assisted a user’s
Fig. 13. Evidence accumulation procedure [9].
motion for daily activity and rehabilitation using a myoelectric

signal. The controller is a combination of a flexible fuzzy

controller, and an adaptive neural network (Fig. 14). Its input

variables are the mean absolute value (MAV), of signals

collected from 11 muscles, elbow angle, shoulder angles

(vertical and horizontal), and wrist force. Output variables

are the torque command for the shoulder, desired impedance

parameters, and the desired angle for an elbow. Two evaluation

functions evaluate the error between desired and actual values

of angles and myoelectric signals. The support of an

exoskeleton is adjusted until the myoelectric signal approaches

its desired level; which is selected for each user based on his/her

physical and physiological condition. Initial IF-THEN rules are

designed based on pre-experiments that analyze elbow and

shoulder motion patterns; these are then translated into neural

network form. There are 16 rules for elbow motion, 32 rules for

shoulder motion, and 2 rules for switching between myoelectric

and wrist force sensor-based control.
Fig. 14. Structure of a neuro-fuzzy controller [7].



Fig. 15. Structure of a fuzzy subsystem and Gaussian fuzzifier [19].
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Karlik et al. [13] presented a fuzzy clustering neural network

(FCNN) for classification. Fuzzy clustering assigns data to

overlapped clusters with a certain degree of membership

(DOM). It means that for each feature vector xk, a variable

0 � uik � 1 can be defined to quantify its membership to a

cluster with a centre vi. To implement fuzzy clustering, an

algorithm is proposed that minimizes the cost function Jm:

Jm ¼
XN

k¼1

XC

i¼1

ðuikÞmjjxk � vijj2A

where A is used to define the distance between xk and vi.

The literature also employed a conic section function neural

network (CSFNN) as a classifier. CSFNN allows decision

surfaces to be adapted between open boundaries as in MLP, and

closed ones as in RBF; providing unification between RBF and

MLP. Its propagation rule, which is comprised of both RBF and

MLP propagation rules, is given by

y j ¼
XNþ1

i¼1

ðxi � ci jÞwi j � cos v j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNþ1

i¼1

ðxi � ci jÞ2
vuut

where wi j represents the weights in the MLP, and cij represents

cluster centres in the RBF neural network. The propagation rule

includes two major parts: the first part is made up of MLP

propagation rules, and the second the Euclidean distance

analogous to RBF. vj determines the ratio of each network

in a CSFNN. A comparative assessment in Ref. [13] shows

more reliable results are obtained using FCNN than MLP and

CSFNN. It has been demonstrated that the training time of

FCNN is approximately half the time required for MLP.

CSFNN, with a rate of 88%, has no satisfactory classification

performance in comparison to MLP and FCNN, which have a

rate of 97% and 98%, respectively.

Vuskovic and Du [15] suggested a modified version of a

simplified fuzzy ARTMAP network for myoelectric classifica-

tion; and pointed out that such an approach is very efficient and

robust in terms of sensitivity to the size and ordering of patterns,

and offers incremental training. ART is a binary unsupervised

neural network that is based on adaptive resonance theory

(ART). It is able to acquire new patterns without forgetting

previously trained patterns. Fuzzy ARTMAP is an extension

that can be applied for supervised classification of binary and

analogue patterns. The proposed modification is based on using

the Mahalanobis distance, in activation and matching functions.

This results in a significant reduction in output nodes, and

produces faster training and classification. With regard to

experimental classification applied to grasping patterns in Ref.

[15], the modification yields a higher classification rate.

Chan et al. [19] proposed a fuzzy approach to neural

networks for myoelectric pattern recognition. A three-layer

feed forward network as depicted in Fig. 15 represents the

proposed system. fzji is the Gaussian fuzzifier function. It

resembles, but differs from a RBF neural network. In this fuzzy

network, the centre, width, and weights, are updated using back

propagation; while it merely updates the weights in the RBF

networks. The centre and width represent the fuzzifier, and
weights represent the fuzzy rules. The structure of the fuzzy

classifier for an N-class problem was composed of N parallel

subsystems, similar to those shown in Fig. 15. Every subsystem

generates the activation level for each motion. The class

estimated by the classifier was selected based on the maximum

output of subsystems. Basic ISO-data initialized the fuzzy rules

before the training phase. The literature concluded that the

training process and classification performance of the proposed

fuzzy approach were superior to those of neural network-based

approaches, with more consistent classification non-sensitive to

over-training. A 95% classification performance was achieved

using this fuzzy system when time domain features were

applied.

