Size: 5777
Comment:
|
Size: 3802
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 28: | Line 28: |
---- /!\ '''Edit conflict - other version:''' ---- || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Oja1982.pdf|A simplified neuron model as a principal component analyzer]] || Tongxin Son || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Adelson1985.pdf|Spatiotemporal energy models for the perception of motion]] || || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Turk1991.pdf|Eigenfaces for Recognition]]|| Min Zheng|| Wojciech Samek || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Olshausen1996.pdf|Emergence of simple-cell receptive field properties by learning a sparse code for natural images]]|| Gregor Hendel || || |
|
Line 34: | Line 29: |
---- /!\ '''Edit conflict - your version:''' ---- | |
Line 40: | Line 34: |
---- /!\ '''End of edit conflict''' ---- | |
Line 45: | Line 38: |
---- /!\ '''Edit conflict - other version:''' ---- || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Mika1998.pdf|Kernel PCA and De--Noising in Feature Spaces]]|| Sha Huang|| || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Hofmann2001.pdf|Unsupervised Learning by Probabilistic Latent Semantic Analysis]]|| || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Viola2001.pdf|Rapid Object Detection using a Boosted Cascade of Simple Features]]||Siyun Li || Wojciech Samek || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/DeBie2004.pdf|Kernel methods for exploratory pattern analysis: a demonstration on text data]]|| Yi Ding || || || [[ http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Blankertz_2007_Neuroimage.pdf| The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects]]|| || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Kamitani_2005.pdf|Decoding the visual and subjective contents of the human brain]]|| || || |
|
Line 53: | Line 39: |
---- /!\ '''Edit conflict - your version:''' ---- | |
Line 60: | Line 45: |
---- /!\ '''End of edit conflict''' ---- |
Anwendungen Kognitiver Algorithmen
Blockseminar
Termine und Dozenten
Termin: |
Präsentationen 04.07.2012, 10:00 - 13:00 |
Raum: FR 6046 |
|
Verantwortlicher: |
|
Betreuer: |
Themen
Computerprogramme können nützliche kognitive Fähigkeiten lernen. Dieses Seminar erlaubt eine vertiefende Einarbeitung in spezielle Anwendungsgebiete von Algorithmen aus dem Bereich des Maschinellen Lernens wie etwa automatisierte Informationsextraktion aus Texten, Mustererkennung in hochdimensionalen Daten, explorative Datenanalyse.
Unter Anleitung wird englischsprachige Fachliteratur über ausgewählte Anwendungsbeispiele zu analysieren, kritisch zu evaluieren und verständlich zu präsentieren sein.
Voraussetzungen
Grundlegende Konzepte der Wahrscheinlichkeitsrechnung, Statistik und Linearer Algebra.
Slides der Vorbesprechung
Enthält alle Abstracts der zur Auswahl stehenden Papers. Slides
Papers
Thema |
Student |
Betreuer |
Tongxin Son |
||
|
|
|
Min Zheng |
||
Emergence of simple-cell receptive field properties by learning a sparse code for natural images |
Gregor Hendel |
|
|
|
David Lassner |
|
|
Chengbing Liu |
|