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Automatic image-based cytometry (IC) 
can conveniently quantify the distribu- 
tions of several specific, fluorescence- 
labeled molecules within individual, 
isolated cells of slide- or tissue-based 
specimens. However, many specimens 
contain clusters of cells or nuclei that are 
not detected as individual entities by ex- 
isting automatic methods. We have devel- 
oped analysis algorithms which detect in- 
dividual nuclei occurring in clusters or 
as isolated nuclei. Specimens were la- 
beled with a fluorescent DNA stain, im- 
aged and the images were segmented into 
regions of nuclei and background. Clus- 
ters of nuclei, identified by their size and 
shape, were divided into individual nu- 
clei by searching for dividing paths be- 
tween nuclei. The paths, which need not 
be straight, possessed the highest aver- 

age gradient per pixel. In addition, both 
high- and low-pass filtered images of the 
original image were analyzed. For each 
individual nucleus, one of the three seg 
mented regions representing the nucleus 
(from either the original or one of two fil- 
tered images) was chosen as the final re- 
sult, based on the closeness of the regions 
to average nuclear morphology. The al- 
gorithms correctly detected a high pro- 
portion of isolated (328/333) and clustered 
(2541271) nuclei when applied to images 
of 2 p.m prostate and breast cancer sec- 
tions. Thus, these algorithms should en- 
able much more accurate detection and 
analyses of nuclei in intact specimens. 
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Digital image-based cytometry (IC) is a technique 
which analyses slide-based specimens using a micro- 
scope coupled to an electronic camera and computer. 
The images are stored digitally in computer memory 
from where they are accessible for analysis by software 
algorithms. IC is now a primary technique for under- 
standing normal and pathological cellular mecha- 
nisms, because it is possible to quantitatively and non- 
destructively measure wide ranges of biochemical, 
morphological, densitometric, and contextual parame- 
ters on the individual cells and nuclei in the specimens 
(2,10,21,23,24,25,29,38,40). 

The convenient measurement of many individual nu- 
clei requires image analysis algorithms that automat- 
ically locate every nucleus. This i s  usually accom- 
plished by staining the nuclei in such a way that their 
corresponding image intensities are significantly dif- 
ferent from the background intensities. Then, an algo- 
rithm that calculates threshold intensities between nu- 
clear and background intensities, can be used to 
segment the nuclei from the background (26). In our IC 

(10,24), specimens are stained with a fluorescent DNA 
dye, because all nuclei contain abundant DNA and are 
thus represented in the images by high pixel intensi- 
ties against a low intensity background. Images are 
automatically segmented into regions representing nu- 
clei and background. This method, and others (27), cor- 
rectly detects almost 100% of isolated nuclei (24). 

In most specimens, particularly clinical specimens, 
there are clustered cells where different nuclei appear 
touching or overlapping in the images. Consequently, 
large intensity differences no longer exist between the 
nuclei and such clusters can thus be mistakenly de- 
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tected as a single nucleus. Despite many attempts to 
devise algorithms that recognize individual nuclei 
within clusters, none have proven satisfactory for wide 
biological or clinical application. Some workers (1,9, 
31,33,36) have reported over 90% (and often over 95%) 
of nuclei being correctly segmented, but in these stud- 
ies: (1) most nuclei in their images were isolated; (2) 
the analysis was limited to only isolated nuclei or nu- 
clei which appeared to barely touch in the images, or 
(3) the proportion of clustered nuclei in the images was 
not reported. When segmentation techniques were de- 
liberately applied to clustered nuclei, lower success 
rates have been reported. For example, Bartels et al. 
(3,4) described the automatic segmentation of 4 pm 
Feulgen-stained sections of prostatic carcinoma, where 
the proportion of clustered nuclei was high based on 
the published images. They correctly segmented over 
90% of the nuclei in 64% of the fields and over 80% in 
another 24% of the fields (6). Garbay et al. (11) seg- 
mented images of 150 erythrocytes appearing to over- 
lap in May-Grunwald-Giemsa stained smears of bone 
marrow cells and correctly segmented 79% of them. 

The reason why clustered nuclei are not correctly 
segmented is unknown, but may be partly due to the 
fact that most methods do not utilize all the informa- 
tion contained in the images. For example, some meth- 
ods use only morphological information derived from 
binary masks of clusters (9,31,41,42), and consequently 
do not use pixel intensity information. Other methods 
use both morphological and intensity information, but 
alternate their use (1,11,37). Gray-scale morphology 
operations (30) simultaneously utilize both morpholog- 
ical and intensity information and thus show promise, 
but they have not yet been extensively applied to seg- 
menting clustered nuclei. 