Han et al. [33] applied fuzzy min–max neural networks

(FMMNN) as a classifier to adapt the variation of a signal;

because of its online adaptation function. A supervised learning

neural network utilized fuzzy sets as a pattern. Each fuzzy set

was a combination of fuzzy hyper-boxes. A fuzzy hyper-box is

an N-dimensional box defined by min and max points, with a

corresponding membership function. It is used as an input–

output pair for learning.

5.4. Probabilistic approach

Since a myoelectric signal is stochastic, probabilistic

approaches that are based on the probability of each class

may outperform other classification approaches. A Gaussian

mixture model (GMM) is a probabilistic approach that has been

used in pattern recognition. It has the ability to form a smooth

approximation for general probability density functions, via the

weighted sum of multiple Gaussian functions. GMM not only

provides a smooth overall distribution fit, its components can, if

required, clearly detail a multimodal density. It has shown

remarkable performance in many applications, such as text and

speech recognition, and has been a dominant tool in pattern

recognition.

Huang et al. [3] demonstrated the potential of a Gaussian

mixture model (GMM) in myoelectric classification. It was

built upon preliminary work done by Chan and Englehart [17],

to optimize a GMM for limb motion classification. N-GMM

was developed to specify the probability of each class in an N-

class problem. The probability density of GMM, which is called

mixture density (MD), is a linear combination of multiple

standard Gaussian probability densities (named components);

they are parameterized by a set of weights, mean vectors, and
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covariance matrixes of the components. The model that

generates the highest probability determines the predicted

class. The goal of training is to estimate the parameters of

GMM at which the mixture density will best match the

distribution of the training set. Parameters were estimated using

an expectation maximization (EM) algorithm, wherein GMM

in Ref. [3], linear discriminate analysis (LDA), multi-layer

perceptron (MLP), and linear perceptron (LP) neural networks

were used as a classifier to compare their performance.

Classifiers were cascaded using MV post-processing in a

continuous classification scheme. GMM’s performance

matched, or exceeded other classifiers with a 96.3%

classification rate; using AR + RMS features for the six-class

problem.

Fukuda et al. [14] also used GMM for a human-assisting

manipulator that was tele-operated using a myoelectric signal.

The classifier known as a log-linearized Gaussian mixture

network (LLGMN) was directly applied to a raw signal, rather

than signal features. A LLGMN is capable of discriminating

stochastic signal patterns with nonlinear and non-stationary

characteristics. It is a constructed neural network based on

GMM, which outputs a posterior probability for each motion

class. Moreover, a suspension rule and online training were

proposed to stabilize the performance of classification when

controlling the system over the long term. More explanation

about online training is provided in the next section. A LLGMN

was preferred to back propagation-based neural networks,

because it includes a pre-organised structure, and can model the

complicated mapping between input patterns and discriminat-

ing classes; even for a small sample size. It also outperforms

maximum-likelihood neural networks that are based on GMM.

The structure of a LLGMN with three layers is shown in

Fig. 16.

A hidden Markov model (HMM) is another probabilistic

approach to myoelectric pattern recognition. Chan and

Englehart [18] showed that a HMM approach provides even

better accuracy than MLP; while maintaining intuitive control

and a fast response time. A Markov chain topology in HMM,

consists of states and state transition probabilities. Associated

with each state is an observation probability density function,

which accounts for the probabilistic nature of the observed data.

State observation is generated based on signal features. Outputs

of HMM indicate the probability of each state, and the highest

probability determines the intended motion. HMM state
Fig. 16. MCS in the hand-wrist part of
observation probabilities are assumed as single Gaussian

densities. Since an initial state and state transition matrix are

selected preliminarily and fixed, training is only limited to the

computation of the mean vector and covariance matrix of the

Gaussian probability of state observation. In general, HMM

provides considerable promise in multifunction myoelectric

classification. It has high classification accuracy, and low

computational cost, which make it an attractive choice in real-

time systems. The low computational overhead associated with

training an HMM, also enables the possibility of adaptive

classifier training while in use.

