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Examples



Collective Classification
• Task: Classify with respect to linkage
• input: graph
• output: graph



Bilingual Text Alignment

• Task: Align two sentences (source & target language)

• input: 2 sentences

• output: alignment



Natural Language Parsing

• Task: Predict the most probable parse tree for a given input sentence.

• input: sequence

• output: parse tree



Label Sequence Learning (1)

• Task: Part-of-speech (POS) tagging

• Related problems: Named entity recognition (NER)

• input: sequence

• output: sequence



Label Sequence Learning (2)

• Task: Predict the most probable state sequence (gene finding)

• input: sequence

• output: sequence



Label Sequence Learning: Hidden Markov Models

For some time around (see Rabiner, ’A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition’, 1989)



Hidden Markov Models

• model: Ω

• observation sequences oi

• state sequences qi

• Classical Tasks:

1. predict the most probable state sequence q given Ω and o

2. calculate the probability of a observation o given the model Ω

3. train the model Ω given observations oi

(4. train the model Ω given observations oi and corresponding state
sequences qi )



Hidden Markov Models

S1 = 'Rain' S2 = 'Sun'

a21 = 0.4

a12 = 0.3

a11 = 0.7

a22 = 0.6

v1='walk' v2='shop' v3='clean'

State Model

b11 b21 b12 b22 b13 b23

q1 q2 q3 qT-1 qT

o1 o2 o3 oT-1 oT

Q = 

O = 

Hidden Markov Model



General Structured Output Learning

Hidden Markov Models apply to sequence structures (input and output), BUT
what about tree’s, graph, alignment problems, ...?



Joint Models in Input-Output Space (1)

Classical supervised learning

• Setting:
• Observations-label pairs (x,y).
• x ∈ <d and for
• y ∈ {−1, 1} −→ binary classification.
• y ∈ < −→ regression.

• Model f(x):
• Classification: y = signf (x)
• Regression : y = f (x)
• f shall generalize well on new and unseen data.



Joint Models in Input-Output Space (2)

• Structured Outputs:
• Output variable y has an internal structure.

(multiple variables with dependency structure)
• Exponentially many possible values for y!
• Model f (x) = y not appropriate to capture dependencies!

• Structured Approach:
• Ranking model: y = argmaxȳf (x, ȳ)
• Model f (x, y) = 〈w,Φ(x, y)〉
• Joint feature representation Φ(x, y).



Natural Language Parsing (Remember?)

• Task: Predict the most probable parse tree for a given input sentence.

• input: sequence

• output: parse tree



Natural Language Parsing (Joint Feature Map)

• Task: Predict the most probable parse tree for a given input sentence.

• input: sequence

• output: parse tree



Problem Setting

• Given: n structured input-output pairs (x1, y1), . . . (xn, yn) ∈ X × Y.
• E.g., xi is a sentence and yi the sequence of part-of-speech (POS) tags.
• Let |x| denote the #words in x and let Ω be the set of POS-tags.
• Possible output space Y for a given input x has Ω|x| elements.

• Loss function ∆ : Y × Y → <.

• E.g., Hamming distance for sequences ∆(y, y′) =
∑|x|

j=1[[yj 6= y ′j ]].

• Task: Find joint model f : X × Y → < that minimizes the expected risk
(the generalization error)

R[f ] =

∫
X×Y

∆(y, argmaxy′ f (x, y′))p(x, y)dxdy.



Structured Output Support Vector Machine



Structured Output Support Vector Machines

• Given x=’Bello chases the cat’

• We want: y = argmaxy′w
Tφ(x, y′) = 〈N,V ,D,N〉

• Explicit representation:

wTφ(x, 〈N,V ,D,N〉) ≥ wTφ(x, 〈N,N,N,N〉)
wTφ(x, 〈N,V ,D,N〉) ≥ wTφ(x, 〈N,N,N,V 〉)
wTφ(x, 〈N,V ,D,N〉) ≥ wTφ(x, 〈N,N,V ,N〉)
wTφ(x, 〈N,V ,D,N〉) ≥ wTφ(x, 〈N,V ,N,N〉)
wTφ(x, 〈N,V ,D,N〉) ≥ wTφ(x, 〈V ,N,N,N〉)
...



