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Introduction - Broadband Adaptive MIMO Filtering

Motivation: Signal aquisition by sensor arrays in convolutive environments
Example: Speech capture by microphone arrays in reverberant rooms

DSP

Applications: Teleconferencing, hands-free speech recognition, modern hearing aids,...
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Introduction - Broadband Adaptive MIMO Filtering

Motivation: Signal aquisition by sensor arrays in convolutive environments

MIMO model
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mixing system H demixing system W

xp(n) =
∑P

q=1

∑M−1
κ=0 hqp(κ)sq(n− κ),

yq(n) =
∑P

p=1

∑L−1
κ=0 wpq(κ)xp(n− κ)

Adaptive Signal Processing Tasks:

• Signal Separation

ˇ̌y = ˇ̌W ∗ ˇ̌H ∗ ˇ̌s
!
= diag{ ˇ̌W ∗ ˇ̌H} ∗ ˇ̌s

• Deconvolution:

ˇ̌y = ˇ̌
W ∗ ˇ̌

H ∗ ˇ̌s
!
= α · δ(n− n0)I ∗ ˇ̌s

• System Identification:

estimate system ˇ̌
H using signals xp

• Blind Estimation: Propagation paths and original source signals are unknown

• Supervised Estimation: (Some) source signals and/or side info on paths are known
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Introduction - Broadband Adaptive MIMO Filtering

Classification of the linear adaptive filtering problems

supervised blind

adaptive filtering problems adaptive filtering problems

“direct system identification blind system identification

adaptive

filtering

problems” interference cancellation blind source separation/

blind interference cancellation

“inverse inverse modeling/equalization blind (partial) deconvolution

adaptive

filtering

problems” linear prediction linear prediction

Semi-blind adaptive filtering:
prominent example: adaptive beamforming (=spatial filtering).
Can typically be implemented using (supervised) interference cancellation, but requires
prior information on source locations for beamsteering.
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Acoustic Environment

• Reverberation time T60

(sound energy decayed by 60dB)
⊲ car ≈ 50ms
⊲ concert halls ≈ 1 . . . 2s

• FIR models
⊲ typically LH = T60 · fs/3 coefficients
⇒ hundreds...thousands of coeffs

⊲ nonminimum-phase
⊲ many zeros close to unit circle

Example: Office 5.5m × 3m × 2.8m, T60 ≈ 300msec, sampling frequency fs = 12kHz.
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• Excitation by speech and audio signals:
⇒ nonwhiteness, nonstationarity, nongaussianity
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Overview

• TRINICON - A Generic Concept for Adaptive MIMO Filtering

⊲ Optimization Criterion and Generic Adaptation Algorithms

⊲ Incorporation of Stochastic Source Models

• Applications to Signal Processing Problems for Speech Capture

⊲ Blind Source Separation (BSS) / Interference Suppression

⊲ Supervised Separation and System Identification / Echo Cancellation

⊲ Blind System Identification (BSI) / Localization of Multiple Sources

⊲ * Multich. Blind Deconvolution (MCBD) and
Multich. Blind Partial Deconvolution (MCBPD) / Dereverberation

• Concluding Remarks
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TRINICON - Optimization Criterion

As a generic framework, TRINICON [Buchner et al., 2003-] exploits

TRIple N, i.e., Nonwhiteness, Nonstationarity, and Nongaussianity of sq(n),
for Independent component analysis of CONvolutive mixtures

Optimization Criterion

J (m,W) = −
∞
∑

i=0

β(i, m)
1

N

iNL+N−1
∑

j=iNL

{log(p̂s,PD(y(j)))− log(p̂y,PD(y(j)))}

• Nongaussianity by minimizing Kullback-Leibler divergence (KLD) between the
PD-variate probability density functions with data-dependent parameterizations

⊲ p̂s,PD(y) for sources (desired)
⊲ p̂y,PD(y) for outputs (actual)

• Nonwhiteness by simultaneous minimization for D time-lags (blocks of D output
values per channel in vector y)

• Nonstationarity by simultaneous minimization of N blocks (of D output samples
per channel)

