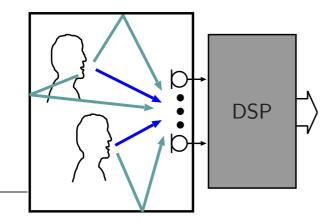
Blind Source Separation of Audio Signals

Herbert Buchner Technische Universität Berlin Lecture Machine Learning II

May 3, 2011

Introduction - Broadband Adaptive MIMO Filtering

Motivation: Signal aquisition by sensor arrays in convolutive environments **Example:** Speech capture by microphone arrays in reverberant rooms



Applications: Teleconferencing, hands-free speech recognition, modern hearing aids,...

Introduction - Broadband Adaptive MIMO Filtering

MIMO model x_i y_{I} s_1 \overline{w}_{11} h_{11} sensor 1 : : h_{PI} W_{Pl} : : : ; h_{IP} W_{IP} ; ; x_P y_P S_P h_{PP} W_{PP} sensor P mixing system H demixing system W $x_p(n) = \sum_{q=1}^{P} \sum_{\kappa=0}^{M-1} h_{qp}(\kappa) s_q(n-\kappa),$ $y_q(n) = \sum_{p=1}^{P} \sum_{\kappa=0}^{L-1} w_{pq}(\kappa) x_p(n-\kappa)$

Motivation: Signal aquisition by sensor arrays in convolutive environments

Adaptive Signal Processing Tasks:

- Signal Separation $\check{\check{\mathbf{y}}} = \check{\check{\mathbf{W}}} * \check{\check{\mathbf{H}}} * \check{\check{\mathbf{s}}} \stackrel{!}{=} \text{diag}\{\check{\check{\mathbf{W}}} * \check{\check{\mathbf{H}}}\} * \check{\check{\mathbf{s}}}$
- Deconvolution: $\check{\check{\mathbf{y}}} = \check{\check{\mathbf{W}}} * \check{\check{\mathbf{H}}} * \check{\check{\mathbf{s}}} \stackrel{!}{=} \alpha \cdot \delta(n - n_0) \mathbf{I} * \check{\check{\mathbf{s}}}$
- Blind Estimation: Propagation paths and original source signals are unknown
- Supervised Estimation: (Some) source signals and/or side info on paths are known

Herbert Buchner: BSS for Audio Signals

Page 1

Introduction - Broadband Adaptive MIMO Filtering

Classification of the linear adaptive filtering problems

	supervised	blind
	adaptive filtering problems	adaptive filtering problems
"direct adaptive	system identification	blind system identification
filtering problems"	interference cancellation	blind source separation/
		blind interference cancellation
"inverse	inverse modeling/equalization	blind (partial) deconvolution
adaptive		
filtering		
problems"	linear prediction	linear prediction

Semi-blind adaptive filtering:

prominent example: adaptive beamforming (=spatial filtering).

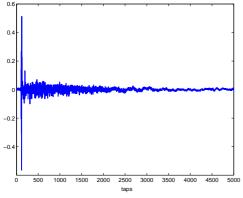
Can typically be implemented using (supervised) interference cancellation, but requires prior information on source locations for beamsteering.

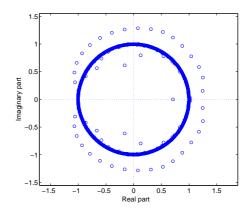
- **Reverberation time** *T*₆₀
 - (sound energy decayed by 60dB)
- \triangleright car $\approx 50 {\rm ms}$
- \triangleright concert halls $\approx 1 \dots 2s$

• FIR models

- ▷ typically $L_H = T_{60} \cdot f_s/3$ coefficients ⇒ hundreds...thousands of coeffs
- nonminimum-phase
- many zeros close to unit circle

Example: Office $5.5 \text{m} \times 3 \text{m} \times 2.8 \text{m}$, $T_{60} \approx 300 \text{msec}$, sampling frequency $f_s = 12 \text{kHz}$.





