Size: 4360
Comment:
|
Size: 4108
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
== Matlab Programmierung für Maschinelles Lernen und Datenanalyse == | == Python Programmierung für Maschinelles Lernen und Datenanalyse == |
Line 3: | Line 3: |
|| '''Termin:''' || Blockveranstaltung Di, 02.04. bis Do, 04.04.2013 jeweils 10:00-17:00 Uhr, Prüfung Fr, 12.04. 10:00 - 11:30 Uhr || || '''Raum:''' || MAR 6.057 || || '''Dozent:''' || Irene Winkler (irene.winkler@tu-berlin.de, Raum MAR 4.034) || |
== !!! work in progress, the content of this site will change in the following days !!! == |
Line 7: | Line 5: |
Das Ziel dieses Kurses ist es, allgemeine Grundlagen im Umgang und der Programmierung von Matlab zu vermitteln. Die Inhalte des Kurses sind geringfügig auf Anwendungen im Maschinellen Lernen zugeschnitten. Statistische Methoden zur Datenanalyse werden nicht unterrichtet. | || '''Termin:''' || Blockveranstaltung Di, 02.04. bis Do, 04.04.2013 jeweils 10:00-17:00 Uhr || || '''Prüfung:''' || Prüfung Fr, 12.04. 10:00 - 11:30 Uhr || || '''Raum:''' || MAR 6.xxx || || '''Dozent:''' || Daniel Bartz (daniel.bartz@tu-berlin.de, Raum MAR 4.034) || Das Ziel dieses Kurses ist es, Grundlagen des wissenschaftlichen Programmierens in Python zu vermitteln. Insbesondere behandelt der Kurs effiziente Implementierung typischer Berechnungen und den Umgang mit den Paketen * numpy * matplotlib * scipy Beispiele beziehen sich auf Anwendungen im Maschinellen Lernen. |
Line 15: | Line 23: |
sollten geläufig sein. Eigenständiges Erarbeiten programmiersprachen-spezifischer Funktionalität anhand der Dokumentation wird vorausgesetzt. Da die Dokumentation von Matlab auf Englisch ist, werden außerdem ausreichende Englischkenntnisse benötigt. | sollten geläufig sein. Eigenständiges Erarbeiten programmiersprachen-spezifischer Funktionalität anhand der Dokumentation wird vorausgesetzt. Da die Dokumentation von Python und der Pakete auf Englisch ist, werden außerdem ausreichende Englischkenntnisse benötigt. |
Line 17: | Line 25: |
Ein Lernziel des Kurses ist es, die von Matlab zur Vefügung gestellten Matrixoperationen zum Programmieren zu verwenden (es geht z.B. darum, wie man den Mittelwert von Daten abzieht, ohne for-Schleifen zu benutzen). Daher wird das sichere Beherrschen des Rechnens mit Matrizen und Vektoren vorausgesetzt. Für das Implementieren von Zufallsexperimenten sind außerdem grundlegende Konzepte der Wahrscheinlichkeitsrechnung wichtig. | |
Line 24: | Line 31: |
eine e-mail an irene.winkler@tu-berlin.de mit vollständigem Namen (so wie er auf dem Ausweis steht) und Geburtsdatum. Wir generieren dann ein PDF, mit dem der TUBIT-Account an der [[http://www.tubit.tu-berlin.de/menue/hilfe_beratung/glossar/k/kartenausgabestelle_kas/|Kartenausgabestelle]] abgeholt | eine e-mail an daniel.bartz@tu-berlin.de mit vollständigem Namen (so wie er auf dem Ausweis steht) und Geburtsdatum. Wir generieren dann ein PDF, mit dem der TUBIT-Account an der [[http://www.tubit.tu-berlin.de/menue/hilfe_beratung/glossar/k/kartenausgabestelle_kas/|Kartenausgabestelle]] abgeholt |
Python Programmierung für Maschinelles Lernen und Datenanalyse
!!! work in progress, the content of this site will change in the following days !!!