Windowing β(i, m) defines online, block-online, or offline adaptation
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TRINICON - MIMO Filtering of Broadband Signals

Latest D samples at

output yq

2L×D Sylvester matrix with D

times FIR filter impulse response

wpq of length L

Latest 2L samples of

input xp
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TRINICON - Euclidean Gradient-Based Coefficient Update

• Block-online update rule: W̌0(m) := W̌(m− 1),

W̌ℓ(m) = W̌ℓ−1(m)− µ∆W̌ℓ(m), ℓ = 1, . . . , ℓmax,

W̌(m) := W̌ℓmax(m)

• Coefficient updates: Euclidean gradient of J w.r.t. W̌ yields

∆W̌ℓ(m) =
1

N

∞
∑

i=0

β(i, m)SC







iL+N−1
∑

j=iL

[

x(j)ΦT
s,PD(y(j))−

(

(

Wℓ−1(m)
)T

)+
]







Selection of practical algorithms for specific applications by

- Sylvester constraint SC{•} linking W (in the cost
function) and W̌ (in the optimization procedure).
General realization: sums within Sylvester diagonals.

- multivariate score function

Φs,PD(y) = −
∂log p̂s,PD(y)

∂y

+

+

+

+

+

+

L

D

2L

1

L
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TRINICON-Based Algorithm Design

prior signal information

TRINICON
coefficient optimization

+ filtering

multivariate stochastic
signal model

signal model
parameter estimation

input
signals

estimated output signals
and/or system data
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TRINICON-Based Algorithm Design

prior signal information

TRINICON
coefficient optimization

+ filtering

multivariate stochastic
signal model

signal model
parameter estimation

input
signals

- general: Newton-type, Hessian PW(m)

- general: on ’arbitrary’ manifold M, e.g.,

• ’natural gradient adaptation’ (MIMO)

∆W ∝ WW
T ∂J

∂W

• system structure/application:

blind/supervised/semi-blind

• ...

- realization of Sylvester Constraint SC

W = W = W̌ =W̌ =

SCC
SCR
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TRINICON-Based Algorithm Design

prior signal information

TRINICON
coefficient optimization

+ filtering
(PW(m), M, SC,

β(i, m), cov./corr.)

multivariate stochastic
signal model

signal model
parameter estimation

input
signals

- Which application?

- Which priors p̂s,PD? Which moments?

Generic concept: Maximum-Entropy principle

based on variational calculus

- Possible: robust statistics

Generic concept: Minimum Fisher information

based on variational calculus



Herbert Buchner: BSS for Audio Signals Page 7

TRINICON-Based Algorithm Design

prior signal information

TRINICON
coefficient optimization

+ filtering
(PW(m), M, SC,

β(i, m), cov./corr.)

multivariate stochastic
signal model

(p̂s,PD)

signal model
parameter estimation

input
signals

- model-dependent, moments Q
(r)
i (m)

- robust statistics: scale factor, ...

- two ways of estimating crossrelations:

• nonstationary (covariance) method

• stationary (correlation) method
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TRINICON - Exploiting HOS: SIRPs as Source Model
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Spherically Invariant Random Processes
(SIRPs) are described by multivariate pdfs
of the form (with suitable function fD):

p̂D(yp) =
1

√

πDdet(R̂pp)
fD

(

yT
p R̂−1

pp yp

)

Several attractive properties:

• Good model for speech signals

• Reduced number of model parameters to estimate

• Multivariate pdfs can be derived analytically from corresponding univariate pdfs

• Incorporation into TRINICON leads to inherent stepsize normalization of the update

equation: Φp,D(yp(j)) = 2 φyp,D

(

yT
p (j)R−1

ypyp
(i)yp(j)

)

· R−1
ypyp

(i)yp(j),

SIRP score: φyp,D(up) = −∂ log fp,D(up)/∂up → Gauss: φyp,D = 1/2
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Overview