5.5. Online training

The characteristics of collected surface myoelectric signals

vary with time, and make every pattern recognition-based control

system face exponentially rising error over long-time operation.

The main reason for this is that signal patterns used for training

differ increasingly with current patterns after a period, and

consequently the accuracy of classification drops notably. Online

training, in which a classifier is trained continuously using new

patterns during operation, makes the rate of accuracy stable.

Changes emanating from physiological factors, such as sweat

and fatigue, exhibit gradual changes or physical factors, such as

electrode displacement. Therefore, online training seems

intensively inevitable for long-term operation.

There are two crucial issues in online training. The former is

the recognition and updating of valid online training data, and

the later applying a training algorithm during operation.

Training data, i.e. input–output, requires clarification as to

whether classified patterns coincide with user intention.

Therefore, input–output pairs must be monitored and evaluated

continuously to update training data. In addition, applying a

training algorithm to a classifier during operation requires a

distinguished method.

Fukuda et al. [14] used entropy as a measure for the validity

of input–output pairs. It was defined as

EðiÞ ¼
XN

n¼1

OnðiÞ logðOnðiÞÞ

The literature pointed out that if entropy developed as a

result of input, x(i) is less than a certain threshold, the reliability

of the classified pattern seems to be high, and pairs [x(i), O(i)]
a human-assisting manipulator [14].



Fig. 17. A non-pattern recognition-based myoelectric control system.
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can be added to the online training set, and the oldest one

deleted. Network weights are then updated based on the new

training set. If the energy function of the network does not

decrease during early iterations of online training, weights

would not be updated to avoid incorrect training. This means

that weights are modified gradually, and classification does not

degrade suddenly. Moreover, a classification suspension rule

suspends the operation as entropy in output exceeds a pre-

specified threshold, because large entropy means that output

commands are ambiguous. In this way, network entropy is

continuously monitored.

Kato et al. [48] presented an approach for online training to

adjust to gradual and drastic changes in myoelectric signal

characteristics. It was mainly focused on training data

management, and consisted of three functions: automatic

elimination (AE), automatic addition (AA), and selective

addition (SA) of training data. AE and AA judge discrimination

state by monitoring outputs during operation, and adjust to

gradual changes by eliminating or adding training data. The

judging criterion is the continuity in output, and is based on the

hypothesis that a motion command cannot be interchanged in

less than a given time. SA also makes a system adjust to drastic

changes by adding new training data based on a user’s selection.

For automatic elimination/addition, an input–output pair is

accompanied by a variable that shows the degree of

contribution in classification. It is quantified based on the

time interval of continuity of commands. The time interval is

compared with a failure and success threshold, i.e. 220 and

800 ms, respectively.

Fuzzy ARTMAP is a neural network that has the potential to

be used in online training. It supports incremental training,

while back propagation is naturally a batch oriented training

method. ART networks are typically plastic and stable, which

means that they are able to learn new knowledge, and retain

previously learnt knowledge. They are fast and easy to train,

and can generally achieve better accuracy over a smaller

number of processing nodes. A modified version of fuzzy

ARTMAP as discussed formerly, was proposed in Ref. [15] as a

classifier for myoelectric signals.

6. Non-pattern recognition-based myoelectric control

Non-pattern recognition-based myoelectric control

includes proportional control, threshold control, onset

analysis, and finite state machines. The number of functions

that can be controlled by non-pattern recognition-based

controllers is limited in comparison to pattern recognition-

based controllers. They have a simple structure, and have

mostly been deployed in ON/OFF control or navigation. In

proportional control, the strength of muscle contraction

controls speed or force. It can be used in conjunction with

either pattern recognition-based, or non-pattern recognition-

based methods, to allow precise positioning and accurate

force control. ‘‘Finite state machine’’ and ‘‘onset analysis’’,

are two non-pattern recognition-based controllers that will be

discussed in this section. Fig. 17 depicts a schematic diagram

of their structure. As can be seen, the classification module of
a pattern recognition-based controller has been degraded to a

simple threshold comparison module.