Page 3

Excitation by speech and audio signals: ⇒ nonwhiteness, nonstationarity, nongaussianity

Herbert Buchner: BSS for Audio Signals

Overview

- TRINICON A Generic Concept for Adaptive MIMO Filtering
- > Optimization Criterion and Generic Adaptation Algorithms
- Incorporation of Stochastic Source Models
- Applications to Signal Processing Problems for Speech Capture
- Blind Source Separation (BSS) / Interference Suppression
- Supervised Separation and System Identification / Echo Cancellation
- Blind System Identification (BSI) / Localization of Multiple Sources
- * Multich. Blind Deconvolution (MCBD) and Multich. Blind Partial Deconvolution (MCBPD) / Dereverberation
- Concluding Remarks

TRINICON - Optimization Criterion

As a generic framework, **TRINICON** [Buchner et al., 2003-] exploits

TRIple N, i.e., Nonwhiteness, Nonstationarity, and Nongaussianity of $s_q(n)$, for Independent component analysis of **CON**volutive mixtures

Optimization Criterion

$$\mathcal{J}(m, \mathbf{W}) = -\sum_{i=0}^{\infty} \beta(i, m) \frac{1}{N} \sum_{j=iN_L}^{iN_L + N - 1} \{ \log(\hat{p}_{s, PD}(\mathbf{y}(j))) - \log(\hat{p}_{y, PD}(\mathbf{y}(j))) \}$$

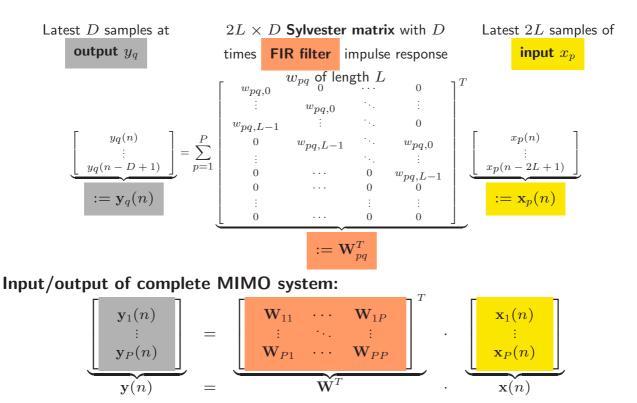
- **Nongaussianity** by minimizing Kullback-Leibler divergence (KLD) between the *PD*-variate probability density functions with data-dependent parameterizations
- $\triangleright \hat{p}_{s,PD}(\mathbf{y})$ for sources (*desired*)
- $\triangleright \hat{p}_{y,PD}(\mathbf{y})$ for outputs (actual)
- Nonwhiteness by simultaneous minimization for *D* time-lags (blocks of *D* output values per channel in vector y)
- Nonstationarity by simultaneous minimization of N blocks (of D output samples per channel)

Windowing $\beta(i, m)$ defines online, block-online, or offline adaptation

Herbert Buchner: BSS for Audio Signals

Page 5

TRINICON - MIMO Filtering of Broadband Signals



TRINICON - Euclidean Gradient-Based Coefficient Update

• Block-online update rule: $\check{\mathbf{W}}^0(m) := \check{\mathbf{W}}(m-1)$,

 $\check{\mathbf{W}}^{\ell}(m) = \check{\mathbf{W}}^{\ell-1}(m) - \mu \Delta \check{\mathbf{W}}^{\ell}(m), \quad \ell = 1, \dots, \ell_{\max},$ $\check{\mathbf{W}}(m) := \check{\mathbf{W}}^{\ell_{\max}}(m)$

Coefficient updates: Euclidean gradient of \mathcal{J} w.r.t. $\check{\mathbf{W}}$ yields

