Introduction to Optimization

Outline:

- Standard form optimization problem and terminology.
- Convex optimization problems.
- Lagrange duality.
- Optimization methods.

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\boldsymbol{x}) \\
\text { subject to } & f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(\boldsymbol{x})=0, \quad i=1, \ldots, p
\end{array}
$$

where
$\boldsymbol{x} \in \mathbb{R}^{n}$ is the optimized vector of variables.
$f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function.
$f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the inequality constraint function.
$h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the equality constraint function.

Explicit/implicit constraints

Explicit constraints are $f_{i}(\boldsymbol{x}) \leq 0$ and $h_{i}(\boldsymbol{x})=0$; unconstrained problem has no explicit constrains (i.e. $m=p=0$).
Implicit constraint is $\boldsymbol{x} \in \mathcal{D}$ where \mathcal{D} is a common domain of the objective function and constraint functions

$$
\mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i} .
$$

Feasible set: contains points which satisfy implicit and explicit constraints

$$
\mathcal{X}_{\text {feas }}=\mathcal{D} \cap\left\{\boldsymbol{x} \mid f_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m, h_{j}(\boldsymbol{x})=0, j=1 \ldots, n\right\}
$$

Example: (minimal entropy discrete distribution)

$$
\begin{array}{ll}
\text { minimize } & -\sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & \sum_{i=1}^{n} x_{i}=1
\end{array}
$$

which has explicit constraint $\sum_{i=1}^{n} x_{i}=1$, implicit constraints $x_{i}>0$ and feasible set $\mathcal{X}_{\text {feas }}=\left\{\boldsymbol{x} \mid \sum_{i=1}^{n} x_{i}=1, x_{i}>0, i=1, \ldots n\right\}$.

LP problem

QP problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \boldsymbol{x}^{T} \mathbf{H} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b} \\
& \mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}
\end{array}
$$

where
$\boldsymbol{x} \in \mathbb{R}^{n}$ is a vector of optimized variables
$\boldsymbol{c} \in \mathbb{R}^{n}, \boldsymbol{b} \in \mathbb{R}^{p}, \boldsymbol{q} \in \mathbb{R}^{m}$ are vectors
$\mathbf{A} \in \mathbb{R}^{p \times n}, \mathbf{D} \in \mathbb{R}^{m \times n}, \mathbf{H} \in \mathbb{R}^{n \times n}$ are matrices

Note that LP and QP can be always rewritten to a simpler form using the slack variables trick: the inequality constraints $\mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}$ are replaced by equivalent constraints $\mathbf{D} \boldsymbol{x}+\boldsymbol{\xi}=\boldsymbol{q}$ and $\boldsymbol{\xi} \geq \mathbf{0}$.
(Globally) optimal value:

$$
p^{*}=\inf \left\{f_{0}(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathcal{X}_{\text {feas }}\right\}
$$

- $p^{*}=\infty$ if the problem is infeasible, i.e., $\mathcal{X}_{\text {feas }}=\{\emptyset\}$.
- $p^{*}=-\infty$ if the problem is unbounded.

Optimal solutions: \boldsymbol{x} is the optimal solution if it is feasible and $f(\boldsymbol{x})=p^{*}$; $\mathcal{X}_{\text {opt }}=\left\{\boldsymbol{x} \mid f_{0}(\boldsymbol{x})=p^{*}, \boldsymbol{x} \in \mathcal{X}_{\text {feas }}\right\}$ is the set of optimal solutions.