• TRINICON - A Generic Concept for Adaptive MIMO Filtering

⊲ Optimization Criterion and Generic Adaptation Algorithms

⊲ Incorporation of Stochastic Source Models

• Applications to Signal Processing Problems for Speech Capture

⊲ Blind Source Separation (BSS) / Interference Suppression

⊲ Supervised Separation and System Identification / Echo Cancellation

⊲ Blind System Identification (BSI) / Localization of Multiple Sources

⊲ Multich. Blind Deconvolution (MCBD) and
Multich. Blind Partial Deconvolution (MCBPD) / Dereverberation

• Concluding Remarks
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TRINICON for Blind Source Separation

• Desired score function for BSS: Independence between channels

p̂s,PD(y(j))
(BSS)
=

P
∏

q=1

p̂yq,D(yq(j))

• Illustration for SOS (Gaussian source model ⇒ Φp,D(yp(j)) = R−1
ypyp

(i)yp(j) ):
Natural gradient-based update

∆W̌(m) = 2
∞
∑

i=0

β(i, m)SC
{

W(i)
{

R̂yy − R̂ss

}

R̂−1
ss

}

D

D

each diagonal
represents
one time-lag

autocorrelation Ry1y1
crosscorrelation Ry1y2

R̂ss(i)
(BSS)
= bdiagD R̂yy(i).

• Inherent normalization (→ stepsize control) in each channel by bdiagDR̂−1
yy
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BSS - Results: Generic SOS + Sylvester Constraint

Offline BSS generic SOS natural gradient adaptation, cov. method, L = 256
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⇒Exact SC combines versatility (SCR) and robust convergence (SCC)
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TRINICON for BSS - Exploitation of Nonwhiteness

Influence of the number D of simultaneously optimized time lags for
exploiting nonwhiteness

Offline BSS generic SOS natural gradient adaptation, SCR, cov. method, L = 256
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(no further improvement can be achieved for D > L = 256)
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TRINICON for BSS - Exploitation of Nonstationarity
Influence of the number K of simultaneously optimized blocks

Block-offline BSS generic SOS natural gradient adaptation, SCR, cov. method,
L = 256
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TRINICON for BSS - Results

• Example: Convergence behaviour

⊲ SOS-BSS with diagonal power
normalization

⊲ fS = 16kHz

⊲ T60 = 50, 200msec

⊲ D = L = 1024

⊲ block-online adaptation

s1

s2

x1

x2

y1

y2

h11

h22

h21

h22

w11

w22

w21

w12

mixing system H demixing system W

• Real-time implementation

Implementation in the DFT domain equivalent to time-domain
 Broadband algorithm, no internal permutation or circular
convolution
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TRINICON for BSS - Efficient Frequency-Domain Realizations

TRINICON for BSS, SIRPs-based,
rigorous broadband formulation using DFT matrices

assume
Gaussian sources

discard all circularity
constraints

assume statist.
independent
DFT bins

multivariate
Gaussian pdf,

constrained adaptation
[Buchner et al., 2003]

unconstrained
multivariate

DFT-domain BSS
[Hiroe, 06],

[Kim et al., 06]

univariate
pdf

broadband adaptation
with selective

narrowband normaliz.
[Aichner et al., 2006]

broadband adaptation
w. diag. normaliz.

[Saruwatari et al., 02],
[Buchner et al., 03]

discard all
circularity
constraints but one

discard all
circularity
constraints but one

discard
last circularity
constraint

[Smaragdis, 1998]

assume
Gaussian
sources

[Wu et al., 99],
[Fancourt/Parra, 01]

Unconstrained
univariate

DFT-domain BSS

repair mechanisms for
permutation alignment
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TRINICON for BSS - Efficient Frequency-Domain Realizations

Mixtures:

SIR (Online):

18.9dB

SIR (Offline):

10.6. . .17.6dB

SIR (Online):

9.5dB

TRINICON for BSS, SIRPs-based

multivariate
Gaussian pdf,

constrained adaptation
[Buchner et al., 2003]

unconstrained
multivariate

DFT-domain BSS
[Hiroe, 06],

[Kim et al., 06]

univariate
pdf

broadband adaptation
with selective

narrowband normaliz.
[Aichner et al., 2006]

broadband adaptation
w. diag. normaliz.