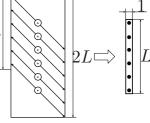
$$\Delta \check{\mathbf{W}}^{\ell}(m) = \frac{1}{N} \sum_{i=0}^{\infty} \beta(i,m) \, \mathcal{SC} \left\{ \sum_{j=iL}^{iL+N-1} \left[\mathbf{x}(j) \boldsymbol{\Phi}_{s,PD}^{T}(\mathbf{y}(j)) - \left(\left(\mathbf{W}^{\ell-1}(m) \right)^{T} \right)^{+} \right] \right\}$$

Selection of practical algorithms for specific applications by

D - Sylvester constraint $SC\{\bullet\}$ linking W (in the cost function) and $\check{\mathbf{W}}$ (in the optimization procedure). હે General realization: sums within Sylvester diagonals. L Ò Ò 2L- multivariate score function

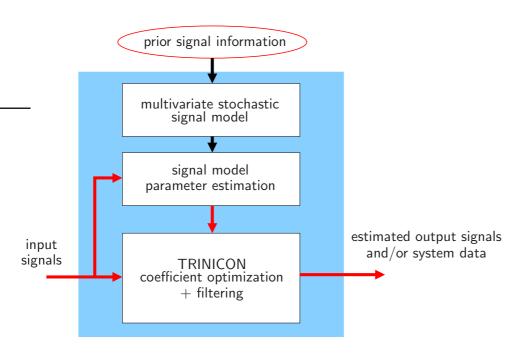
$$\mathbf{\Phi}_{s,PD}(\mathbf{y}) = -rac{\partial \log \hat{p}_{s,PD}(\mathbf{y})}{\partial \mathbf{y}}$$

