Introduction to Optimization

Outline:

- Standard form optimization problem and terminology.
- Convex optimization problems.
- Lagrange duality.
- Optimization methods.

Optimization problem in standard form

minimize
$$f_0(\boldsymbol{x})$$
 subject to $f_i(\boldsymbol{x}) \leq 0$, $i=1,\ldots,m$ $h_i(\boldsymbol{x}) = 0$, $i=1,\ldots,p$

where

 $x \in \mathbb{R}^n$ is the **optimized vector** of variables.

 $f_0: \mathbb{R}^n \to \mathbb{R}$ is the **objective function**.

 $f_i: \mathbb{R}^n \to \mathbb{R}$ is the **inequality constraint** function.

 $h_i: \mathbb{R}^n \to \mathbb{R}$ is the **equality constraint** function.

Explicit constraints are $f_i(x) \le 0$ and $h_i(x) = 0$; unconstrained problem has no explicit constrains (i.e. m = p = 0).

Implicit constraint is $x \in \mathcal{D}$ where \mathcal{D} is a common domain of the objective function and constraint functions

$$\mathcal{D} = \bigcap_{i=0}^m \mathbf{dom} \, f_i \cap \bigcap_{i=1}^p \mathbf{dom} \, h_i \, .$$

Feasible set: contains points which satisfy implicit and explicit constraints

$$\mathcal{X}_{\text{feas}} = \mathcal{D} \cap \{ \boldsymbol{x} \mid f_i(\boldsymbol{x}) \leq 0, i = 1, ..., m, h_j(\boldsymbol{x}) = 0, j = 1, ..., n \}$$

Example: (minimal entropy discrete distribution)

minimize
$$-\sum_{i=1}^{n} x_i \log x_i$$
 subject to
$$\sum_{i=1}^{n} x_i = 1 .$$

which has explicit constraint $\sum_{i=1}^{n} x_i = 1$, implicit constraints $x_i > 0$ and feasible set $\mathcal{X}_{\text{feas}} = \{ \boldsymbol{x} \mid \sum_{i=1}^{n} x_i = 1, x_i > 0, i = 1, \ldots, n \}$.

LP problem	QP problem
minimize $oldsymbol{c}^T oldsymbol{x}$ subject to $oldsymbol{\mathbf{A}} oldsymbol{x} = oldsymbol{b}$ $oldsymbol{\mathbf{D}} oldsymbol{x} \leq oldsymbol{q}$	minimize $rac{1}{2}m{x}^T\mathbf{H}m{x}+m{c}^Tm{x}$ subject to $\mathbf{A}m{x}=m{b}$ $\mathbf{D}m{x} \leq m{q}$

where

 $x \in \mathbb{R}^n$ is a vector of optimized variables

 $oldsymbol{c} \in \mathbb{R}^n$, $oldsymbol{b} \in \mathbb{R}^p$, $oldsymbol{q} \in \mathbb{R}^m$ are vectors

 $\mathbf{A} \in \mathbb{R}^{p \times n}$, $\mathbf{D} \in \mathbb{R}^{m \times n}$, $\mathbf{H} \in \mathbb{R}^{n \times n}$ are matrices

Note that LP and QP can be always rewritten to a simpler form using the **slack variables trick:** the inequality constraints $\mathbf{D}x \leq q$ are replaced by equivalent constraints $\mathbf{D}x + \xi = q$ and $\xi \geq 0$.

(Globally) optimal value:

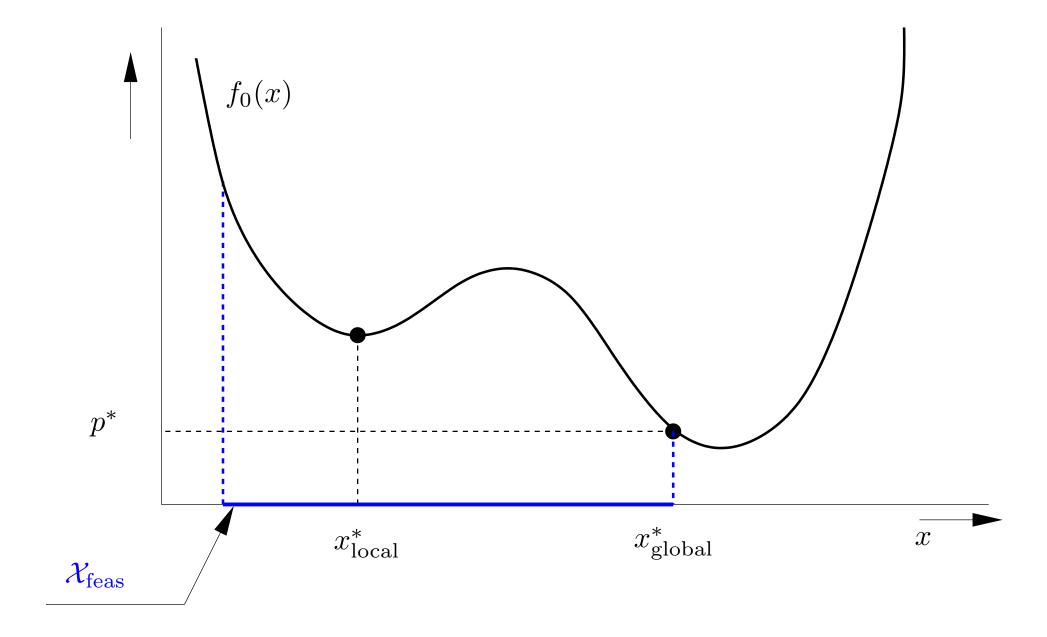
$$p^* = \inf\{f_0(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathcal{X}_{\text{feas}}\}$$

- $p^* = \infty$ if the problem is infeasible, i.e., $\mathcal{X}_{\text{feas}} = \{\emptyset\}$.
- $p^* = -\infty$ if the problem is unbounded.

Optimal solutions: x is the optimal solution if it is feasible and $f(x) = p^*$; $\mathcal{X}_{opt} = \{x \mid f_0(x) = p^*, x \in \mathcal{X}_{feas}\}$ is the set of optimal solutions.

Locally optimal: ${\boldsymbol x}$ is locally optimal if there exist R>0 such that ${\boldsymbol x}$ is optimal for

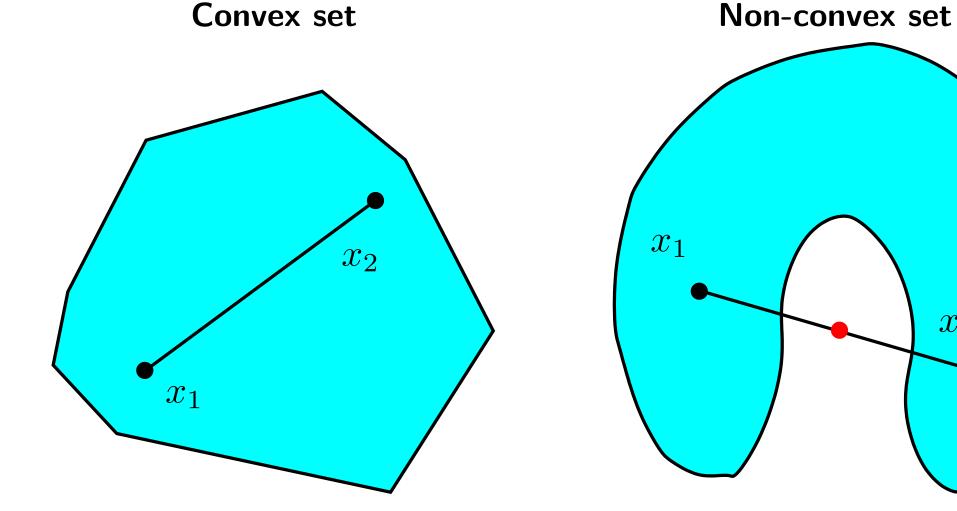
minimize
$$f_0(\boldsymbol{y})$$
 subject to $\boldsymbol{y} \in \mathcal{X}_{\mathrm{feas}} \cap \{\boldsymbol{y} \mid \|\boldsymbol{x} - \boldsymbol{y}\| \leq R\}$



 x_2

A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if the line segment connecting any two points from $\mathcal X$ lies in $\mathcal X$, i.e., for all $x_1,x_2\in\mathcal X$ and all θ such that $0 \le \theta \le 1$ it holds

$$\boldsymbol{x}_1(1-\theta) + \theta \boldsymbol{x}_2 \in \mathcal{X}$$
.