The aim of this study was to develop algorithms that 
would correctly detect at least 90% of the individual 
nuclei in specimens containing large proportions of 
clustered nuclei. To achieve this aim, the algorithms 
were designed with the following properties: (1) simul- 
taneous use of both morphological and intensity infor- 
mation; (2) utilization of a priori knowledge about the 
size and shape of nuclei (22); (3) insensitivity to minor 
changes in system parameters; (4) low sensitivity to 
noise expressed as pixel intensity variations; (5) not 
restricted to particular types of specimens or classes of 
clustered nuclei (e.g., only nuclei that appeared to 
barely touch in the images), and (6) the ability to iden- 
tify a subset of nuclei with a higher probability (much 
more than 90%) of being correctly detected relative to 
the other (detected) nuclei. 

Images of Hoechst-stained epithelial nuclei in 2 pm 
sections from prostate and breast tumors were used to 
test the algorithms, because: (1) breast and prostate 
cancer are respectively the third and forth most com- 
mon cancers in the United States (19); (2) the present 
method of grading (visual examination of the epithelial 
cells in the sections) would benefit from a more objec- 
tive classification of the morphology and distribution of 

the epithelial nuclei (6); (3) these sections contain large 
proportions of closely spaced epithelial cells (20) that 
appear to touch in the images, and (4) the cells that 
appear to touch are in the same focal plane. Therefore 
their analysis will probably not be significantly im- 
proved by using three-dimensional (3D) imaging, be- 
cause such imaging mainly improves the resolution of 
signals between different focal planes. 

MATERIALS AND METHODS 
Image Analysis Procedure 

Overview Figure 1A summarizes the image analy- 
sis procedure and Figure 1B defines the terms (under- 
lined in Fig. 1B) used below. Referring to Figure lA,  
each original image of fluorescent stained nuclei was 
both high-pass and low-pass filtered to produce ver- 
sions with enhanced and suppressed edge information, 
respectively. Enhancing the edges increased the like- 
lihood that the segmentation algorithm would find the 
edges between (clustered) nuclei. However, enhance- 
ment also increased the likelihood that false edges 
within individual nuclei would be detected and incor- 
rectly used to divide the cluster. Suppressing the edges 
had an opposite effect on the segmentation. 

The original image and both filtered versions were 
analyzed by the segmentation algorithm. This algo- 
rithm automatically calculated threshold intensities to 
segment the images into regions (which consisted of 
4-connected pixels) representing stained nuclei and 
background. Size and shape parameters were used to 
differentiate regions corresponding to clustered vs. iso- 
lated nuclei. Finally, the algorithm attempted to divide 
each region of clustered nuclei into new regions repre- 
senting individual nuclei. 

The input to the decision algorithm were the regions 
representing individual nuclei in the segmented im- 
ages of the original and high- and low-pass filtered 
original image. The decision algorithm first assigned 
regions, which were in the same location in the three 
segmented images, to the same group. Then, taking 
each group individually, the set of regions from the 
same version of the image, which was collectively clos- 
est to the average size and shape of nuclei, were chosen 
as  the final segmented individual nuclear regions for 
the original image. 

The benefit of filtering the original image before seg- 
mentation and combining the results from the original 
image and filtered versions after segmentation is as 
follows. Incorrectly divided nuclei in the original image 
(for example, because of the existence of a false edge), 
would not be identified as such in the segmented low- 
pass filtered version (because false edges would be sup- 
pressed). Consequently, the decision algorithm would 
probably choose the (correct) region from the low-pass 
version, because it would be closer to an average nu- 
cleus than the two (incorrect) regions in the segmented 
versions of the original and high-pass filtered images. 
Conversely, the segmentation might fail to divide a 
cluster of two nuclei in the original image (because of a 
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weak edge between them), but would successfully di- 
vide the cluster in the high-pass version (because the 
edge would be enhanced). In this situation, the decision 
algorithm would probably choose the correct regions 
from the high-pass version. 

Image filtering. The images were low-pass filtered 
by two successive applications of an averaging filter 
(13) with a kernel size of 11 x 11 pixels. The high-pass 
filtering was done by halving the pixel intensities of 
the low-pass version and subtracting the resulting im- 
age from the original image. These filters were empir- 
ically selected, based on the final results when analyz- 
ing a subset of representative images. 

Image thresholding. The segmentation algorithm 
first calculated threshold intensities (described in ref- 
erence 24) to divide the images into regions correspond- 
ing to  nuclei and background. The output from thresh- 
olding was another image, where background pixels 
had intensities (henceforth named “values”) of 255 and 
nuclear pixels had values # 255. All pixels in the same 
contiguous region had the same value, but pixels in 
different regions had different values. 

Cluster detection. Cluster detection used a priori 
knowledge about nuclei to recognize regions corre- 
sponding to clustered nuclei. Such regions had larger 
areas (measured in pixels) and more irregular shapes 
(measured by the shape factor, SF) than individual nu- 
clei. SF was defined as perimeter2/area, where the pe- 
rimeter was taken as the number of pixels around the 
edge of the region. Any region was treated as a cluster 
if it had either an area and an SF more than the mean 
area of individual nuclei (AREA) and 15.5, respec- 
tively, or an area more than 2 x AREA. These partic- 
ular rules were empirically chosen because, based on 
visual examination of the images, they detected virtu- 
ally all clusters and only a small proportion of single 
nuclei. Properties of the division algorithm (described 
below) ensured that most of these single nuclei were 
not divided. 