Herbert Buchner: BSS for Audio Signals

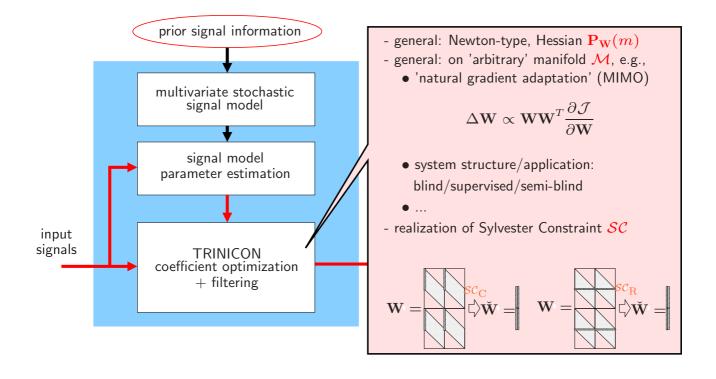


Page 7

TRINICON-Based Algorithm Design



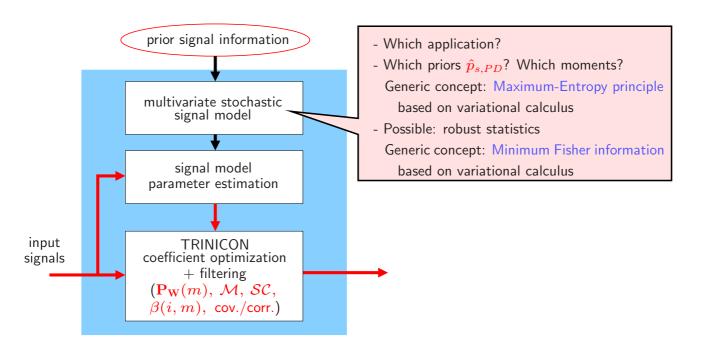
TRINICON-Based Algorithm Design



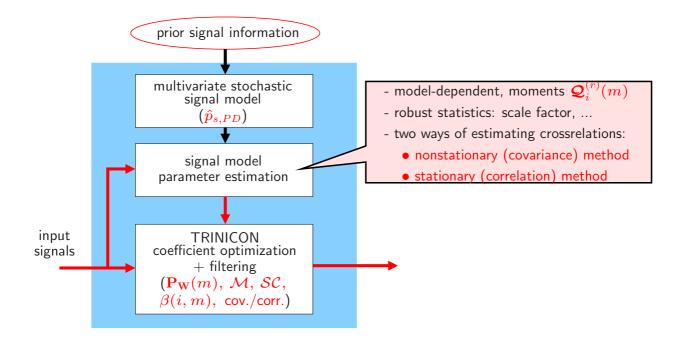
Herbert Buchner: BSS for Audio Signals

Page 7

TRINICON-Based Algorithm Design



TRINICON-Based Algorithm Design



Herbert Buchner: BSS for Audio Signals

Page 7

TRINICON - Exploiting HOS: SIRPs as Source Model

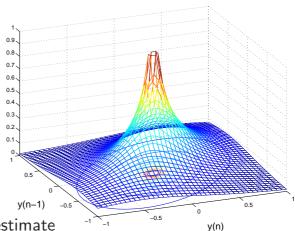
Spherically Invariant Random Processes (SIRPs) are described by multivariate pdfs of the form (with suitable function f_D):

$$\hat{p}_D(\mathbf{y}_p) = \frac{1}{\sqrt{\pi^D \det(\hat{\mathbf{R}}_{pp})}} f_D\left(\mathbf{y}_p^T \hat{\mathbf{R}}_{pp}^{-1} \mathbf{y}_p\right)$$

Several attractive properties:

- Good model for speech signals
- Reduced number of model parameters to estimate
- Multivariate pdfs can be derived analytically from corresponding univariate pdfs
- Incorporation into TRINICON leads to inherent stepsize normalization of the update

equation: $\begin{aligned} \Phi_{p,D}(\mathbf{y}_p(j)) &= 2 \,\phi_{y_p,D}\left(\mathbf{y}_p^T(j) \mathbf{R}_{\mathbf{y}_p \mathbf{y}_p}^{-1}(i) \mathbf{y}_p(j)\right) \cdot \,\mathbf{R}_{\mathbf{y}_p \mathbf{y}_p}^{-1}(i) \mathbf{y}_p(j), \\ \\ & \textit{SIRP score: } \phi_{y_p,D}(u_p) = -\partial \log f_{p,D}(u_p) / \partial u_p \ \rightarrow \textit{Gauss: } \phi_{y_p,D} = 1/2 \end{aligned}$



Overview

- TRINICON A Generic Concept for Adaptive MIMO Filtering
- Optimization Criterion and Generic Adaptation Algorithms
- ▷ Incorporation of Stochastic Source Models
- Applications to Signal Processing Problems for Speech Capture
- Blind Source Separation (BSS) / Interference Suppression
- Supervised Separation and System Identification / Echo Cancellation
- Blind System Identification (BSI) / Localization of Multiple Sources
- Multich. Blind Deconvolution (MCBD) and Multich. Blind Partial Deconvolution (MCBPD) / Dereverberation

• Concluding Remarks

Herbert Buchner: BSS for Audio Signals

Page 3

TRINICON for Blind Source Separation

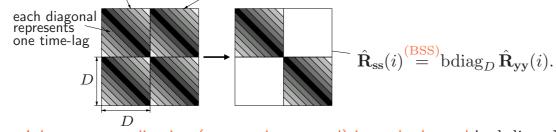
• Desired score function for BSS: Independence between channels

$$\hat{p}_{s,PD}(\mathbf{y}(j)) \stackrel{(\mathbf{BSS})}{=} \prod_{q=1}^{P} \hat{p}_{y_q,D}(\mathbf{y}_q(j))$$

• Illustration for SOS (Gaussian source model $\Rightarrow \Phi_{p,D}(\mathbf{y}_p(j)) = \mathbf{R}_{\mathbf{y}_p \mathbf{y}_p}^{-1}(i)\mathbf{y}_p(j)$): Natural gradient-based update