Locally optimal: \boldsymbol{x} is locally optimal if there exist $R>0$ such that \boldsymbol{x} is optimal for

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\boldsymbol{y}) \\
\text { subject to } & \boldsymbol{y} \in \mathcal{X}_{\text {feas }} \cap\{\boldsymbol{y} \mid\|\boldsymbol{x}-\boldsymbol{y}\| \leq R\}
\end{array}
$$

A set $\mathcal{X} \subseteq \mathbb{R}^{n}$ is convex if the line segment connecting any two points from \mathcal{X} lies in \mathcal{X}, i.e., for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{X}$ and all θ such that $0 \leq \theta \leq 1$ it holds

$$
\boldsymbol{x}_{1}(1-\theta)+\theta \boldsymbol{x}_{2} \in \mathcal{X} .
$$

Convex set

Non-convex set

A function $f \in \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is convex and for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \operatorname{dom} f$ and all θ such that $0 \leq \theta \leq 1$ it holds

$$
f\left(\boldsymbol{x}_{1}(1-\theta)+\boldsymbol{x}_{2} \theta\right) \leq f\left(\boldsymbol{x}_{1}\right)(1-\theta)+f\left(\boldsymbol{x}_{2}\right) \theta .
$$

Convex function
Non-convex function

First-order condition: Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, i.e., gradient $\nabla f(\boldsymbol{x}) \in \mathbb{R}^{n}$ exists at each point $\boldsymbol{x} \in \operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is convex and

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{\prime}\right)+\nabla f\left(\boldsymbol{x}^{\prime}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right), \quad \forall \boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}
$$

Second-order condition: Suppose that f twice differentiable, i.e., the Hessian matrix of second derivatives $\nabla^{2} f(\boldsymbol{x})$ exists at each point $\boldsymbol{x} \in \operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(\boldsymbol{x})$ is positive semi-definite for all $\boldsymbol{x} \in \operatorname{dom} f$.

The optimization problem is convex if the objective function $f_{0}(\boldsymbol{x})$ is convex and the feasible set $\mathcal{X}_{\text {feas }}$ is convex.

- In particular, the problem is convex if $f_{0}, f_{1}, \ldots, f_{m}$ are convex and the equality constraints h_{i} are affine, i.e., $h_{i}(\boldsymbol{x})=\boldsymbol{a}_{i}^{T} \boldsymbol{x}-b_{i}=0$.
- The standard form of the convex optimization problem

$$
\begin{array}{lr}
\operatorname{minimize} & f_{0}(\boldsymbol{x}) \\
\text { subject to } & f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \\
& \mathbf{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

- Basic property of the convex problems: Any locally optimal solution is globally optimal \Rightarrow greatly simplifies optimization.
- We can use descent methods: iteratively move in a descent direction until we reach the optimum.
- For non-convex problems we can get stuck in a local optimum; it is difficult to identify whether the attained optimum is local or global.

LP problem

$\begin{array}{lc}\text { minimize } & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b} \\ & \mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}\end{array}$

QP problem
minimize $\quad \frac{1}{2} \boldsymbol{x}^{T} \mathbf{H} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}$
subject to $\mathbf{A x}=\boldsymbol{b}$
$\mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}$

Linear Programming is a convex problem since the objective is a convex function, the equality functions are affine, the inequality constraints define a convex set.

Quadratic Programming is a convex problem if and only if the matrix \mathbf{H} is positively semi-definite;
Recall the Second-order condition and notice that for QP the Hessian matrix $\nabla^{2} f(\boldsymbol{x})=\mathbf{H}$.

Suppose that f_{0} is differentiable. Then a vector \boldsymbol{x} is the optimal solution if and only if it is feasible $\boldsymbol{x} \in \mathcal{X}_{\text {feas }}$ and

$$
\nabla f_{0}(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \geq 0 \quad \text { for all } \quad \boldsymbol{y} \in \mathcal{X}_{\text {feas }}
$$

How to see this?

- Recall the definition of the directional derivative

$$
f_{0}^{\prime}(\boldsymbol{x} ; \boldsymbol{\delta})=\lim _{h \rightarrow 0_{+}} \frac{f_{0}(\boldsymbol{x}+h \boldsymbol{\delta})}{h}=\nabla f_{0}(\boldsymbol{x})^{T} \boldsymbol{\delta} .
$$

The sign of $f_{0}^{\prime}(\boldsymbol{x} ; \boldsymbol{\delta})$ determines whether f_{0} increases or decreases when we move from \boldsymbol{x} in the direction $\boldsymbol{\delta}$.