Cluster division The division algorithm found di- 
viding paths across clusters. A dividing path was de- 
fined as, “the path that possessed an average gradient 
(15) per pixel greater than all other possible paths,” 
because the part of a cluster where two nuclei appear to 
overlap or touch would contain an increased proportion 
of nuclear edges either within the overlapping part or 
around its edges. Consequently, their corresponding 
pixels, on average, would have higher gradients than 
pixels inside the non-overlapping parts of the nuclei. 

~ ~~ ~~~~ ~ 

FIG. 1. A The image analysis procedures illustrated as a flow di- 
agram. The original image is both high-pass and low-pass filtered. 
The (same) segmentation algorithm is applied to the original image 
and both filtered versions. The decision algorithm takes as input the 
three results from the segmentations and outputs the final segmented 
image. B: Definition of the terms used (underlined) for describing the 
image analysis procedure. Refer to  Figures 5, 6, and 7 for examples of 
real images and results from their analysis. 
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Schematic illustration Result from seamenting 
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the two isolated nuclei, 
nl and n2. 

Low-pass filtered The segmentation of 
(blurred) version’ image c. Because of 
of image a. Filtering merging of the nuclei, 
merged the tws nuclei. only one region, r3 was 

detected. r3 represents 
a cluster of two nuclei. 

e. Regions rl and r3 overlaD, and r2 and r3 overlap, 
therefore rl , r2 and r3 are assigned to the same grow. 

f. rl and r2 are both in the same group and the same version 
of the image, therefore they are in the same set. r3 is in a 
different set. 

* In practice, a high-pass filtered version was also used, but for simplicity is 
not illustrated here. 

FIG. 1 
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‘It IS assumed all pixels are 
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FIG. 2. Flow diagram of the algorithm used for determining the 
skeleton of a cluster. 

Furthermore, a valid path was allowed to cross the 
skeleton (medial axis) (17) of the cluster only once, and 
on either side of the skeleton had to proceed towards 
the boundary of the cluster. This was because the skel- 
eton generally ran between the centers of nuclei and 
thus the dividing path should be roughly orthogonal to 
it. Paths were %connected lines of pixels, but were not 
restricted to being straight lines. 

Determination of the skeletons of clusters employed 
a standard method (16). First, each pixel in the cluster 
was given a label approximately equal to its shortest 
distance from the boundary of the cluster plus 128. 
This was done by assigning a label of 129 to pixels that 
were 4-connected to pixels outside the cluster and then 
assigning a label of 130 to pixels next to pixels with 129 
labels, etc. Next, the skeleton was determined as de- 
scribed in Figure 2 .  Figure 3A shows a schematic ex- 
ample of a cluster of two nuclei labeled in this way. 

The determination of the dividing paths was similar, 
in principle, to the grey-weighted distance transform 
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FIG. 3. A: A schematic cluster of two nuclei showing the labels 
assigned to the pixels using the algorithm described in Figure 2. Note 
that 128 is added to the labels of skeleton pixels. The pixels marked 
“X” are those through which a dividing path was allowed to pass. The 
pixels marked “ Y  are on the left side of the skeleton and adjacent to 
the skeleton pixel labeled 130. B: The schematic cluster showing ar- 
bitrary gradients for each pixel. c: The result from applying the pro- 
cedure for finding the “summed gradients” of the non-skeleton pixels. 
D The result from applying the procedure for finding the best divid- 
ing path starting from each skeleton pixel. Each skeleton pixel now 
has its average gradient value. The two pixels at the ends of the 
skeleton have been assigned average gradient values of 0. The pixel 
marked “D’ is the skeleton pixel with the largest average gradient 
value (5.2) and therefore lies on the dividing path. The pixel marked 
“E” has the highest average gradient out of the ones marked “ Y  in A. 
The arrows show the actual dividing path. 

(351, and was implemented as follows. First, the mag- 
nitude of the gradient of every pixel in the cluster was 
calculated by filtering the image with the 3 x 3 Sobel 
operator (14). Then, for each pixel with label 2 (see Fig. 
3A), the algorithm located all pixels in the 8-connected 
surrounding pixels labeled 1. The highest gradient 
amongst the located pixels was chosen, and this gradi- 
ent was added to the gradient of the pixel labeled 2. 
After applying the procedure to every pixel labeled 2, it 
was applied to every pixel labeled 3 using surrounding 
pixels labeled 2. The process continued until all pixels 
in the cluster, except those on the skeleton, had been 
covered. The resulting values for the pixels are called 
“summed gradients” and Figure 3C shows the result of 
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applying this procedure to the schematic cluster with 
the arbitrary gradients shown in Figure 3B. The result 
from this procedure enabled the best dividing path to 
be found from any non-skeleton pixel to the boundary 
of the cluster as follows. Starting from pixel “A” (arbi- 
trarily chosen) in Figure 3C, the neighboring pixel 
which has the highest “summed gradient” and has a 
label less than the starting pixel (A) is found. This is 
pixel “B.” The process is repeated from “B” until a 
boundary pixel is reached (pixel “C”). 