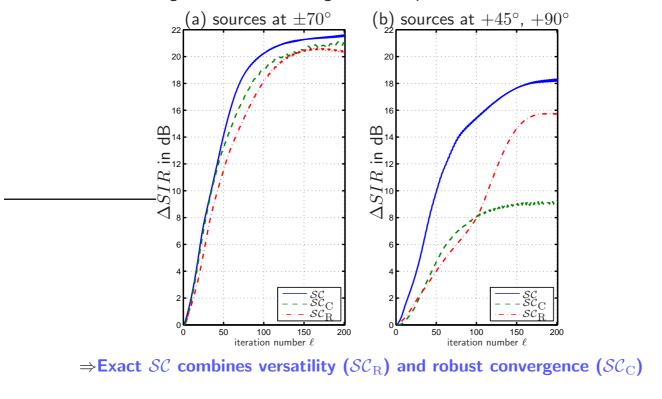
$$\Delta \check{\mathbf{W}}(m) = 2 \sum_{i=0}^{\infty} \beta(i,m) \mathcal{SC} \left\{ \mathbf{W}(i) \left\{ \hat{\mathbf{R}}_{\mathbf{y}\mathbf{y}} - \hat{\mathbf{R}}_{\mathbf{ss}} \right\} \hat{\mathbf{R}}_{\mathbf{ss}}^{-1} \right\}$$

autocorrelation $\mathbf{R}_{y_1y_1}$ crosscorrelation $\mathbf{R}_{y_1y_2}$



• Inherent normalization (ightarrow stepsize control) in each channel by ${
m bdiag}_D \hat{f R}_{vv}^{-1}$

BSS - Results: Generic SOS + Sylvester Constraint



Offline BSS generic SOS natural gradient adaptation, cov. method, L = 256

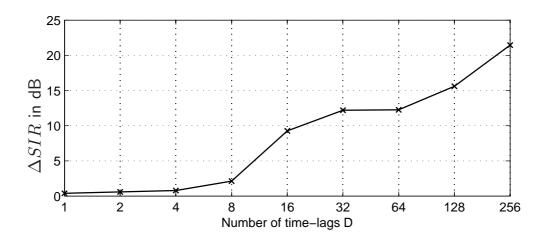
Herbert Buchner: BSS for Audio Signals

Page 12

TRINICON for BSS - Exploitation of Nonwhiteness

Influence of the number D of simultaneously optimized time lags for exploiting nonwhiteness

Offline BSS generic SOS natural gradient adaptation, $\mathcal{SC}_{\rm R}$, cov. method, L=256

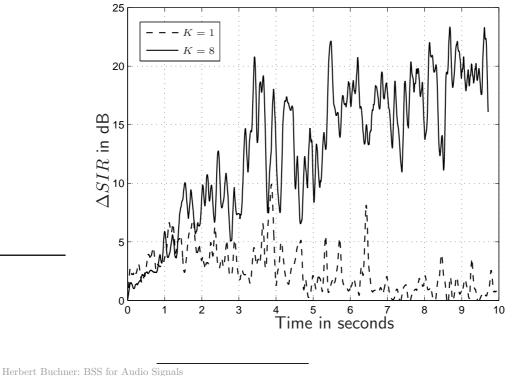


(no further improvement can be achieved for D > L = 256)

TRINICON for BSS - Exploitation of Nonstationarity

Influence of the number K of simultaneously optimized blocks

Block-offline BSS generic SOS natural gradient adaptation, $\mathcal{SC}_{\rm R}$, cov. method, L=256