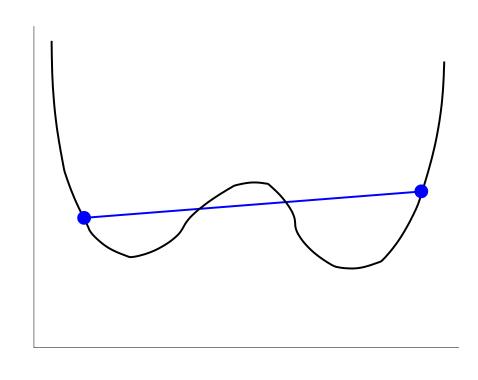
A function $f \in \mathbb{R}^n \to \mathbb{R}$ is convex if $\operatorname{dom} f$ is convex and for all x_1 , $x_2 \in \operatorname{dom} f$ and all θ such that $0 \le \theta \le 1$ it holds

$$f(x_1(1-\theta) + x_2\theta) \le f(x_1)(1-\theta) + f(x_2)\theta$$
.

Convex function

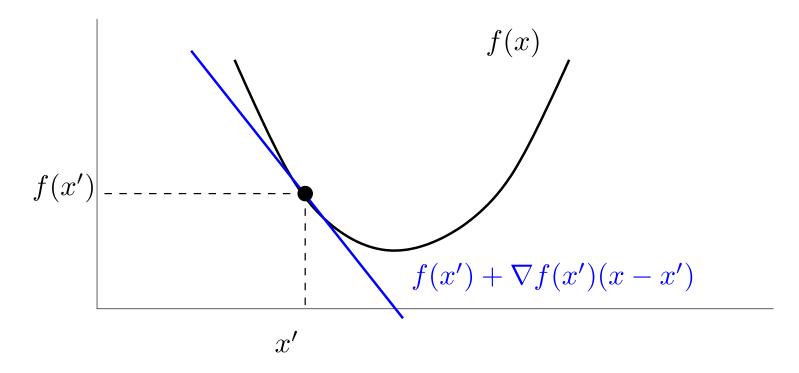
$f(x_2)$ $f(x_1)(1-\theta) + f(x_2)\theta$ x_1

Non-convex function



First-order condition: Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, i.e., gradient $\nabla f(x) \in \mathbb{R}^n$ exists at each point $x \in \operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is convex and

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}') + \nabla f(\boldsymbol{x}')^T(\boldsymbol{x} - \boldsymbol{x}') , \qquad \forall \boldsymbol{x}, \boldsymbol{x}' \in \mathcal{X} .$$



Second-order condition: Suppose that f twice differentiable, i.e., the Hessian matrix of second derivatives $\nabla^2 f(x)$ exists at each point $x \in \operatorname{dom} f$. Then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^2 f(x)$ is positive semi-definite for all $x \in \operatorname{dom} f$.

The optimization problem is convex if the objective function $f_0(x)$ is convex and the feasible set $\mathcal{X}_{\text{feas}}$ is convex.

- In particular, the problem is convex if f_0, f_1, \ldots, f_m are convex and the equality constraints h_i are affine, i.e., $h_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} b_i = 0$.
- The standard form of the convex optimization problem

```
minimize f_0(m{x}) subject to f_i(m{x}) \leq 0 , i=1,\ldots,m m{A}m{x} = m{b}
```

- Basic property of the convex problems: Any locally optimal solution is globally optimal \Rightarrow greatly simplifies optimization.
 - We can use **descent methods**: iteratively move in a descent direction until we reach the optimum.
 - For non-convex problems we can get stuck in a local optimum; it is difficult to identify whether the attained optimum is local or global.