The next step found the best dividing path starting 
from every skeleton pixel, which had two neighbors (in 
an 8-connected surround) that were also skeleton pix- 
els (i.e., the pixels marked “X’ in Fig. 3A). For each of 
these valid skeleton pixels, the adjacent, non-skeleton 
pixels on one side of the skeleton were identified. (For 
example the pixels marked “Y” in Fig. 3A are on the 
left side of the skeleton and adjacent to the pixel la- 
beled 130). For each of these non-skeleton pixels, its 
“summed gradient” was divided by its label to obtain 
its “average gradient.” The pixel with the largest av- 
erage gradient was noted and its summed gradient was 
added to the gradient of the skeleton pixel. (For exam- 
ple for the skeleton pixel labeled 130 in Fig. 3A, the 
pixel marked “E” in Fig. 3D has the largest average 
gradient out of the pixels marked “Y” in Fig. 3A.) 
Then, the procedure was repeated for the non-skeleton 
pixels on the other side of the skeleton. The result ob- 
tained for the skeleton pixel under consideration was 
its summed gradient and this number was divided by 
the lowest number of pixels across the cluster at this 
pixel to give its average gradient. Mathematically, this 
is: Zi(Gi/N), where Gi are the magnitudes of the gradi- 
ents of pixels, i, N is the number of pixels in the best 
dividing path ( = 2 x [label of skeleton pixel - 1291 + 
1) and the summation is over the pixels in the best 
path. The procedure was repeated for all other valid 
skeleton pixels. (The numbers of 5.0 and 5.2 in Fig. 3D 
are the average gradients for the two valid skeleton 
pixels marked “X’ in Fig. 3A.) For non-valid skeleton 
pixels (i.e., those at the end of the skeleton or where the 
skeleton splits), the average gradient was set to zero 
(see Fig. 3D). 

The dividing path was restricted as to where it 
crossed the cluster, in order to further increase the 
chance that it followed the junction between two nu- 
clei. In most clusters, such junctions corresponded to 
“necks” in the cluster (e.g., row 6 in Fig. 3A). There- 
fore, to bias the dividing path into these “necks,” the 
place where the path crossed the skeleton line was re- 
stricted as follows: The skeleton pixel with the largest 
label was located (i.e., 132 at row 4 in Fig. 3A). The 
algorithm first moved along the skeleton line, starting 
at this pixel, for a distance equal to [label - 128]/2 (i.e., 
two pixels for the cluster in Fig. 3). Then, the algorithm 
moved a second time along the skeleton line in the 
same direction up to a maximum distance equal to this 
largest label minus 128 (i.e., four pixels for the cluster 
in Fig. 3). During the second move, the skeleton pixel 

encountered with the largest, average gradient was 
taken as being on the dividing line (i.e., the pixel with 
value 5.2 in Fig. 3D). The remainder of the dividing 
path from this pixel to the cluster boundaries was 
found as described in the third paragraph of this sub- 
section. The path was not allowed to travel along the 
skeleton. (The arrows in Fig. 3D show the path taken 
for that cluster.) 

If, during either move along the skeleton, a pixel 
with average gradient equal to zero was encountered, 
then the algorithm terminated the search. If this oc- 
curred in the first move, then the cluster would not be 
divided on this attempt. In this situation, the search for 
the start of a different path was undertaken. Searching 
ended either with the cluster never being divided, or 
when a dividing path was found. 

When a dividing path was found, the two new re- 
gions were reclassified as described in the section 
“Cluster detection.” Then cluster division was re- 
peated for those new regions classified as being clus- 
ters. This iterative procedure enabled large clusters of 
cells to be divided, by successively dividing larger clus- 
ters into smaller clusters until the smaller clusters con- 
sisted of two nuclei. The final round of the iteration 
would divide the clusters of two nuclei into individual 
nuclei. 

The decision algorithm The regions detected from 
the original image and two filtered versions by the 
above analysis were the inputs to the decision algo- 
rithm (Fig. 1A). This algorithm first reduced the size of 
regions by successive morphological erosions for two 
purposes: (1) to remove regions too small to represent 
nuclei, and (2) to increase, in parts of the images con- 
taining many clustered nuclei, the combinations of re- 
gions this algorithm could choose between for the final 
results. The latter is explained below. 