Page 14

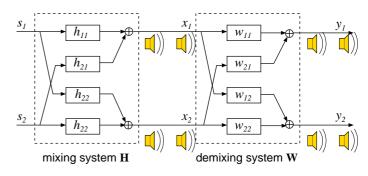
TRINICON for BSS - Results

• Example: Convergence behaviour

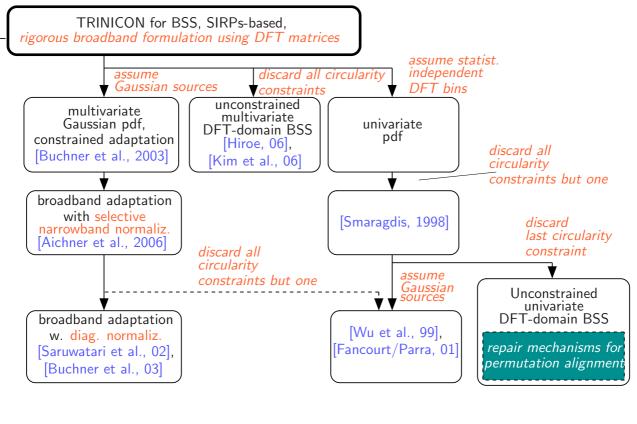
- SOS-BSS with diagonal power normalization
- $\triangleright f_S = 16 \text{kHz}$
- $\triangleright T_{60} = 50,200$ msec
- $\triangleright D = L = 1024$
- block-online adaptation

• Real-time implementation

Implementation in the DFT domain equivalent to time-domain \rightsquigarrow Broadband algorithm, no internal permutation or circular convolution



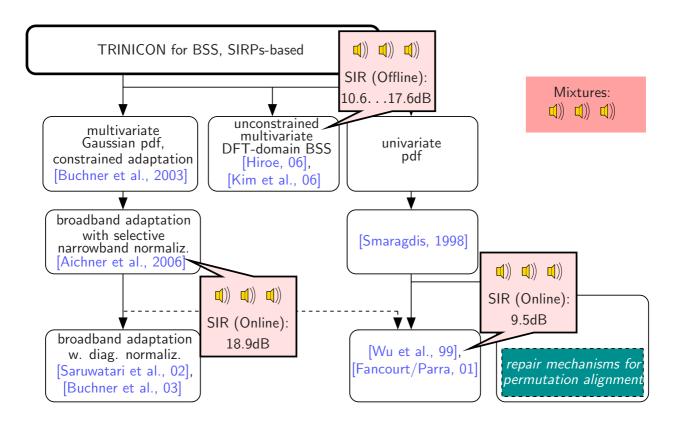
TRINICON for BSS - Efficient Frequency-Domain Realizations



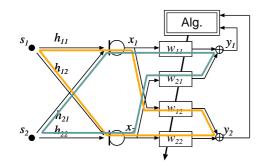
Herbert Buchner: BSS for Audio Signals

Page 16

TRINICON for BSS - Efficient Frequency-Domain Realizations



TRINICON for Blind System Identification



Equilibria of overall system C = HW in Sylvester structure (Buchner et al., 2005): $boff{C} = 0 \text{ iff } D = L$

$$\Rightarrow \quad \begin{array}{l} h_{11} * w_{12} = -h_{12} * w_{22} \\ h_{21} * w_{11} = -h_{22} * w_{21} \end{array}$$

Ideal separation filters: $\begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} \\ \mathbf{W}_{21} & \mathbf{W}_{22} \end{bmatrix} = \begin{bmatrix} \alpha_1 \mathbf{H}_{22} & -\alpha_2 \mathbf{H}_{12} \\ -\alpha_1 \mathbf{H}_{21} & \alpha_2 \mathbf{H}_{11} \end{bmatrix}$

Unique solution up to scaling (α_1, α_2) iff

- No common zeros in $H_{11}(z)$, $H_{12}(z)/no$ common zeros in $H_{21}(z)$, $H_{22}(z)$
- Demixing filter length $L \leq$ length M of mixing system