- Moving from a feasible point \boldsymbol{x} along a feasible direction $\boldsymbol{\delta}=\boldsymbol{y}-\boldsymbol{x}$, $\boldsymbol{y} \in \mathcal{X}_{\text {feas }}$ by sufficiently small step produces a feasible point.
- A vector \boldsymbol{x} is optimal iff there is no feasible direction which decreases the objective function, i.e., for each $\boldsymbol{y} \in \mathcal{X}_{\text {feas }}$ moving along $\boldsymbol{\delta}=\boldsymbol{y}-\boldsymbol{x}$ increases the objective so that

$$
f_{0}^{\prime}(\boldsymbol{x} ; \boldsymbol{\delta}) \geq 0 \quad \Rightarrow \quad \nabla f_{0}(\boldsymbol{x})^{T} \boldsymbol{\delta} \geq 0 \quad \Rightarrow \nabla f_{0}(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \geq 0
$$

What are we going to do?

- For the optimized problem (called primal in this context) we derive a dual optimization problem.

What is it good for?

- Optimality certificate. Primal objective function is an upper bound and the dual objective function is a lower bound on the optimal value \Rightarrow theoretically justified stopping conditions for optimization.
- Simplifies optimization. The dual problem can be of lesser complexity; in some cases the primal solution can be easily obtained from the dual solution.
- New insight. The dual problem can bring a new insight to the problem (e.g. Max-flow/Min-cut problems from graph theory are dual, or Maximum-likelihood/Minimum-entropy density estimation problems are dual).

Primal optimization problem in standard form

$$
\begin{array}{lr}
\operatorname{minimize} & f_{0}(\boldsymbol{x}) \\
\text { subject to } & f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(\boldsymbol{x})=0, \quad j=1, \ldots, p
\end{array}
$$

where \mathcal{D} is the problem domain, p^{*} is the optimal value.
Lagrangian: $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ with domain $\operatorname{dom} L=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$

$$
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})+\sum_{i=1}^{p} h_{i} \nu_{i}
$$

- sum of objective function plus weighted sum of constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(\boldsymbol{x}) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(\boldsymbol{x})=0$

Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g(\boldsymbol{\lambda}, \boldsymbol{\nu}) & =\inf _{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\
& =\inf _{\boldsymbol{x} \in \mathcal{D}}\left(f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\boldsymbol{x})\right)
\end{aligned}
$$

- $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is a concave function since it is point-wise infimum of convex functions of $(\boldsymbol{\lambda}, \boldsymbol{\nu})$; note that it holds in general even for non-convex primal problems.
- For many important problem $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ has an analytical form.
- We start form the primal LP problem

$$
\begin{array}{lc}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b} \\
& \mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}
\end{array}
$$

- We form the Lagrangian (using matrix notation for brevity)

$$
\begin{aligned}
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) & =f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})+\sum_{i=1}^{p} h_{i} \nu_{i} \\
& =\boldsymbol{c}^{T} \boldsymbol{x}+\boldsymbol{\lambda}^{T}(\mathbf{D} \boldsymbol{x}-\boldsymbol{q})+\boldsymbol{\nu}^{T}(\mathbf{A} \boldsymbol{x}-\boldsymbol{b}) \\
& =\left(\boldsymbol{c}+\mathbf{D}^{T} \boldsymbol{\lambda}+\mathbf{A}^{T} \boldsymbol{\nu}\right)^{T} \boldsymbol{x}-\boldsymbol{\lambda}^{T} \boldsymbol{q}-\boldsymbol{\nu}^{T} \boldsymbol{b}
\end{aligned}
$$

- We get the Lagrange dual function by minimizing w.r.t primal variables

$$
g(\boldsymbol{\lambda}, \boldsymbol{\nu})=\inf _{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=\left\{\begin{array}{lc}
-\boldsymbol{\lambda}^{T} \boldsymbol{q}-\boldsymbol{\nu}^{T} \boldsymbol{b} & \text { if } \boldsymbol{c}+\mathbf{D}^{T} \boldsymbol{\lambda}+\mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0} \\
-\infty & \text { otherwise }
\end{array}\right.
$$