SO-SVM: Primal Problem

• Large margin approach

• Dual representation: w =
∑

i

∑
y′ αi(y)(φ(xi , yi )− φ(xi , y

′))T

• Optimization leads to sparse models.
• Use Working set approach: incrementally add and remove constraints.
∀ni=1 ∀ȳ 6=yi −→ ∀

n
i=1 ȳ = argmaxy′ 6=yi

wT Φ(xi , y
′)

Computation of argmax depends on the application at hand.
E.g., Viterbi algorithm (sequential outp.) or chart parser (tree struct. outp)

• Unconstrained version:
minw

1
2
||w ||2 + C

∑
i max(0,maxy′ 1 + 〈w,Φ(x, y′)〉 − 〈w,Φ(x, y)〉)



SO-SVM: Dual Problem

• Dual formulation

• where



SO-SVM: Loss

• Structured SVM minimizes hinge loss

`(f , x, y) = max(0,maxy′ 1 + 〈w,Φ(x, y′)〉 − 〈w,Φ(x, y)〉)
• Upper bounds 0/1 loss

• BUT: 0/1 loss not appropriate in structured predictions

True output: y = 〈N,V ,D,N〉
Predictions: y1 = 〈N,V ,D,V 〉 and y2 = 〈P,P,P,P〉 .

• Measure error by structured loss function: ∆ : Y × Y → <
Incorporate structural loss either by rescaling the margin (confidence) or
the slack variables (error).



SO-SVM: Margin Rescaling

• Structured SVM minimizes hinge loss with margin rescaling

`(f , x, y) = max(0,maxy′ ∆(y, y′) + 〈w,Φ(x, y′)〉 − 〈w,Φ(x, y)〉)

• Primal constraints

• Dual Objective (first term)

• Still decomposable (necessary for e.g. Viterbi)

• But ∆ may dominate the loss!



SO-SVM: Slack Rescaling

• Structured SVM minimizes hinge loss with margin rescaling

`(f , x, y) = max(0,maxy′ ∆(y, y′)(1− 〈w,Φ(x, y′)〉 − 〈w,Φ(x, y)〉))

• Primal constraints

• Addition dual constraints occur

• Empirically a good choice

• But argmax may be hard to compute (non-linear)!



SO-SVM: Optimization



Markov Random Fields & Conditional Random Fields



Conditional Independence

• Encode dependency structure of a given problem by a graph.

• Two random variables are connected with an edge if they directly depend
on each other.

• Two unconnected variables are independent given the value of all other
variables.

Conditional Independence

Given (sets of) random variables A,B,C : We say A is conditionally
independent of B given C , and write A ⊥ B|C , if for any valid assignment
B = b and C = c the relation P(A|B = b,C = c) = P(A|C = c) holds.



Conditional Independence

• Consider the set of discrete random variables V = {Z1, . . . ,Z4}.
• Let G = (V ,E) encode pairwise dependencies between variables V .

• Knowing the actual value of Z2, variable Z4 is independent of Z1 and Z3.

• We write Z4 ⊥ {Z1,Z3}|Z2.

• The joint probability can be written as

p(V ) = p(Z1,Z3|Z2)p(Z4|Z2)p(Z2). (1)



Markov Random Fields

Markov Random Field
A collection V of random variables over a finite domain with joint probability P
and fulfilling Equation 2 with respect to an undirected graph G is said to be a
Markov random field (MRF).

∀i , j , eij /∈ E : Zi ⊥ Zj |V \{Zi ,Zj}. (2)



Hammersley & Clifford Theorem

• Every MRF V = (Z1, . . . ,Zn) has a Gibbs distribution wrt G:

p(Z1 = z1, . . . ,Zn = zn) = exp

{∑
C∈C

〈λC ,ΦC (zC )〉 − logZ

}

• zC denotes the restriction of a valid assignment z = (z1, . . . , zn) on the
maximal cliques C ∈ C of G

• ΦC are feature functions defined on maximal cliques.

• Partition function Z =
∑

z exp{
∑

C∈C〈λC ,ΦC (zC )〉} (normalization).



The Exponential Family

• MRFs can be written as a member in the exponential family

p(z|λ) = exp{〈λ,Φ(z)〉 − g(λ)}, λ ∈ Λ.

• Φ(z) denotes the sufficient statistics.

• λ ∈ Λ is the natural parameter.

• The domain Λ consists of all λ having the log-partition function

g(λ) = log
∑
z

exp{〈λ,Φ(z)〉} <∞.

• The log-partition function is also the moment generating function of the
exponential family:

∂

∂λ
g(λ) = Ep(z|λ)[Φ(z)],

∂2

∂λ∂λ
g(λ) = Covp(z|λ)[Φ(z)], . . .