LP problemQP problemminimize c^Tx minimize $\frac{1}{2}x^T\mathbf{H}x + c^Tx$ subject to Ax = bsubject to Ax = b $Dx \le q$ $Dx \le q$

Linear Programming is a convex problem since the objective is a convex function, the equality functions are affine, the inequality constraints define a convex set.

Quadratic Programming is a convex problem if and only if the matrix ${\bf H}$ is positively semi-definite;

Recall the Second-order condition and notice that for QP the Hessian matrix $\nabla^2 f(x) = \mathbf{H}$.

Suppose that f_0 is differentiable. Then a vector $m{x}$ is the optimal solution if and only if it is feasible $m{x} \in \mathcal{X}_{\mathrm{feas}}$ and

$$\nabla f_0(\boldsymbol{x})^T(\boldsymbol{y}-\boldsymbol{x}) \geq 0$$
 for all $\boldsymbol{y} \in \mathcal{X}_{\mathrm{feas}}$.

How to see this?

Recall the definition of the directional derivative

$$f_0'(\boldsymbol{x}; \boldsymbol{\delta}) = \lim_{h \to 0_+} \frac{f_0(\boldsymbol{x} + h\boldsymbol{\delta})}{h} = \nabla f_0(\boldsymbol{x})^T \boldsymbol{\delta}.$$

The sign of $f_0'(x; \delta)$ determines whether f_0 increases or decreases when we move from x in the direction δ .

- Moving from a feasible point x along a feasible direction $\delta = y x$, $y \in \mathcal{X}_{\mathrm{feas}}$ by sufficiently small step produces a feasible point.
- A vector x is optimal iff there is no feasible direction which decreases the objective function, i.e., for each $y \in \mathcal{X}_{\mathrm{feas}}$ moving along $\delta = y x$ increases the objective so that

$$f_0'(\boldsymbol{x};\boldsymbol{\delta}) \geq 0 \quad \Rightarrow \quad \nabla f_0(\boldsymbol{x})^T \boldsymbol{\delta} \geq 0 \quad \Rightarrow \nabla f_0(\boldsymbol{x})^T (\boldsymbol{y} - \boldsymbol{x}) \geq 0.$$

What are we going to do?

• For the optimized problem (called primal in this context) we derive a dual optimization problem.

What is it good for?

- **Simplifies optimization**. The dual problem can be of lesser complexity; in some cases the primal solution can be easily obtained from the dual solution.
- New insight. The dual problem can bring a new insight to the problem (e.g. Max-flow/Min-cut problems from graph theory are dual, or Maximum-likelihood/Minimum-entropy density estimation problems are dual).

Primal optimization problem in standard form

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$, $i=1,\ldots,m$ $h_j(m{x}) = 0$, $j=1,\ldots,p$

where \mathcal{D} is the problem domain, p^* is the optimal value.

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ with domain $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^{p} h_i \nu_i$$

- sum of objective function plus weighted sum of constraint functions
- λ_i is Lagrange multiplier associated with $f_i(\boldsymbol{x}) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(\boldsymbol{x}) = 0$

Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$= \inf_{\boldsymbol{x} \in \mathcal{D}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x}) \right)$$

- $g(\lambda, \nu)$ is a **concave function** since it is point-wise infimum of convex functions of (λ, ν) ; note that it holds in general even for non-convex primal problems.
- For many important problem $g(\lambda, \nu)$ has an analytical form.

We start form the primal LP problem

minimize
$$oldsymbol{c}^T oldsymbol{x}$$
 subject to $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ $oldsymbol{D} oldsymbol{x} \leq oldsymbol{q}$

