Size: 3428
Comment:
|
Size: 3762
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 7: | Line 7: |
||<|2> '''Termin:''' ||Präsentationen 04.07.2012, 10:00 - 13:00 || | ||<|2> '''Termin:''' ||Präsentationen 04.07.2012, 10:00 - 17:00 || |
Line 27: | Line 27: |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Oja1982.pdf|A simplified neuron model as a principal component analyzer]] || Tongxin Son || || | || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Oja1982.pdf|A simplified neuron model as a principal component analyzer]] || Tongxin Son || Duncan Blythe || |
Line 29: | Line 29: |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Turk1991.pdf|Eigenfaces for Recognition]]|| Min Zheng|| || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Olshausen1996.pdf|Emergence of simple-cell receptive field properties by learning a sparse code for natural images]]|| || || |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Turk1991.pdf|Eigenfaces for Recognition]]|| Min Zheng|| Wojciech Samek || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Olshausen1996.pdf|Emergence of simple-cell receptive field properties by learning a sparse code for natural images]]|| Gregor Hendel || Duncan Blythe || |
Line 32: | Line 32: |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Berry1999.pdf|Matrices, Vector Spaces, and Information Retrieval]]|| || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Drucker1999.pdf|Support vector machines for spam categorization]]||Chengbing Liu || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Mika1998.pdf|Kernel PCA and De--Noising in Feature Spaces]]|| Sha Huang|| || |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Berry1999.pdf|Matrices, Vector Spaces, and Information Retrieval]]|| David Lassner || Felix Bießmann || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Drucker1999.pdf|Support vector machines for spam categorization]]||Chengbing Liu ||Bettina Mieth || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Mika1998.pdf|Kernel PCA and De--Noising in Feature Spaces]]|| Sha Huang||Bettina Mieth|| |
Line 36: | Line 36: |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Viola2001.pdf|Rapid Object Detection using a Boosted Cascade of Simple Features]]||Siyun Li || || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/DeBie2004.pdf|Kernel methods for exploratory pattern analysis: a demonstration on text data]]|| Yi Ding || || |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Viola2001.pdf|Rapid Object Detection using a Boosted Cascade of Simple Features]]||Siyun Li || Wojciech Samek|| || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/DeBie2004.pdf|Kernel methods for exploratory pattern analysis: a demonstration on text data]]|| Yi Ding || Felix Bießmann|| |
Line 39: | Line 39: |
|| [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Kamitani_2005.pdf|Decoding the visual and subjective contents of the human brain]]|| || || | || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Kamitani_2005.pdf|Decoding the visual and subjective contents of the human brain]]||Alexander Muschalle || Felix Bießmann || || [[http://www.user.tu-berlin.de/felix.biessmann/downloads/AKA/Quiroga2005.pdf|Invariant visual representation by single neurons in the human brain.]]|||| |
Anwendungen Kognitiver Algorithmen
Blockseminar
Termine und Dozenten
Termin: |
Präsentationen 04.07.2012, 10:00 - 17:00 |
Raum: FR 6046 |
|
Verantwortlicher: |
|
Betreuer: |
Themen
Computerprogramme können nützliche kognitive Fähigkeiten lernen. Dieses Seminar erlaubt eine vertiefende Einarbeitung in spezielle Anwendungsgebiete von Algorithmen aus dem Bereich des Maschinellen Lernens wie etwa automatisierte Informationsextraktion aus Texten, Mustererkennung in hochdimensionalen Daten, explorative Datenanalyse.
Unter Anleitung wird englischsprachige Fachliteratur über ausgewählte Anwendungsbeispiele zu analysieren, kritisch zu evaluieren und verständlich zu präsentieren sein.
Voraussetzungen
Grundlegende Konzepte der Wahrscheinlichkeitsrechnung, Statistik und Linearer Algebra.
Slides der Vorbesprechung
Enthält alle Abstracts der zur Auswahl stehenden Papers. Slides
Papers
Thema |
Student |
Betreuer |
Tongxin Son |
Duncan Blythe |
|
|
|
|
Min Zheng |
Wojciech Samek |
|
Emergence of simple-cell receptive field properties by learning a sparse code for natural images |
Gregor Hendel |
Duncan Blythe |
|
|
|
David Lassner |
Felix Bießmann |
|
Chengbing Liu |
Bettina Mieth |
|
Sha Huang |
Bettina Mieth |
|
Unsupervised Learning by Probabilistic Latent Semantic Analysis |
|
|
Rapid Object Detection using a Boosted Cascade of Simple Features |
Siyun Li |
Wojciech Samek |
Kernel methods for exploratory pattern analysis: a demonstration on text data |
Yi Ding |
Felix Bießmann |
|
|
|
Decoding the visual and subjective contents of the human brain |
Alexander Muschalle |
Felix Bießmann |
Invariant visual representation by single neurons in the human brain. |