Conditional Random Fields

• Given structured data D = {(x1, y1), . . . , (xn, yn)}, find parameters λ by
maximizing the likelihood L,

L(λ) =
n∏

i=1

p(yi |xi ,λ) =
n∏

i=1

exp {〈λ,Φ(xi , yi )〉 − g(λ|xi )}

with g(λ|xi ) = log
∑

y exp{〈λ,Φ(xi , y)〉}.
• The log-likelihood (that has to maximized wrt λ) is given by

logL(λ) =
n∑

i=1

〈λ,Φ(xi , yi )〉 − g(λ|xi ). (3)

• The gradient wrt parameter vector λ is

∂

∂λ
logL = Ep̂(X ,Y )[Φ(X ,Y )]−

n∑
i=1

Ep(Y |xi ;λ)[Φ(Y , xi )].



Kernel CRFs

• BUT: Maximum likelihood → bad generalization performance for
high-dimensional problems.

• Remedy: Incorporate prior on the weights to...
• ... express beliefs about parameters before looking at the data.
• ... promote sparse models, having zero weights for redundant features.

• Apply a zero mean Gaussian prior with variance σ2 on λ, such that

λ ∼ N(0, 1σ2).

• Bayes Theorem says

posterior =
likelihood× prior

marginal likelihood
.

• We obtain

log p(λ|D) =
n∑

i=1

[
〈λ,Φ(xi , yi )〉 − g(λ|xi )

]
− log 2πσ − λTλ

2σ2
. (4)



Interpretation

• KCRF: Maximize (log) posterior distribution of parameters:

log p(λ|D) =
n∑

i=1

[
〈λ,Φ(xi , yi )〉 − g(λ|xi )

]
− log 2πσ︸ ︷︷ ︸

constant

−λTλ

2σ2
→ max

• Rewriting and omitting constant terms leads to

− log p(λ|D) ∝ σ2
n∑

i=1

[
g(λ|xi )− 〈λ,Φ(xi , yi )〉︸ ︷︷ ︸

empirical risk (log-loss)

]
+

1

2
‖λ‖2︸ ︷︷ ︸

regularization

→ min

• Maximizing the (conditional) likelihood = minimizing log-loss!

• Incorporating priors = regularization!

• Variance σ2 acts as a trade-off parameter!



Log-loss vs. Hinge-loss
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ln(Z)−t

max{0,1−t}2
quadratic hinge loss
log loss
hinge loss
0/1 loss

Exemplary loss functions with t = f (x, y)−maxŷ) f (x, ŷ).
Log-loss is shifted to pass through the (0, 1) coordinate.

• Both, log-loss and hinge-loss upper bound 0/1-loss.

• Log-loss assigns penalties to all training examples
• ⇒ non-sparse solutions!

• Hinge-loss depends only on misclassified instances
• ⇒ sparse solutions!



Optimization

• Maximizing Equation 3 (CRF) and 4 (kCRF) is expensive because of the
computation of the partition function g(λ|x).

• Possible optimization strategies have been proposed:
• Linear programming
• Iterative scaling
• Conjugate gradients
• Gauss-Newton subspace optimizations
• Gradient tree boosting
• Stochastic meta descent



Empirical Results + Summary + References



Part-of-speech tagging (1)

• Annotate input sentence with part-of-speech tags:

x = 〈Bello chases the cat〉 −→ y = 〈N,V ,Det,N〉
Penn treebank corpus.

• Experimental setup:

Traning sets: 500, 1000, 2000, 4000, and 8000 sentences.

10% of training set used as validation set.

Independent test set of 1600 sentences.

• Methods:

HMM, CRF, structured perceptron, structured SVM

• Features:

HMM: transition and emission probabilities.

All others: transition counts and 450.000 lexical emission features

e.g., [[previous word ends with ’action’ ∧ yt = σ]]



Part-of-speech tagging (2)

• discriminative methods outperform generative methods

• SO-SVM outperforms CRF



Named-Entity-Recognition (1)



Named-Entity-Recognition (2)

• CoNLL2002 data set:

300 sentences from a Spanish News wire article corpus.

9 Labels in BIO encoding:

- Person (beginning/inside).

- Organization (beginning/inside).

- Location (beginning/inside).

- Miscellaneous names (beginning/inside).

- Outside

• Algorithms:

HMM, CRF, structured perceptron, structured SVM0/1

• Features:

HMM: transition and emission probabilities

All other methods: transitions + emission counts

• Inference/Decoding:

All methods: Viterbi algorithm



Named-Entity-Recognition (3)

• discriminative methods outperform generative methods

• SO-SVM and CRF almost equal



Summary

• Structured prediction models
• Allow to address naturally arising problems!

• Structural SVMs
• 0/1 loss: SVM0/1
• Arbitrary loss functions: SVMmargin, SVMslack
• Sparse models, convergence in polynomial time.
• Only joint feature mapping and argmax need to be adapted to problem at

hand!

• Empirical Results
• Discriminative models outperform generative ones.
• Structural SVM is state-of-the-art for structural problems.
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