The next step in the algorithm assigned regions 
which overlapped (i.e., from different images) to the 
same group. The terms used below are defined in Fig- 
ure 1B. Figure 4A shows schematically two nuclei, A 
and B segmented from the original image (regions A, 
and B,) and a filtered version (regions A, and B,). (The 
vertical dashed lines in Fig. 4 are only for visual align- 
ment.) The actual decision algorithm used both filtered 
versions, but only one is used in this explanation for 
simplicity. Let us assume regions A, and B2 are cor- 
rectly segmented, but B, and A, are not. The decision 
algorithm assigns overlapping regions to the same 
group, thus all four regions are in the same group. This 
is because A, overlaps both A, and B,, and B, overlaps 
B,. The algorithm then chooses one of the sets of re- 
gions in the group as being the final result. Conse- 
quently, it would either choose the set (A,, B,), or  (A,, 
B,). However, both choices would lead to a mistake, 
because either region B, or A2 would be selected. Fig- 
ure 4B shows the same region as Figure 4A after mor- 
phological erosions. Erosions were repeatedly applied 
with a 3 x 3 kernel and alternating between 8- and 
4-connectedness. The number of erosions applied re- 
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filtered image @@ 
I 

duced the area of an  average nucleus ( = AREA) to 0.75 
x AREA. The decision algorithm would now assign 
regions A, and A, to one group and regions B, and B, 
to another group, because neither A overlaps neither B 
or vice versa. Consequently, the algorithm may choose 
any combination of A's or B's, because each region is its 
own set. Most likely, regions A, and B, would be cho- 
sen because they are closer to the average size and 
shape of nuclei compared to regions B, and A,. Hence 
the results from this step of the algorithm were that 
each group consisted of three sets, with each set con- 
taining the regions originating from the original image 
or one of its two filtered versions. Then for each group, 
the algorithm measured the closeness of each set to 
average nuclei. The closeness was defined as the (log) 
likelihood (32) that the regions in a given set were 
average nuclei and was measured using the equation: 

8 [ @ I 
I 

N 
L = 1/N X ~{(A,-mA)2/crA2 + (S,-ms)2/us2} for N > 0 I 

for N = 0 I 
ll=l Al), 

0 

where L is the (log) likelihood; N, the number of re- 
gions in the set under consideration; A,, the area of 
region n; mA, the mean area of nuclei; crA, the standard 
deviation of m,; S,, the shape factor of region n; ms, 
the mean shape factor of nuclei; us, the standard devi- 
ation of ms. Hence, the closer a set of regions was to the 
mean area and mean shape factor of nuclei, the greater 
the likelihood. The likelihood measure assumed that 
the area and shape factor distributions for nuclei were 
Gaussian, and that the shape factor and area for a re- 
gion were independent. Although, both assumptions 
were probably not accurate, the resulting likelihood 
measure was adequate for correctly selecting between 
the three sets in each group. 

On occasions, nuclei detected from some versions of 
the image were missed in others and consequently 
some of the resulting sets would be missing regions. 
Although these sets are incorrect, their likelihood val- 
ues could easily be greater than other sets containing 
all the regions. This would result in the set with miss- 
ing regions being incorrectly selected. To avoid this 
situation, any set was chosen over another, if its total 
region area was greater than the total region area plus 
mA of the other, regardless of likelihood values. 

After final selection of the regions representing nu- 
clei, the regions were dilated, using the reverse process 
to the erosions defined above, in order to return the 
regions to their original sizes following thresholding. 
Finally, regions considered too small, too large, too ir- 
regular (SF > 17) or on the edges of images were re- 
jected. 

Applications of the Image Analysis Procedures 
to Clinical Specimens 

Specimen preparation. Biopsy material from 
prostate and breast cancer patients was fixed in 10% 
buffered formalin (pH 7.4) and then embedded in puri- 

I I I 

I I I 

FIG. 4. Assignment of the detected regions to groups. The terms 
used below are defined in Figure lB,  but see the text for full expla- 
nation of this figure. (The vertical dashed lines are for visual align- 
ment.) The sentences at the bottom of (A) and (B) are the results from 
application of the decision algorithm to these schematic nuclei. A: 
Schematic showing two nuclei, A and B segmented from the original 
image (regions A, and B,) and a filtered version (regions A, and B2). 
B: The same regions illustrated in A, but after morphological erosion. 

fied glycol methacrylate (5) (pH 7.4). The embedded 
material was sectioned with a glass knife 2 pm thick 
using a J B 4 A  microtome (Energy Beam Sciences, Inc., 
Agawam, MA). The sections were placed on glass slides 
and dried on a hot plate (5O-6O0C, 1 min.). The sections 
were labeled with the fluorescent DNA dye Hoechst 
33342 (Molecular Probes, Eugene, OR) dissolved in 
phosphate buffered saline (PBS) (0.1 pg/ml, pH 7.4,lO 
min, 20"C), followed by washing in PBS. A small drop 
of PBS, followed by a #1 coverslip, was placed over 
each section and the coverslip was sealed to the slide 
with non-fluorescent nail enamel. 