 \Rightarrow Application to localization of simultaneously active sources

Herbert Buchner: BSS for Audio Signals

Page 17

TRINICON for Localization \rightarrow **TDOA** estimation

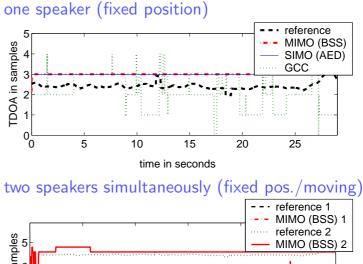
Simultaneous Localization of Multiple Sound Sources in Reverberant Environments

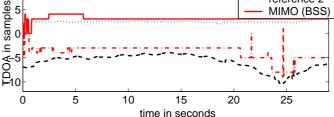
Setup:

Two speakers recorded in a TV studio, $T_{60} \approx 700 {\rm ms}$, $f_s = 48 {\rm kHz}$

TDOA estimation:

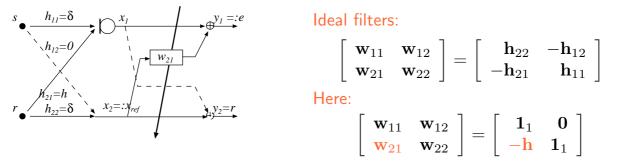
- Generalized cross-correlation (GCC) with phase-transform (PHAT) weighting + VAD
- **SIMO-based BSI** + VAD (AED, Benesty et al., 1999)
- MIMO-based BSI (may be seen as a generalization of AED)





TRINICON for Supervised Adaptive Filtering Problems

Example: acoustic echo cancellation (AEC) problem from a specialized mixing model



Lower left sub-matrix of simple gradient-based SIRPs TRINICON update:

$$\hat{\mathbf{h}}^{\ell}(m) = \hat{\mathbf{h}}^{\ell-1}(m) + \frac{\mu}{N} \sum_{i=0}^{\infty} \beta(i,m) \mathcal{SC} \left\{ \sum_{j=iL}^{iL+N-1} \mathbf{x}_{\mathrm{ref}}(j) \mathbf{e}^{T}(j) \mathbf{R}_{\mathrm{ee}}^{-1}(i) \underbrace{\phi_{e,D} \left(\mathbf{e}^{T}(j) \mathbf{R}_{\mathrm{ee}}^{-1}(i) \mathbf{e}(j) \right)}_{\text{'SIRP score'}} \right\}$$

⇒ Generalization of Least-Mean-Squares (LMS): inherent 'stepsize control'

- HOS case: nongaussianity of local speech, incorporation of 'robust statistics'
- Analogously: generalization of other supervised algorithms (NLMS, Newton, RLS,...)

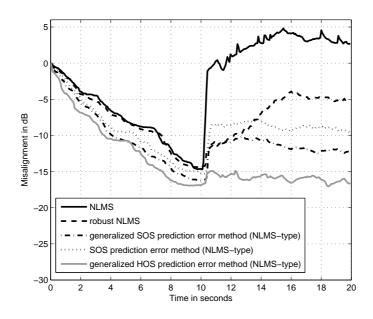
Herbert Buchner: BSS for Audio Signals

Page 19

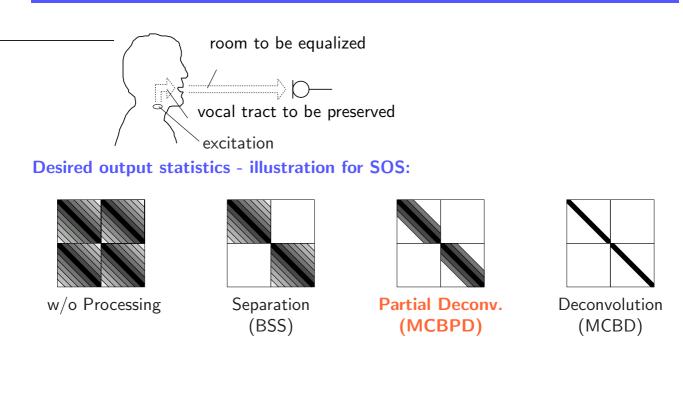
TRINICON for Supervised Adaptive Filtering Problems

