Python Programming for Machine Learning

!!! work in progress, the content of this site will change in the following days !!!

Python has become a standard language for prototyping and plotting results in the machine learning community.

Goal of this course is a basic understanding of python programming for machine learning and data analysis. We want to enable students to quickly load a data set, implement an algorithm, run analyses and plot the results. We will therefore focus on efficient calculations and visualization. For this, we make use of the packages

Examples relate to Machine Learning Applications.

Knowledge of elementary programming concepts will be helpful. Be aware that lack of such knowledge will increase the time demand of the class.n.

Homework is submitted via ISIS.

A TUBIT-Account is needed for the login on our computers. If you do not have such an account, write an e-mail to daniel.bartz@tu-berlin.de containing your full name (as on your ID!) and date of birth. We then generate a PDF, with which you receive a TUBIT-Account at the Kartenausgabestelle.

Ablauf

Es besteht keine Anwesenheitspflicht. Der ungefähre Ablauf ist wie folgt:

10:00 – 11:00 Uhr

Einführung und Demonstration (zum Mittippen)

11:00 – 13:00 Uhr

Gemeinsame Bearbeitung der Übungsaufgaben

14:30 Uhr

Ausgabe und ggf. Besprechung der Musterlösungen

14:30 – 17:00 Uhr

Bearbeitung der Hausaufgaben

Abgabeschluss für die Hausaufgaben ist 10:00 Uhr am folgenden Tag. Wir werden folgende Themen behandeln:

Anrechenbarkeit

Der Kurs ist Wahlpflichtbestandteil des Moduls Maschinelles Lernen I (M.Sc. Informatik). (Das Master-Modul "Maschinelles Lernen 1" wird im Wintersemester angeboten und lässt sich auf Antrag in den Bachelor Informatik einbringen).

Eine Anmeldung für den Kurs ist nicht erforderlich, Studenten aller Fachrichtungen und Universitäten sind willkommen. Grundlage für den benoteten Leistungsnachweis (2 SWS bzw. 3 LP) ist die Klausur (90 Minuten), auf Wunsch stellen wir bei bestandener Klausur auch einen unbenoteten Leistungsnachweis aus. Matlab und sämtliche Aufzeichnungen dürfen in der Klausur verwendet werden. Voraussetzung für die Teilnahme an der Klausur ist das Erreichen von mindestens der Hälfte aller möglichen Punkte in den Hausaufgaben, die Ergebnisse in den Übungsaufgaben gehen nicht in die Note ein. Die Hausaufgaben sind nicht als Gruppenarbeit anzufertigen.

TU Studenten, die den Kurs als als freie Wahl in ihr Studium einbringen möchten, müssen in der Regel die Modulprüfung bei ihrem Prüfungsamt anmelden, ansonsten kann es bei der Anrechnung beim Prüfungsamt später Probleme geben.