6.1. Onset analysis

Muscle activation or deactivation is presented using

temporal characteristics, such as onset time, offset time, and

reaction duration; and has the potential to be used as a reference

control signal. Fig. 18 depicts a pulse signal (c), generated

based on a myoelectric signal: (a) using onset analysis, and (b)

using post-processing methods. In this section, different

approaches to onset detection will be reviewed. The

performance of onset detection methods is mainly evaluated

based on the bias and variance of estimated onset time, as well

as sensitivity to SNR.

The single-threshold method is a primary and simple

phenomenological approach. In this method, rectified raw

signals are compared with thresholds that are obtained based

on the mean power of background noise. It is very fast and

simple in implementation, but too sensitive to SNR. It suits

coarse ON/OFF detection rather than slowly increasing muscle

activities. An improved single-threshold method is based on a

time enveloped signal, rather than its instant value. For

example, the mean absolute value of a low-pass filtered signal is

compared with a threshold that relates to noise. Due to time

delay in computing, filters cause bias in estimated onset time.

An improved single-threshold method is not well suited to

standardization, since its performance depends intensively on

signal envelope and threshold. Signal mean value, low-pass

filtered signal mean value, and Marple–Hovart and Gilbey

(MHG) [6] algorithms, are popular members of the improved

single-threshold method.

In an MHG algorithm, two adjacent windows equal in length

(leading and trailing), slide over a sequence of data. In each

leading window, the mean absolute value of a signal is

calculated and compared with the signal in the trial window.

Onset and offset time can be obtained by relying on the

hypothesis that the maximum difference between mean values

occurs when one window contains a muscle contraction, and the

other does not. Sun et al. [6] introduced a maximum value

detection (MVD) algorithm based on a bipolar model of onset

detection. In the MVD algorithm, a muscle is assumed in an

excited state if there is a peak greater than a given threshold

within a certain segment length. This segment length is



Fig. 18. ON–OFF timing for muscle contraction detected by a double-threshold

method [41]: (a) simulated MES signal, (b) output of the detector, and (c) output

of the post-processor.

Fig. 19. A state transition diagram and detectable events from MES in wheel-

chair control [29].

Fig. 20. A state definition and transition for wheelchair myoelectric control

[34].
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influenced directly by the distance between electrodes, and

conduction speed in tissues.

In the double-threshold method proposed by Bonato et al.

[41], single-threshold detection is applied to a fixed number of

consecutive values of an auxiliary variable, and onset is

detected when at least a certain number of them cross the

threshold. Therefore, the false-alarm probability (which is the

probability that noise samples are incorrectly interpreted as

signals), and detection probability (which is the probability that

signal samples corrupted by noise are correctly recognised), as

well as time resolution (which shows the length of an

observation window), can be adjusted independently. The

double-threshold method is superior to single-threshold ones,

because it involves more parameters to tune. It yields a higher

detection probability for a fixed value of false-alarm probability

in comparison to the single-threshold method, and in addition,

a user can adapt the link between the two mentioned

probabilities with a higher degree of freedom. Bonato et al.

[41], succeeded in achieving a bias lower than 10 ms, with a

standard deviation lower than 15 ms, on simulated signals with

an 8 dB SNR. To reject wrong transitions during onset
detection, a post-processor was cascaded to the detector; this

rejected any transition shorter than 30 ms. The output of the

detector and post-processor are shown in Fig. 18.

Merlo et al. [24] proposed an approach to estimate muscle

ON/OFF timing based on a physical model of muscle

activation. This approach is based on the detection of single

MUAP from a synthetic signal, using a continuous wavelet

transform (CWT). The maximum output of the matched filters

obtained by CWT at different scales, was compared with a
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certain threshold to detect muscle activation. A mathematical

model was used to test the proposed technique on synthetic

signals. The resultant bias of onset detection was lower than

40 ms, and the standard deviation lower than 30 ms, in the case

of non-whitened Gaussian noise with an SNR as low as 2 dB.

This method was notably fast, and well suited for real-time

implementation.

6.2. Finite state machine approach

Finite state machine (FSM) outputs, pre-define commands

based on sequences of input signals. They are composed of a

finite number of states, transition between those states, and

commands. Like a classification module, they need to be tuned

before operation; by defining states, state transition roles, and

output commands. States often represent pre-defined motion

commands for an assistive robot, and transition roles are

associated with raw signal or signal features.