Weak duality: If $\boldsymbol{\lambda} \geq \mathbf{0}$ and $\boldsymbol{x} \in \mathcal{X}_{\text {feas }}$ then $f_{0}(\boldsymbol{x}) \geq g(\boldsymbol{\lambda}, \boldsymbol{\nu})$, i.e. the Lagrange dual function is a lower bound on the primal objective. In particular, it lower bounds the optimal value $p^{*} \geq g(\boldsymbol{\lambda}, \boldsymbol{\nu}), \forall \boldsymbol{\lambda} \geq \mathbf{0}, \forall \boldsymbol{\nu}$.

To see this recall the Lagrangian

$$
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})+\sum_{i=1}^{p} h_{i} \nu_{i}
$$

and notice that for $\boldsymbol{x} \in \mathcal{X}_{\text {feas }}$ we have:

1. $f_{i}(\boldsymbol{x}) \leq 0$ and thus $\sum_{i} \lambda_{i} f(\boldsymbol{x}) \leq 0$ since $\lambda_{i} \geq 0$,
2. $h_{i}(\boldsymbol{x})=0$ and thus $\sum_{i} \nu_{i} h_{i}(\boldsymbol{x})=0$,
therefore

$$
f_{0}(\boldsymbol{x}) \geq f_{0}(\boldsymbol{x})+\underbrace{\sum_{i=1}^{m} \lambda_{i} f_{i}(\boldsymbol{x})}_{\leq 0}+\underbrace{\sum_{i=1}^{p} h_{i} \nu_{i}}_{=0}=L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \geq \inf _{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) .
$$

Note that the weak duality holds in general regardless the primal problem is convex or not.

Dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\
\text { subject to } & \boldsymbol{\lambda} \geq 0
\end{array}
$$

where we optimize w.r.t $\boldsymbol{\lambda} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{p}$; the optimal value denoted by d^{*}.

- Solving the dual problem \approx finding the best lower bound d^{*} on primal optimal value p^{*} which can be obtained from the Lagrangian.
- Duality gap is the difference between the primal and the dual optimal values $p^{*}-d^{*} \geq 0$, i.e., it determines the tightness of the lower bound.
- The dual problem is always convex since $g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ is a concave function regardless the primal problem is convex or not.
- $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ are dual feasible if $\boldsymbol{\lambda} \geq 0$ and $g(\boldsymbol{\lambda}, \boldsymbol{\nu})>-\inf$, i.e. for dual feasible points we have non-trivial lower bound.
It usually helps if the constraint $g(\boldsymbol{\lambda}, \boldsymbol{\nu})>-\inf$ is expressed explicitly in the dual problem.

The primal LP problem

$$
\begin{array}{lc}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b} \\
& \mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}
\end{array}
$$

with the Lagrange dual function

$$
g(\boldsymbol{\lambda}, \boldsymbol{\nu})=\left\{\begin{array}{lc}
-\boldsymbol{\lambda}^{T} \boldsymbol{q}-\boldsymbol{\nu}^{T} \boldsymbol{b} & \text { if } \\
-\infty & \boldsymbol{c}+\mathbf{D}^{T} \boldsymbol{\lambda}+\mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0} \\
\text { otherwise }
\end{array}\right.
$$

The dual problem reads

$$
\begin{array}{ll}
\text { maximize } & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\
\text { subject to } & \boldsymbol{\lambda} \geq 0
\end{array}
$$

Making the constraint $g(\boldsymbol{\lambda}, \boldsymbol{\nu})>-\inf$ explicit, i.e., $\boldsymbol{c}+\mathbf{D}^{T} \boldsymbol{\lambda}+\mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0}$, we get the dual LP problem

$$
\begin{array}{lc}
\text { maximize } & -\boldsymbol{\lambda}^{T} \boldsymbol{q}-\boldsymbol{\nu}^{T} \boldsymbol{b} \\
\text { subject to } & \boldsymbol{\lambda}=0 \\
\boldsymbol{c}+\mathbf{D}^{T} \boldsymbol{\lambda}+\mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0}
\end{array}
$$

Strong duality holds if the duality gap is zero, i.e., $p^{*}=d^{*}$ and the Lagrangian lower bound is tight.