We form the Lagrangian (using matrix notation for brevity)

$$egin{array}{lll} L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u}) &=& f_0(oldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(oldsymbol{x}) + \sum_{i=1}^p h_i
u_i \ &=& oldsymbol{c}^T oldsymbol{x} + oldsymbol{\lambda}^T (oldsymbol{\mathrm{D}} oldsymbol{x} - oldsymbol{q}) + oldsymbol{
u}^T (oldsymbol{\mathrm{A}} oldsymbol{x} - oldsymbol{b}) \ &=& (oldsymbol{c} + oldsymbol{\mathrm{D}}^T oldsymbol{\lambda} + oldsymbol{\mathrm{A}}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{q} - oldsymbol{
u}^T oldsymbol{b} \ &=& (oldsymbol{c} + oldsymbol{\mathrm{D}}^T oldsymbol{\lambda} + oldsymbol{\mathrm{A}}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{q} - oldsymbol{
u}^T oldsymbol{b} \ &=& (oldsymbol{c} + oldsymbol{\mathrm{D}}^T oldsymbol{\lambda} + oldsymbol{\mathrm{A}}^T oldsymbol{
u})^T oldsymbol{x} - oldsymbol{\lambda}^T oldsymbol{q} - oldsymbol{
u}^T oldsymbol{b} \ &=& (oldsymbol{c} + oldsymbol{\mathrm{D}}^T oldsymbol{\lambda} + oldsymbol{\mathrm{A}}^T oldsymbol{
u})^T oldsymbol{n} - oldsymbol{
u}^T oldsymbol{
u} - oldsymbo$$

We get the Lagrange dual function by minimizing w.r.t primal variables

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \left\{ \begin{array}{ll} -\boldsymbol{\lambda}^T \boldsymbol{q} - \boldsymbol{\nu}^T \boldsymbol{b} & \text{if} \quad \boldsymbol{c} + \mathbf{D}^T \boldsymbol{\lambda} + \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \\ -\infty & \text{otherwise} \end{array} \right.$$

Weak duality: If $\lambda \geq 0$ and $x \in \mathcal{X}_{feas}$ then $f_0(x) \geq g(\lambda, \nu)$, i.e. the Lagrange dual function is a lower bound on the primal objective. In particular, it lower bounds the optimal value $p^* \geq g(\lambda, \nu)$, $\forall \lambda \geq 0$, $\forall \nu$.

To see this recall the Lagrangian

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{
u}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p h_i \nu_i$$

and notice that for $x \in \mathcal{X}_{\mathrm{feas}}$ we have:

- 1. $f_i(\boldsymbol{x}) \leq 0$ and thus $\sum_i \lambda_i f(\boldsymbol{x}) \leq 0$ since $\lambda_i \geq 0$,
- 2. $h_i(\boldsymbol{x}) = 0$ and thus $\sum_i \nu_i h_i(\boldsymbol{x}) = 0$,

therefore

$$f_0(\boldsymbol{x}) \geq f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p h_i \nu_i = L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \geq \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}).$$

Note that the **weak duality holds in general** regardless the primal problem is convex or not.

Dual problem

maximize $g(\lambda, \nu)$ subject to $\lambda \geq 0$

where we optimize w.r.t $\lambda \in \mathbb{R}^m$, $\nu \in \mathbb{R}^p$; the optimal value denoted by d^* .

- Solving the dual problem \approx finding the best lower bound d^* on primal optimal value p^* which can be obtained from the Lagrangian.
- **Duality gap** is the difference between the primal and the dual optimal values $p^* d^* \ge 0$, i.e., it determines the tightness of the lower bound.
- The dual problem is always convex since $g(\lambda, \nu)$ is a concave function regardless the primal problem is convex or not.
- (λ, ν) are **dual feasible** if $\lambda \geq 0$ and $g(\lambda, \nu) > -\inf$, i.e. for dual feasible points we have non-trivial lower bound.

It usually helps if the constraint $g(\lambda, \nu) > -\inf$ is expressed explicitly in the dual problem.