Image acquisition. The images were acquired us- 
ing an inverted epi-f luorescence microscope (Axiovert 
10, Zeiss, Thornwood, NY) equipped with a filter cube, 
40X dry objective lens (Plan-Neofluar, 0.75 numerical 
aperture, #40 03 50, Zeiss) and a Micro-Imager 1400 
digital camera (Xillix Technologies Corp., Vancouver, 
Canada). The filter cube transmitted excitation light a t  
365 nm, had a dichroic mirror a t  390 nm transition 
wavelength, and collected emitted fluorescence light 
above 410 nm. The camera images were 1,280 x 1,024 
pixels with the intensity at each pixel digitized to 12- 
bits and mapped into %bits. They were acquired into 
an image-1280 board (Matrox Electronic Systems, Ltd., 
Dorval, Quebec, Canada) on the back plane of an  IBM 
compatible 486 personal computer (Gateway 2000, Des 
Moines, IA) and were subsequently transferred via 
ethernet to a SPARC-1 workstation (Sun Microsys- 
tems, Inc., Mountain View, CA) for archiving on optical 
disks. 

Microscopic scenes, containing relatively large num- 
bers of epithelial cells, were imaged. The camera expo- 
sure time was 200 msec and each pixel represented 
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0.16 x 0.16 pm of the section. Six images from a pros- 
tate specimen, one image from another prostate speci- 
men, and one image from a breast specimen were ac- 
quired. 

Image and data analysis. The images were di- 
vided into small images of 256 x 256 pixels, because 
some of the algorithms only handled that size. These 
small images overlapped each other by at  least one 
average nucleus diameter so that any nucleus on the 
edge of one image was fully represented in the adjacent 
image. 

First, a few small images were analyzed using the 
segmentation algorithms described in the sections Im- 
age thresholding, Cluster detection, and Cluster divi- 
sion, and using an approximate value for AREA. The 
output images, which consisted of regions representing 
nuclei, were eroded (see above for details) and then the 
area and perimeter of the first 20 correctly segmented 
individual nuclei (based on visual comparison to the 
original images) were measured. These data were used 
to determine AREA, mA, uA, m,, and us. Next, all the 
small images were analyzed as described in the section 
Image Analysis Procedure, and the output images were 
then manually tiled into a 1,280 x 1,024 size image 
using the interactive tools provided by the Matrox im- 
aging system. A nucleus located in the overlapping bor- 
der regions of the small images were segmented more 
than once and thus there was more than one region 
representing it. The region furthest from the edge of its 
image was taken as the result, because this would min- 
imize any edge effects. An inherent problem with thin 
sections was that nuclei were randomly cut (7). There- 
fore, the proportion of each nucleus present in the sec- 
tion continuously varied from zero up to a maximum; 
the maximum being where the section passed centrally 
through the nucleus. Consequently, an arbitrary lower 
limit had to be set on the size of detected nuclei, which 
was AREAI4. 

The performance of the analysis was measured by 
calculating the fraction of isolated nuclei and the frac- 
tion of clustered nuclei correctly detected. Correctly 
and incorrectly detected nuclei were determined by vi- 
sually comparing the acquired images to the images 
showing the regions determined by the analysis. Iso- 
lated nuclei were those correctly detected by only 
thresholding the original image. Clustered nuclei were 
those in the same region as at least one other nucleus 
after thresholding. A nucleus was considered correctly 
detected if its segmented region visually matched the 
shape of the nucleus in the original image. An overall 
performance measure was defined using the following 
expression: 

Performance = (D - ARTIN (21, 

where D was the number of correctly detected nuclei, 
ART(ifacts) was the number of regions not considered 
to be nuclei, and V was the number of nuclei visually 
counted in the original images. 

RESULTS 

The execution time of the algorithms for a small (256 
x 256 pixels) image was around 30 sec for thresholding 
and cluster division combined. All other analysis steps 
took less than 1 sec. 