Felzer and Freisleben [29] applied a FSM to drive a

wheelchair based on myoelectric signals collected from

forehead skin. The process consisted of four basic steps: (i)

analysis of an input signal, (ii) determination of a next state, (iii)

display a next state, and (iv) issuance of an output command.

The first step is responsible for converting input signals into a

stream of certain events that keep tracking states. Signal
Table 1

Applications of myoelectric control

Reference Application Class C

Hudgins et al. [31] Upper limb prosthesis 4-class motion 2

Englehart et al. [1] Upper limb prosthesis 6-class motion 4

Huang et al. [3] Upper limb prosthesis 6-class motion 4

Kiguchi et al. [7,8] 3-DOF assisting exoskeleton 6-class motion 1

Fukuda et al. [14] human-assisting manipulator 8-class motion 6

Vuskovic and Du [15] Finger joints control 6-class motion 4

Carrozza et al. [35] Prosthetic hand (1-DOF) 2-state 2

Felzer and Freisleben [29] Powered wheelchair 5-state F

Han et al. [33] Powered wheelchair 4-state N

Moon et al. [34] Powered wheelchair 4-state S

e

Lamounier et al. [11] mechanism to train patients

to work with myoelectric

prosthesis

4-class motion 5

Barniv et al. [26] virtual environment (VE) to

eliminate latencies

8

Nilas et al. [28] Morse code-based commands

for human-assisting

or rehabilitating robots

8-class motion 2

Ju et al. [25] User interface for portable

consumer electronics

4-class gestures 2

Au and Kirsch [16] Functional Neuromuscular

Stimulation (FNS) in a

paralyzed shoulder and elbow

8-class motion 6

Christodoulou

and Pattichis [12]

To diagnose neuromuscular

disorders

U

s

b

Khalil and

Duchêne [23]

Characterizing events in uterine

MES for preterm birth

4-class events
amplitude is monitored. If it exceeds the threshold once, the

event of a ‘‘single click’’ (e1) is registered, and if it exceeds

twice within a pre-defined time interval between the event, a

‘‘double click’’ (e2) is registered, as shown in Fig. 19. The order

of detected events turns the current state into one of the pre-

defined states: LEFT, RIGHT, STRAIGHT, and HALT. A state

diagram illustrating the respective transitions is shown in

Fig. 19. To evaluate the performance of a myoelectric

controller, the time elapsed to drive a wheelchair at a constant

speed, but in different routes and distances, was recorded and

compared with traditional joystick-based controllers. As

expected, the myoelectric control is slower, but the overhead

time less than 50%.

Moon et al. [34], employed an FSM to manipulate a

wheelchair based on shoulder elevation gestures. They

proposed the double-threshold method on MAV (of myo-

electric signals collected from left and right shoulders), to

recognise user intention. In the proposed method, the

primary and auxiliary thresholds were compared concur-

rently with signal features. The auxiliary threshold was

smaller than the primary, and each condition, between

primary and auxiliary threshold, was considered the reserve

condition that kept the pervious state in state transition. The

state definition and state transition diagram of an FSM used

by Moon et al. [34], is shown in Fig. 20. It shows that the
hannel Classifier Feature

-channel MLP NN MAV, MAVS, ZC, SSC, WL

-channel PCA/LDA STFT, WT, WPT

-channel GMM/MV RMS, AR

1-channel Neuro-fuzzy network MAV

-channel LLGMN (online training) –

-channel Simplified fuzzy

ARTMAP network
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orehead muscle FSM –

ear neck muscles Fuzzy min–max
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(FMMNN)

IAV, VAR

houlder

levation gestures

FSM MAV

-channel MLP NN AR

-channel PCA/ICA MLP NN MA, ZC, etc.

-channel MA

-channel HMM AR

-channel TDANN

nsupervised

ingle-channel

iceps muscle
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elapsed time to manipulate a simulated wheelchair in a

complex trajectory, increases by about 50% when using

myoelectric control.

7. Potential applications

Prosthesis is the most important and only commercial

application of myoelectric control systems. Hand, forearm,

and fingers are the main limbs, and wrist and elbow are the

joints that myoelectric prostheses could resemble in motion.