When does it happen?

- It does not hold in general.
- It holds if the primal problem is convex and the Slater's condition (also called constraint qualification) holds:
Slater's condition holds if there exists a strictly feasible point, i.e., there exists $\boldsymbol{x} \in \mathcal{X}_{\text {feas }}$ such that $f_{i}(\boldsymbol{x})<0, i=1, \ldots, m$; note that this condition is very mild.
- There also exist non-convex problems for which the strong duality holds.

A triplet $(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ satisfy the Karush-Kuhn-Tucker conditions if:

$$
\begin{aligned}
& \frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{x}}=\mathbf{0} \\
& \frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{\lambda}} \leq \mathbf{0} \\
& \frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{\nu}}=\mathbf{0}
\end{aligned}
$$

$$
\text { partial derivative of } L \text { w.r.t } \boldsymbol{x} \text { vanishes }
$$

$$
\text { implies } f_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m
$$

$$
\text { implies } h_{i}(\boldsymbol{x})=0, i=1, \ldots, p
$$

$$
\boldsymbol{\lambda} \geq \mathbf{0}
$$

duality constraint holds
$\lambda_{i} f_{i}(\boldsymbol{x})=0, i=1, \ldots, m$ so called complementary slackness

- If strong duality holds then KKT conditions are necessary for $(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ to be optimal.
- If primal problem is convex and Slater's condition holds then KKT conditions are necessary and sufficient for $(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ to be optimal.

The primal LP problem

$$
\begin{array}{lc}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b} \\
& \mathbf{D} \boldsymbol{x} \leq \boldsymbol{q}
\end{array}
$$

with the Lagrangian

$$
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=\boldsymbol{c}^{T} \boldsymbol{x}+\boldsymbol{\lambda}^{T}(\mathbf{D} \boldsymbol{x}-\boldsymbol{q})+\boldsymbol{\nu}^{T}(\mathbf{A} \boldsymbol{x}-\boldsymbol{b})
$$

The KKT conditions read:

$$
\begin{array}{ll}
\frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{x}}=\mathbf{0} & \Rightarrow \boldsymbol{c}+\mathbf{D}^{T} \boldsymbol{\lambda}+\mathbf{A}^{T} \boldsymbol{\nu} \\
\frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{\lambda}} \leq \mathbf{0} & \Rightarrow \mathbf{D} \boldsymbol{x}-\boldsymbol{q} \leq \mathbf{0} \\
\frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{\nu}}=\mathbf{0} & \Rightarrow \mathbf{A} \boldsymbol{x}-\boldsymbol{b}=\mathbf{0} \\
\boldsymbol{\lambda} \geq \mathbf{0} & \Rightarrow \boldsymbol{\lambda} \geq \mathbf{0} \\
\lambda_{i} f_{i}(\boldsymbol{x})=0, i=1, \ldots, m & \Rightarrow \boldsymbol{\lambda}^{T}(\mathbf{D} \boldsymbol{x}-\boldsymbol{q})=\mathbf{0}
\end{array}
$$

Let us consider an unconstrained convex problem

$$
\text { minimize } \quad f(\boldsymbol{x})
$$

General descent method:

Initialization: set $\boldsymbol{x} \in \operatorname{dom} f$.

repeat

1. Determine a descent direction $\boldsymbol{\delta}$.
2. Line-search: find a step size $t=\operatorname{argmin}_{t^{\prime}>0} f\left(\boldsymbol{x}+t^{\prime} \boldsymbol{\delta}\right)$.
3. Update $\boldsymbol{x}:=\boldsymbol{x}+t \boldsymbol{\delta}$.
until stopping condition is satisfied.