Figure 5A shows an original small image of prostate 
tissue, the result from thresholding the image (Fig. 
5B), and the filtered versions are shown in Figure 5C 
and D. The results from applying thresholding and 
cluster division to the images in Figure 5A, C, and 5D 
are shown in Figure 5E, F, and G, respectively, and the 
result from the full image analysis is shown in Figure 
5H. Figure 5B shows that thresholding alone correctly 
detected 12 out of 18 nuclei (the nuclei without arrows). 
Five incorrect nuclei (arrows) were appearing to touch 
each other and therefore were not detected as individ- 
ual regions. The threshold intensity was too high for 
proper segmentation of the sixth incorrect nucleus (ar- 
rowhead). Figure 5E shows that thresholding of the 
original image followed by cluster detection and divi- 
sion, but not using the decision algorithm to combine 
the results with those from the filtered versions, cor- 
rectly detected 14 out of 18 nuclei. Two nuclei (arrows) 
were incorrectly divided and two (marked “M’) were 
missed. The missed nuclei were in a cluster that was 
not divided and was subsequently rejected for being too 
irregular in shape. Application of the cluster division 
to  the low-pass filtered version (Fig. 5C) gave similar 
results (compare Fig. 5F to 5E), except one nucleus 
incorrectly divided in Figure 5E was correctly detected. 
Figure 5G shows the results from applying cluster di- 
vision to the high-pass filtered version (Fig. 5D). All 
nuclei except two (arrows) were correctly detected. Fig- 
ure 5E, F, and G together show that all nuclei were 
correctly segmented from at least one of the input im- 
ages. Thus, when the decision algorithm was applied to 
these results, it was able to select a combination of 
regions that resulted in all 18 nuclei being correctly 
detected (Fig. 5H). Finally, Figure 51 shows the subset 
of 14 out of 18 correctly detected nuclei that produced 
essentially the same segmentation from the original 
image and both filtered versions; these 14 nuclei were 
considered correctly detected. 

Figure 6 shows a 1,280 x 1,024 image of a prostate 
section (Fig. 6A), the detected regions (Fig. 6B), and 
the edges of the regions (Fig. 6C). Figure 6C is included 
to show the boundaries of the regions that are not vis- 
ible in Figure 6B. The image shows 96 isolated and 31 
clustered epithelial nuclei, of which 95 (99%) and 29 
(94%), respectively, were correctly detected. In addi- 
tion, one detected region was not considered to be a 
nucleus. Hence, the overall performance, calculated us- 
ing expression (2), was 97%. The right quarter of Fig- 
ure 6A contains stromal cells. These were not effi- 
ciently detected, because the parameters in the 
algorithms were not set to appropriate values for their 
detection. The group of regions in the top left corner 
(marked as “ART” in Fig. 6B) are artifacts. They arose 
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FIG. 5. Analysis of a 256 x 256 image of prostate tissue. A The 
original image showing 18 nuclei (not counting those nuclei on the 
edges of the image, which were rejected by the analysis). B: Result 
from applying image thresholding to image (A).  The five arrows and 
arrowhead indicate incorrectly segmented nuclei. C: Low-pass filtered 
version of image (A). D: High-pass filtered version of image (A). E, F, 

G The results from applying thresholding and cluster division to 
images (A), (C), and (D), respectively. “M” indicates the approximate 
locations of missed nuclei. H Result from applying the full image 
analysis to image (A). I: regions representing nuclei that produced 
essentially the same segmentation from (A), (0, and (D). 

because the small image for that section contained only 
background and noise intensities and consequently the 
threshold intensities were calculated to approximately 

equal the background intensity level. However, these 
regions can be easily recognized and eliminated be- 
cause their pixel intensities equal background intensi- 
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ties. In total, 296 isolated and 174 clustered epithelial 
prostate nuclei from the 7 acquired 1,280 x 1,024 im- 
ages were analyzed, of which 291 (98%) and 166 (95%) 
were correctly detected. In addition, seven regions con- 
sidered to be nuclei by the algorithm were not consid- 
ered to be nuclei by visual examination. Hence, overall 
performance for detecting nuclei in prostate sections 
was 96%. 

Figure 7 shows a 1,280 x 1,024 image of breast tis- 
sue, the detected regions, and the edges of the regions. 
Only the third of this image that contained most of the 
clustered nuclei was analyzed. This third contained 37 
isolated and 97 clustered epithelial nuclei, of which 37 
(100%) and 88 (91%) were correctly detected. In addi- 
tion, three detected regions were not considered nuclei. 
Hence, the overall performance was 91%. However, 
this result is for images deliberately selected because 
they contained clustered nuclei, therefore the overall 
performance for typical breast section images should be 
higher. 

The breast image was also used to assess the perfor- 
mance of the major components of the analysis proce- 
dure and Table 1 shows the results. The results show a 
significant improvement when going from only thresh- 
olding (performance = 28%), to cluster division (68%) 
and to the full analysis (91%). Furthermore, by select- 
ing only regions that had essentially the same segmen- 
tation from the original image and both filtered ver- 
sions, 97% of the detected regions were correct. 

DISCUSSION 
We have developed image analysis algorithms that 

correctly detect at least 90% of individual fluorescent 
nuclei in specimens containing large proportions of 
clustered nuclei. To our knowledge, this is the first re- 
port of an algorithm capable of correctly detecting such 
a high percentage of clustered nuclei in these types of 
specimens. Consequently, the analysis described here 
should increase the utility of IC for biological and clin- 
ical applications. 

