IDA Wiki

Contents

Python Programming for Machine Learning

Python has become a standard language for prototyping and plotting results in the machine learning community.

Goal of this course is a basic understanding of python programming for machine learning and data analysis. We want to enable students to quickly load a data set, implement an algorithm, run analyses and plot the results. We will therefore focus on efficient calculations and visualization. For this, we make use of the packages

Examples relate to Machine Learning Applications.

Knowledge of elementary programming concepts will be helpful. Be aware that lack of such knowledge will increase the time demand of the class. In that case, you should consider to prepare with a beginner's course

Homework is submitted via ISIS page.

TUBIT-Account

A TUBIT-Account is needed for the login on our computers and access to ISIS! If you do not have such an account, write an e-mail to daniel.bartz@tu-berlin.de containing your full name (as on your ID!) and date of birth. We then generate a PDF, with which you receive a TUBIT-Account at the Kartenausgabestelle.

Python on your own computer

If you want to use your own machine, make sure that you have installed (up-to-date versions)

You should test your system by loading the following Ipython notebook: test notebook

Supplemental Material

Many free Python tutorials and lectures are available in the internet. Here is a small subset:

IPython:

Plotting:

Machine Learning:

A good programming style never hurts.

Anrechenbarkeit

Der Kurs ist Wahlpflichtbestandteil des Moduls Kognitive Algorithmen (B.Sc. Informatik).

Eine Anmeldung für den Kurs ist nicht erforderlich, Studenten aller Fachrichtungen und Universitäten sind willkommen. Grundlage für den benoteten Leistungsnachweis (2 SWS bzw. 3 LP) ist die Klausur (90 Minuten), auf Wunsch stellen wir bei bestandener Klausur auch einen unbenoteten Leistungsnachweis aus. Python und sämtliche Aufzeichnungen dürfen in der Klausur verwendet werden. Voraussetzung für die Teilnahme an der Klausur ist das Erreichen von mindestens der Hälfte aller möglichen Punkte in den Hausaufgaben, die Ergebnisse in den Übungsaufgaben gehen nicht in die Note ein. Die Hausaufgaben sind nicht als Gruppenarbeit anzufertigen.

TU Studenten, die den Kurs als als freie Wahl in ihr Studium einbringen möchten, müssen in der Regel die Modulprüfung bei ihrem Prüfungsamt anmelden, ansonsten kann es bei der Anrechnung beim Prüfungsamt später Probleme geben.

IDA Wiki: Main/SS14_PythonKurs (last edited 2014-04-04 07:44:34 by DanielBartz)