The primal LP problem

minimize
$$oldsymbol{c}^T oldsymbol{x}$$
 subject to $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ $oldsymbol{D} oldsymbol{x} \leq oldsymbol{q}$

with the Lagrange dual function

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\boldsymbol{\lambda}^T \boldsymbol{q} - \boldsymbol{\nu}^T \boldsymbol{b} & \text{if} \quad \boldsymbol{c} + \mathbf{D}^T \boldsymbol{\lambda} + \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \\ -\infty & \text{otherwise} \end{cases}$$

The dual problem reads

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \geq 0$

Making the constraint $g(\lambda, \nu) > -\inf$ explicit, i.e., $c + \mathbf{D}^T \lambda + \mathbf{A}^T \nu = \mathbf{0}$, we get the **dual LP problem**

maximize
$$- \pmb{\lambda}^T \pmb{q} - \pmb{\nu}^T \pmb{b}$$
 subject to $\pmb{\lambda} \geq 0$ $\pmb{c} + \mathbf{D}^T \pmb{\lambda} + \mathbf{A}^T \pmb{\nu} = \pmb{0}$

Strong duality holds if the duality gap is zero, i.e., $p^* = d^*$ and the Lagrangian lower bound is tight.

When does it happen?

- It does not hold in general.
- It holds if the primal problem is convex and the Slater's condition (also called constraint qualification) holds:
 - **Slater's condition** holds if there exists a strictly feasible point, i.e., there exists $x \in \mathcal{X}_{\text{feas}}$ such that $f_i(x) < 0$, $i = 1, \ldots, m$; note that this condition is very mild.
- There also exist non-convex problems for which the strong duality holds.

A triplet (x, λ, ν) satisfy the Karush-Kuhn-Tucker conditions if:

$$rac{\partial L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})}{\partial oldsymbol{x}} = oldsymbol{0}$$

partial derivative of L w.r.t \boldsymbol{x} vanishes

$$\frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{\lambda}} \leq \mathbf{0}$$

implies $f_i(\boldsymbol{x}) \leq 0$, $i = 1, \dots, m$

$$\frac{\partial L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})}{\partial \boldsymbol{\nu}} = \mathbf{0}$$

implies $h_i(\boldsymbol{x}) = 0$, $i = 1, \dots, p$.

$$\lambda \geq 0$$

duality constraint holds

$$\lambda_i f_i(\boldsymbol{x}) = 0$$
, $i = 1, \dots, m$

 $\lambda_i f_i(\boldsymbol{x}) = 0$, $i = 1, \dots, m$ so called complementary slackness

- If strong duality holds then KKT conditions are necessary for $(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ to be optimal.
- If primal problem is convex and Slater's condition holds then KKT conditions are necessary and sufficient for (x, λ, ν) to be optimal.

The primal LP problem

minimize
$$oldsymbol{c}^T oldsymbol{x}$$
 subject to $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ $oldsymbol{D} oldsymbol{x} \leq oldsymbol{q}$

with the Lagrangian

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\lambda}^T (\mathbf{D} \boldsymbol{x} - \boldsymbol{q}) + \boldsymbol{\nu}^T (\mathbf{A} \boldsymbol{x} - \boldsymbol{b})$$

The KKT conditions read:

$$egin{array}{lll} rac{\partial L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})}{\partial oldsymbol{x}} = oldsymbol{0} &\Rightarrow oldsymbol{c} + \mathbf{D}^Toldsymbol{\lambda} + \mathbf{A}^Toldsymbol{
u} = oldsymbol{0} \ rac{\partial L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})}{\partial oldsymbol{\lambda}} \leq oldsymbol{0} &\Rightarrow oldsymbol{D}oldsymbol{x} - oldsymbol{q} \leq oldsymbol{0} \ rac{\partial L(oldsymbol{x},oldsymbol{\lambda},oldsymbol{
u})}{\partial oldsymbol{
u}} = oldsymbol{0} &\Rightarrow oldsymbol{D}oldsymbol{x} - oldsymbol{q} = oldsymbol{0} \ rac{\partial L(oldsymbol{x},oldsymbol{
u},oldsymbol{
u})}{\partial oldsymbol{
u}} = oldsymbol{0} &\Rightarrow oldsymbol{A}oldsymbol{x} - oldsymbol{b} = oldsymbol{0} \ \lambda \geq oldsymbol{0} \ \lambda_i f_i(oldsymbol{x}) = oldsymbol{0}, \ i = 1, \ldots, m &\Rightarrow oldsymbol{\lambda}^T(oldsymbol{D}oldsymbol{x} - oldsymbol{q}) = oldsymbol{0} \ \end{pmatrix}$$

Let us consider an unconstrained convex problem

minimize
$$f(x)$$

General descent method:

Initialization: set $x \in \text{dom } f$.

repeat

- 1. Determine a descent direction δ .
- 2. Line-search: find a step size $t = \operatorname{argmin}_{t'>0} f(\boldsymbol{x} + t'\boldsymbol{\delta})$.
- 3. Update $x := x + t\delta$.

until stopping condition is satisfied.