Termin:
Blockveranstaltung Di, 02.04. bis Do, 04.04.2013 jeweils 10:00-17:00 Uhr
Prüfung:
Prüfung Fr, 12.04. 10:00 - 11:30 Uhr
Raum:
MAR 6.xxx
Dozent:
Daniel Bartz (daniel.bartz@tu-berlin.de, Raum MAR 4.034)
Das Ziel dieses Kurses ist es, Grundlagen des wissenschaftlichen Programmierens in Python zu vermitteln. Insbesondere behandelt der Kurs effiziente Implementierung typischer Berechnungen und den Umgang mit den Paketen
- numpy
- matplotlib
- scipy
Beispiele beziehen sich auf Anwendungen im Maschinellen Lernen.
Grundlegende Kenntnisse in einer andere Programmiersprache werden vorausgesetzt. Das bedeutet, Konzepte wie
- Variablen und Datentypen;
- Kontrollstrukturen (if, for, while, switch);
- Definition und Aufruf eigener Funktionen;
- Debugging; und der
- Umgang mit der (UNIX) Kommandozeile
sollten geläufig sein. Eigenständiges Erarbeiten programmiersprachen-spezifischer Funktionalität anhand der Dokumentation wird vorausgesetzt. Da die Dokumentation von Python und der Pakete auf Englisch ist, werden außerdem ausreichende Englischkenntnisse benötigt.
Wir freuen uns über Teilnehmer aller Fachrichtungen. Um Enttäuschungen bzgl. der Zeitaufwands und/oder der Note zu vermeiden möchte ich aber darauf hinweisen, dass dieser Kurs im Rahmen des Masterstudiengangs Informatik angeboten wird. Wer wenig Programmiererfahrung oder geringe Kenntnisse der Matrixrechnung hat, wird daher einen erheblich erhöhten Zeitaufwand einplanen müssen.
Die Abgabe der Hausaufgaben erfolgt via ISIS.
Für die Nutzung von Matlab auf unseren Rechnern wird ein TUBIT-Account benötigt. Falls ihr noch keinen Account habt, schreibt mir bitte eine e-mail an daniel.bartz@tu-berlin.de mit vollständigem Namen (so wie er auf dem Ausweis steht) und Geburtsdatum. Wir generieren dann ein PDF, mit dem der TUBIT-Account an der Kartenausgabestelle abgeholt werden kann.
Ablauf
Es besteht keine Anwesenheitspflicht. Der ungefähre Ablauf ist wie folgt:
10:00 – 11:00 Uhr |
Einführung und Demonstration (zum Mittippen) |
11:00 – 13:00 Uhr |
Gemeinsame Bearbeitung der Übungsaufgaben |
14:30 Uhr |
Ausgabe und ggf. Besprechung der Musterlösungen |
14:30 – 17:00 Uhr |
Bearbeitung der Hausaufgaben |
Abgabeschluss für die Hausaufgaben ist 10:00 Uhr am folgenden Tag. Wir werden folgende Themen behandeln:
- Dienstag: Grundlagen Matlab, Lineare Algebra
- Mittwoch: Grafik, Zufallszahlen
- Donnerstag: Mehr Grafik, Datenimport, Umgang mit Strings
Anrechenbarkeit
Der Kurs ist Wahlpflichtbestandteil des Moduls Maschinelles Lernen I (M.Sc. Informatik). (Das Master-Modul "Maschinelles Lernen 1" wird im Wintersemester angeboten und lässt sich auf Antrag in den Bachelor Informatik einbringen).
Eine Anmeldung für den Kurs ist nicht erforderlich, Studenten aller Fachrichtungen und Universitäten sind willkommen. Grundlage für den benoteten Leistungsnachweis (2 SWS bzw. 3 LP) ist die Klausur (90 Minuten), auf Wunsch stellen wir bei bestandener Klausur auch einen unbenoteten Leistungsnachweis aus. Matlab und sämtliche Aufzeichnungen dürfen in der Klausur verwendet werden. Voraussetzung für die Teilnahme an der Klausur ist das Erreichen von mindestens der Hälfte aller möglichen Punkte in den Hausaufgaben, die Ergebnisse in den Übungsaufgaben gehen nicht in die Note ein. Die Hausaufgaben sind nicht als Gruppenarbeit anzufertigen.
TU Studenten, die den Kurs als als freie Wahl in ihr Studium einbringen möchten, müssen in der Regel die Modulprüfung bei ihrem Prüfungsamt anmelden, ansonsten kann es bei der Anrechnung beim Prüfungsamt später Probleme geben.