We believe the reasons for our high rate of detection 
were because: (1) The Hoechst staining enabled highly 
reliable segmentation (by intensity thresholding) of 
the images into regions corresponding to background 
and nuclei. (2) The cluster division algorithm exploited 
the fact that the dividing paths were most likely to 
cross clusters at necks and be at pixels with high gra- 
dients. In other words, the algorithm simultaneously 
utilized both morphological and intensity information 
to find the dividing lines across clusters. (3) A few pix- 
els with aberrant intensities (mainly due t o  variations 
in the DNA concentration within nuclei) would not sig- 
nificantly disrupt the true path, because the determi- 
nation of the dividing paths was based on a gradient 
parameter averaged over many pixels (=30 pixels). (4) 
Filtering the images, followed by separately analyzing 
the original image and filtered versions and then se- 
lecting the regions closest to the expected shape of nu- 
clei, made the analysis robust by providing another 

FIG. 6. Analysis of an image of prostate tissue. The right quarter of 
the figure contains stromal cells. These were not efficiently detected, 
because the parameters in the algorithms were not set to appropriate 
values for their detection. A: Original 1280 x 1024 image. B: Result 
from the full analysis. “ART” is a group of detected regions that were 
not nuclei. C: The edges of the detected regions, which are included to 
show the boundaries of regions not visible in (B). (AREA, mA, uA, m,, 
us) = (1,000, 656, 233, 12.4, 1.6) pixels. 
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FIG. 7. Analysis of an  image of breast tissue. A The original 1,280 
x 1,024 image. B Result from the full analysis of the third of the 
image containing most of the clustered nuclei. C: The edges of the 
detected regions. (AREA, mA, uA, m,, us) = (860, 490, 150, 13.4, 3.3) 
pixels. 

chance t o  obtain the correct result when cluster divi- 
sion failed on the original image. 

The manual determination of the parameters, 

Table 1 
Results From Assessing the Major Components 
of the Analysis Procedure When Applied to the 

Breast Section Image 

Ratio of correctly 
detected nuclei 

to visible nuclei Image analysis procedure 
Only thresholding the original image 
Thresholding and applying cluster 

division to the original image 

371134 = 28% 
911134 = 68% 

Full analysis (125-3")1134 = 91% 
Selecting only objects that had 67169 = 97%b 

essentially the same segmentation 
from the original image and both 
filtered versions 

"The three regions not considered to represent nuclei. 
bSixty-nine out of 134 of the nuclei were detected. 

AREA, mA, uA, m,, and us could be considered a draw- 
back for practical, automated application. However, 
these parameters need only be known approximately 
and once they are known for a particular specimen 
type, subsequent analyses of the same types will be 
completely automatic. 

The potential for further improvements in the anal- 
ysis exist, for example, using expert system guided 
scene segmentation (31, applying more filterings and 
thus extending the approach to multiresolution analy- 
sis (1233 ,  or using unsupervised segmentation algo- 
rithms which also estimate the model parameters (43). 
Furthermore, it would be possible to use an edge relo- 
cation algorithm to refine the nuclear contours (27). 
We could have further tested our approach using 
thicker specimens (-50 pm) where greater overlap of 
cells is expected. However, we believe that the best 
possible results for such specimens would be achieved 
by using 3D microscopy followed by 3D image analysis 
(81, instead of our 2D approach. In addition, the use of 
thicker specimens together with 3D analysis has the 
advantages that it would permit the analysis of whole 
nuclei (34) and avoid the limitations of conventional 
two-dimensional (2D) microscopy, which are that 2D 
images are projections through inherently 3D struc- 
tures and contain out of focus haze (39). At this junc- 
ture, it should be pointed out that the algorithms de- 
scribed herein can be extended for 3D application and 
that automatic segmentation procedures are virtually 
essential for 3D analysis. This is because manual seg- 
mentation would require the definition of the entire 
surface of structures, and not just the edges as  in 2D 
analysis. 

The results produced by the algorithms described 
herein either detect every nucleus or detect a subset of 
nuclei at a higher level of reliability. Detecting all nu- 
clei is suitable for applications such as quantifying the 
distribution of the epithelial nuclei surrounding ducts 
(6). Detecting a subset of nuclei reliably is suitable for 
determining the proportion of nuclei expressing a par- 
ticular intranuclear signal, i.e., the counting of FISH 
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labeled gene sequences in the interphase nuclei of can- 
cer specimens (28). 

The results presented herein show that a high pro- 
portion (more than 90%) of fluorescence labeled nuclei, 
including nuclei appearing to touch and overlap, can be 
automatically and correctly detected using fluores- 
cence digital image-based cytometry (IC). The core of 
the IC is algorithms that locate dividing paths between 
clustered nuclei and select, from the segmentations of 
the original image and filtered versions of the same 
nuclei, the correct regions representing nuclei. The al- 
gorithms we have developed will lead to the more con- 
venient analysis of a greater proportion of nuclei in 
intact specimens. This, in turn, will lead to more pre- 
cise diagnosis of clinical specimens and improved un- 
derstanding of cellular mechanisms. 
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