[Saruwatari et al., 02],
[Buchner et al., 03]

[Smaragdis, 1998]

[Wu et al., 99],
[Fancourt/Parra, 01] repair mechanisms for

permutation alignment
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TRINICON for Blind System Identification

s1

s2

x1

x2

h11

h22

h12

h21

w11

w22

w21

w12

Alg.

y1

y2
⇒

Equilibria of overall system C = HW in
Sylvester structure (Buchner et al., 2005):

boff{C} = 0 iff D = L

h11 ∗ w12 = −h12 ∗ w22

h21 ∗ w11 = −h22 ∗ w21

s1

s2

x1

x2

h11

h22

h12

h21

w11

w22

w21

w12

Alg.

y1

y2

Ideal separation filters:

[

W11 W12

W21 W22

]

=

[

α1H22 −α2H12

−α1H21 α2H11

]

Unique solution up to scaling (α1, α2) iff

• No common zeros in H11(z), H12(z)/no common zeros in H21(z), H22(z)

• Demixing filter length L ≤ length M of mixing system

⇒ Application to localization of simultaneously active sources
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TRINICON for Localization → TDOA estimation

Simultaneous Localization of Multiple Sound Sources in Reverberant Environments

Setup:
Two speakers recorded in a TV
studio, T60 ≈ 700ms, fs = 48kHz

TDOA estimation:

• Generalized cross-correlation
(GCC) with phase-transform
(PHAT) weighting + VAD

• SIMO-based BSI + VAD
(AED, Benesty et al., 1999)

• MIMO-based BSI (may be
seen as a generalization of AED)

one speaker (fixed position)
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TRINICON for Supervised Adaptive Filtering Problems

Example: acoustic echo cancellation (AEC) problem from a specialized mixing model

s1

s2

x1

x2

h11

h22

h12

h21

w11

w22

w21

w12

y1

y2

s

r

x1

x2

h11=δ

h22=δ

h12=0

h21=h

w11

w22

w21

w12

y1

y2

Ideal filters:
[

w11 w12

w21 w22

]

=

[

h22 −h12

−h21 h11

]

Here:
[

w11 w12

w21 w22

]

=

[

11 0

−h 11

]

s

r

x1

x2=:xref

h11=δ

h22=δ

h12=0

h21=h

w21

y1 =:e

y2=r

Lower left sub-matrix of simple gradient-based SIRPs TRINICON update:

ĥℓ(m) = ĥℓ−1(m)+
µ

N

∞
∑

i=0

β(i, m)SC







iL+N−1
∑

j=iL

xref(j)e
T (j)R−1

ee (i) φe,D

(

eT (j)R−1
ee (i)e(j)

)

︸ ︷︷ ︸

′SIRP score′







⇒ Generalization of Least-Mean-Squares (LMS): inherent ’stepsize control’

• HOS case: nongaussianity of local speech, incorporation of ’robust statistics’

• Analogously: generalization of other supervised algorithms (NLMS, Newton, RLS,...)
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TRINICON for Supervised Adaptive Filtering Problems
Misalignment convergence (‖h− ĥ‖2/‖h‖2) for gradient-based updates with
NLMS-type normalization
L = 1024, fS = 16kHz, without double-talk detector
Single talk during the first 10sec, double talk starts after 10sec
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SOS prediction error method (NLMS−type)

generalized HOS prediction error method (NLMS−type)
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TRINICON for Dereverberation = Partial Deconvolution

room to be equalized

vocal tract to be preserved

excitation

Desired output statistics - illustration for SOS:

w/o Processing Separation
(BSS)

Partial Deconv.
(MCBPD)

Deconvolution
(MCBD)
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TRINICON for Dereverberation = Partial Deconvolution
Nonstationary:

room to be equalized
(slowly time-varying)

vocal tract to be preserved
(rapidly time-varying)
excitation

Nonwhiteness:

w/o Processing Separation
(BSS)

Partial Deconv.
(MCBPD)

Deconvolution
(MCBD)

Nongaussianity:

- Probability density of speech signal: supergaussian
- Room acoustics described by convolutional sum → mic signals closer to Gaussian
- Aim: maximize nongaussianity of demixing filter outputs → e.g., max. kurtosis
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TRINICON - Nearly Gaussian Densities as Source Model

Expansions based on Chebyshev-Hermite polynomials PH,n(·)

Here: Gram-Charlier expansion

Univariate Example: fourth-oder approximation for a zero-mean process

p̂y,1(y) =
1

√
2πσ

e−y2/2σ2









1 +
κ3

3!σ3
PH,3

(y

σ

)

︸ ︷︷ ︸

κ3=skewness, negligible

+
κ4

4!σ4
PH,4

(y

σ

)

︸ ︷︷ ︸

κ4=kurtosis, nongaussianity
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TRINICON - Nearly Gaussian Densities as Source Model

Expansions based on Chebyshev-Hermite polynomials PH,n(·)

Here: Gram-Charlier expansion

Multivariate Case:

p̂yp,D(yp(j)) =
1

√

(2π)DdetRypyp(i)
e
−1

2yT
p (j)R−1

ypyp
(i)yp(j)

·

∞
∑

n1=0

· · ·

∞
∑

nD=0

an1···nD,p PH,n1

(

[

L−1
p (i)yp(j)

]

1

)

· · · · · PH,nD

(

[

L−1
p (i)yp(j)

]

D

)

For speech signals: we introduce the factorization

R−1
ypyp

(i) = Ap(i)Σ
−1
ỹpỹp

(i)AT
p (i)

Unit lower triangular matrix Ap(i) → interpreted as a whitening convolution matrix

• model yp(n) as an AR process of order nA = D − 1

• shift prefilter matrix into the data terms:

ỹp := AT
p yp = [ỹp(n), ỹp(n− 1), . . . , ỹp(n−D + 1)]T

(0)
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TRINICON - Nearly Gaussian Densities as Source Model

⇒ Multivariate speech model based on fourth-order approximation:

p̂yp,D(yp(j)) =
D
∏

d=1

1
√

2π σ̂2
ỹp

(j − d + 1)
e
−

ỹ2
p(j−d+1)

2σ̂2
ỹp

(j−d+1)

(

1 +
κ̂4,ỹp

4!σ4
ỹp

(j − d + 1)
PH,nd

(

ỹp(j − d + 1)

σ̂ỹp(j − d + 1)

)

)

.

Resulting generalized multivariate score function:

Φy,PD(y(j)) = A(i)







ỹp(j − d + 1)

σ̂2
ỹp

(j − d + 1)
−







∑iNL+N−1
j=iNL

ỹ4
p(j − d + 1)

3
(

∑iNL+N−1
j=iNL

ỹ2
p(j − d + 1)

)2 − 1







·

(

ỹ3
p(j − d + 1)

σ̂4
ỹp

(j − d + 1)
−

ỹp(j − d + 1)
∑iNL+N−1

j=iNL
ỹ4

p(j − d + 1)

σ̂6
ỹp

(j − d + 1)

)]

(0)
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TRINICON - Nearly Gaussian Densities as Source Model

Filtered-x-type interpretation (filtered versions of microphone signals and output
signals in the coeff. update):

Inversion of the speech production models within the blind signal processing

x̌
WH

y

ỹs̃

s

vocal tract(s)

speech production model(s)

blind signal processing

A

- The coefficients in W and W are estimated in an alternating way.
- Note: The filtered input vector is calculated using the LP of the output signals.
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Experimental Results – TRINICON for Dereverberation

• MCBPD, 2 sources, 4 mics., L = 3000, offline adaptation; T60 ≈ 700ms, fS =
16kHz, nA = 32
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Summary

• In acoustic preprocessing for hands-free speech communication,
Blind MIMO signal processing seems appropriate for practical separation
and dereverberation tasks.

• From a generic framework for adaptive signal processing, we can
establish links between various known algorithms, and, so far, it has
led to various novel algorithms for

⊲ robust BSS real-time system

⊲ robust TDOA estimation for localization of multiple sources

⊲ dereverberation without artifacts

⊲ improved supervised adaptive filtering, e.g., for acoustic echo cancellation
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