- ullet It generates a sequence of $oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, \dots$ such that $f(oldsymbol{x}^{(k)}) > f(oldsymbol{x}^{(k+1)}).$
- ullet For f differentiable, a vector $oldsymbol{\delta}$ is a descent direction if

$$f'(\boldsymbol{x}; \boldsymbol{\delta}) = \lim_{h \to 0_+} \frac{f(\boldsymbol{x} + h\boldsymbol{\delta})}{h} = \nabla f(\boldsymbol{x})^T \boldsymbol{\delta} < 0$$

e.g., gradient descent methods use $\delta = -\nabla f(x)$.

Let us consider equality constrained convex problem

$$\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \mathbf{A}\boldsymbol{x} = \boldsymbol{b} \end{array}$$

ullet Using the KKT optimality conditions, $m{x} \in \mathbf{dom}\, f$ is optimal iff there exist $m{
u}$ such that

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, $\nabla f(\mathbf{x}) + \mathbf{A}^T \mathbf{\nu} = 0$.

• For a convex quadratic function $f(x) = \frac{1}{2}x^T\mathbf{H}x + c^Tx$ the KKT conditions lead to an efficiently solvable set of linear equations:

$$\mathbf{A}x = \mathbf{b}$$
, $\mathbf{H}x + \mathbf{c} + \mathbf{A}^T \mathbf{\nu} = 0$.

• Newton method is applicable for a general twice differentiable function f(x): it iteratively approximates f(x) by a quadratic function

$$\hat{f}(x) = \frac{1}{2}(x - x')\nabla^2 f(x')(x - x') + \nabla f(x')^T(x - x') + f(x')$$

and solves the KKT conditions for the approximation $\hat{f}(x)$.

Let us consider equality constrained convex problem

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$, $i=1,\ldots,m$ $\mathbf{A}m{x} = m{b}$

ullet Constraints $f_i(oldsymbol{x}) \leq 0$ can be made implicit using the **barrier function**

$$\phi_i(\boldsymbol{x}) = \begin{cases} 0 & \text{if } f_i(\boldsymbol{x}) \leq 0 \\ \infty & \text{if } f_i(\boldsymbol{x}) > 0 \end{cases}$$

i.e., we can equivalently optimized equality constraint problem

minimize
$$f_0(\boldsymbol{x}) + \sum_{i=1}^m \phi_i(\boldsymbol{x})$$
 subject to $\mathbf{A}\boldsymbol{x} = \boldsymbol{b}$

ullet Functions $\phi_i(oldsymbol{x})$ are approximated by a differentiable convex functions

$$\hat{\phi}_i(\boldsymbol{x}) = -\frac{1}{t}\log(-f_i(\boldsymbol{x})),$$

which for high t well approximates the step barrier function $\phi_i(x)$.

Materials used to prepare this lecture:

• S. Boyd, L. Vandenberghe: *Convex optimization*. Cambridge University Press. 2004.

Available at: http://www.stanford.edu/~boyd/cvxbook/

- S. Boyd: Lecture notes for EE364, Stanford University. 2007-2008. Available at: http://www.stanford.edu/class/ee364/
- H. Hindi: A Tutorial on Convex Optimization II: Duality and Interior Point Methods. Palo Alto Research Center, California.

Google: hindi tutorial convex

Further recommended literature:

- D.P. Bertsekas. *Nonlinear Programming*. (2nd edition), Athena Scientific, Belmont, Massachusetts, 1999.
- J.F. Bonnans, et. al: *Numerical Optimization*. (2nd edition), Springer, Heidelberg, 2006.