- It generates a sequence of $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots$ such that $f\left(\boldsymbol{x}^{(k)}\right)>f\left(\boldsymbol{x}^{(k+1)}\right)$.
- For f differentiable, a vector $\boldsymbol{\delta}$ is a descent direction if

$$
f^{\prime}(\boldsymbol{x} ; \boldsymbol{\delta})=\lim _{h \rightarrow 0_{+}} \frac{f(\boldsymbol{x}+h \boldsymbol{\delta})}{h}=\nabla f(\boldsymbol{x})^{T} \boldsymbol{\delta}<0
$$

e.g., gradient descent methods use $\boldsymbol{\delta}=-\nabla f(\boldsymbol{x})$.

Let us consider equality constrained convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(\boldsymbol{x}) \\
\text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

- Using the KKT optimality conditions, $\boldsymbol{x} \in \operatorname{dom} f$ is optimal iff there exist $\boldsymbol{\nu}$ such that

$$
\mathbf{A} \boldsymbol{x}=\boldsymbol{b}, \quad \nabla f(\boldsymbol{x})+\mathbf{A}^{T} \boldsymbol{\nu}=0 .
$$

- For a convex quadratic function $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \mathbf{H} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}$ the KKT conditions lead to an efficiently solvable set of linear equations:

$$
\mathbf{A} \boldsymbol{x}=\boldsymbol{b}, \quad \mathbf{H} \boldsymbol{x}+\boldsymbol{c}+\mathbf{A}^{T} \boldsymbol{\nu}=0 .
$$

- Newton method is applicable for a general twice differentiable function $f(\boldsymbol{x})$: it iteratively approximates $f(\boldsymbol{x})$ by a quadratic function

$$
\hat{f}(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \nabla^{2} f\left(\boldsymbol{x}^{\prime}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)+\nabla f\left(\boldsymbol{x}^{\prime}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)+f\left(\boldsymbol{x}^{\prime}\right)
$$

and solves the KKT conditions for the approximation $\hat{f}(\boldsymbol{x})$.

Let us consider equality constrained convex problem

$$
\begin{array}{lr}
\operatorname{minimize} & f_{0}(\boldsymbol{x}) \\
\text { subject to } & f_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m \\
& \mathbf{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

- Constraints $f_{i}(\boldsymbol{x}) \leq 0$ can be made implicit using the barrier function

$$
\phi_{i}(\boldsymbol{x})=\left\{\begin{array}{rll}
0 & \text { if } & f_{i}(\boldsymbol{x}) \leq 0 \\
\infty & \text { if } & f_{i}(\boldsymbol{x})>0
\end{array}\right.
$$

i.e., we can equivalently optimized equality constraint problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\boldsymbol{x})+\sum_{i=1}^{m} \phi_{i}(\boldsymbol{x}) \\
\text { subject to } & \mathbf{A} \boldsymbol{x}=\boldsymbol{b}
\end{array}
$$

- Functions $\phi_{i}(\boldsymbol{x})$ are approximated by a differentiable convex functions

$$
\hat{\phi}_{i}(\boldsymbol{x})=-\frac{1}{t} \log \left(-f_{i}(\boldsymbol{x})\right),
$$

which for high t well approximates the step barrier function $\phi_{i}(\boldsymbol{x})$.

Materials used to prepare this lecture:

- S. Boyd, L. Vandenberghe: Convex optimization. Cambridge University Press. 2004.

Available at: http://www.stanford.edu/~boyd/cvxbook/

- S. Boyd: Lecture notes for EE364, Stanford University. 2007-2008. Available at: http://www.stanford.edu/class/ee364/
- H. Hindi: A Tutorial on Convex Optimization II: Duality and Interior Point Methods. Palo Alto Research Center, California. Google: hindi tutorial convex

Further recommended literature:

- D.P. Bertsekas. Nonlinear Programming. (2nd edition), Athena Scientific, Belmont, Massachusetts, 1999.
- J.F. Bonnans, et. al: Numerical Optimization. (2nd edition), Springer, Heidelberg, 2006.