The ‘‘Utah Arm–Elbow’’, ‘‘LTI Boston Arm’’, and ‘‘Otto

Bock Arm–Elbow’’, are currently available myoelectric

prostheses. They are microprocessor based, and can be

programmed for different motions. In additon, numerous

literature in the past 15 years has shown potential application

for myoelectric control, in grasping, wheelchair control,

virtual reality, and gesture-based user interfaces. Some of

these are summarized in Table 1.

Application of pattern recognition-based myoelectric

control has not had remarkable improvement, despite many

laboratory-based advances, as highlighted in this survey. The

reasoning behind this fact is a controversial issue, which may

lead to lines of research in the future. The lack of an

interactive and bi-directional interface between a controller

and device, is an important weakness. In intact limbs, internal

feedback that is adequately fast (i.e. touch), helps a user to

adjust muscle contraction in fine control, which myoelectric

control cannot perform. Another weakness of myoelectric

control is the lack of individual control on some of muscles,

even on intact limbs. Making the distinguishable contraction

for all muscles, usually needs alot of exercise, and sometimes

is impractical. This prevents fine control in multi-function

devices. Finally, the necessity to concentrate and continu-

ously physically react during manipulation is the other

weakness of myoelectric control. Although the necessity to

concentrate is expected to decrease with practice, it is likely

this would take a long time, and it is possible that the

prostheses/robot may have been abandoned by the user before

this was achieved.

Developing high precision and fast feedback between device

and controller, would improve the quality of control and

dexterity. Feedback that passes through the mind is not too fast,

and would impose a mental burden that would create problems

during daily work. Since motions and contractions shape the set

of sequences in normal limb trajectories, motion sensors on the

limb can provide useful feedback during myoelectric control.

Data fusion applied to myoelectric signals and limb motion

sensors, are capable of providing a reliable closed loop control

system.

8. Conclusion

A surface myoelectric signal is formed via the summation of

individual action potentials generated by irregular discharges

of active motor units in muscle fibers. It contains rich

information that can make myoelectric control a pioneer

solution for rehabilitation devices and human-assisting robots.
The level of activity of muscles, either in static contraction or

in dynamic limb-motion, is the most important factor to be

recognized in myoelectric control. Therefore, applying time

domain features that represent the term of energy in a

myoelectric signal, such as MAV and RMS, can result in

significant performance; as well as a reletively low computing

load. Spectral and time-scale features not only show the level

of activation in muscles, but also have the capability to signal

de-noise (particularly in fatigue mode), however they have a

high computing load cost.

The achievements discussed in this paper, have led to the

development of new strategies for the improvement of

multifunction myoelectric control. In respect of this, increasing

the number of sites to collect signals, and applying sensory

feedback is suggested. Since limb motions emanate from the

concurrent activation of several small and large muscles,

collecting data from different sites on the skin involves more

muscles in classifciation, and improves the number of functions

that a controller can manipulate. It also improves accuracy, by

providing more discriminative patterns for input signals for

each motion. Using more input sites for a signal, increases

accuracy more than applying a combination of complex

features. Therefore, developing wearable electrodes that

contain a matrix of electrodes, can provide many input signals

for classification. To cope with dimensionality, a subset

selection approach, which is proposed by the authors in Ref.

[46], is suggested. Moreover, employment of sensory feedback,

along with a myoelectric signal, can provide complementary

input patterns for a classifier to discriminate more accurately

and intiutively. Sensory feedback can be generated by a residual

part of a limb in injured or disabled people. A sensor-data

fusion approach is also sugessted for handling both myoelectric

and feedback signals.

A state machine performs reliable control for navigation,

such as in powered wheelchair control; but for multifunction

control purposes, pattern recognition-based myoelectric con-

trollers are essential. Due to the stochastic structure of a

myoelectric signal, probabilistic approaches such as GMM can

play an effective role in classification. Continuous segmenta-

tion, along with majority voting as a post-processing

mechanism, improve remarkably, accuracy and response time.

Online training and output evaluation, provide stable accuracy

to guard against probable changes during long-term operation.

Developing multi-threaded algorithms that can handle opera-

tion and training concurrently, is intensively recommended to

guarantee stable performance. Finally, classification methods

that use a combination of binary classifiers, such as a support

vector machines applied for multiclass classification, are

recommended. This is because the presence or non-presence of

activity in each muscle, associates input patterns with limb

motions.
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