Misalignment convergence ($\|\mathbf{h} - \hat{\mathbf{h}}\|^2 / \|\mathbf{h}\|^2$) for gradient-based updates with NLMS-type normalization

L = 1024, $f_S = 16 kHz$, without double-talk detector Single talk during the first 10sec, double talk starts after 10sec



TRINICON for Dereverberation = Partial Deconvolution



Herbert Buchner: BSS for Audio Signals

Page 20

TRINICON for Dereverberation = Partial Deconvolution



- Probability density of speech signal: supergaussian
- Room acoustics described by convolutional sum \rightarrow mic signals closer to Gaussian
- Aim: maximize nongaussianity of demixing filter outputs \rightarrow e.g., max. kurtosis

TRINICON - Nearly Gaussian Densities as Source Model

Expansions based on Chebyshev-Hermite polynomials $P_{\mathrm{H},n}(\cdot)$

Here: Gram-Charlier expansion

Univariate Example: fourth-oder approximation for a zero-mean process

$$\hat{p}_{y,1}(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-y^2/2\sigma^2} \left(1 + \underbrace{\frac{\kappa_3}{3!\sigma^3} P_{\mathrm{H},3}\left(\frac{y}{\sigma}\right)}_{\kappa_3 = \text{skewness, negligible}} + \underbrace{\frac{\kappa_4}{4!\sigma^4} P_{\mathrm{H},4}\left(\frac{y}{\sigma}\right)}_{\kappa_4 = \text{kurtosis, nongaussianity}} \right)$$

Herbert Buchner: BSS for Audio Signals

TRINICON - Nearly Gaussian Densities as Source Model

Expansions based on Chebyshev-Hermite polynomials $P_{\mathrm{H},n}(\cdot)$

Here: Gram-Charlier expansion

Multivariate Case:

$$\hat{p}_{y_p,D}(\mathbf{y}_p(j)) = \frac{1}{\sqrt{(2\pi)^D \det \mathbf{R}_{\mathbf{y}_p \mathbf{y}_p}(i)}} e^{-\frac{1}{2}\mathbf{y}_p^T(j)\mathbf{R}_{\mathbf{y}_p \mathbf{y}_p}^{-1}(i)\mathbf{y}_p(j)}$$
$$\cdot \sum_{n_1=0}^{\infty} \cdots \sum_{n_D=0}^{\infty} a_{n_1 \cdots n_D, p} P_{\mathrm{H}, n_1} \left(\left[\mathbf{L}_p^{-1}(i)\mathbf{y}_p(j) \right]_1 \right) \cdots P_{\mathrm{H}, n_D} \left(\left[\mathbf{L}_p^{-1}(i)\mathbf{y}_p(j) \right]_D \right)$$

For speech signals: we introduce the factorization

$$\mathbf{R}_{\mathbf{y}_p\mathbf{y}_p}^{-1}(i) = \mathbf{A}_p(i)\boldsymbol{\Sigma}_{\tilde{\mathbf{y}}_p\tilde{\mathbf{y}}_p}^{-1}(i)\mathbf{A}_p^T(i)$$

Unit lower triangular matrix $\mathbf{A}_p(i) \rightarrow \text{interpreted}$ as a whitening convolution matrix

- model $y_p(n)$ as an AR process of order $n_A = D 1$
- shift prefilter matrix into the data terms:

$$\tilde{\mathbf{y}}_p := \mathbf{A}_p^T \mathbf{y}_p = [\tilde{y}_p(n), \tilde{y}_p(n-1), \dots, \tilde{y}_p(n-D+1)]^T$$
(0)

Page 21

/

TRINICON - Nearly Gaussian Densities as Source Model

⇒ Multivariate speech model based on fourth-order approximation:

$$\hat{p}_{y_p,D}(\mathbf{y}_p(j)) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi} \hat{\sigma}_{\tilde{y}_p}^2(j-d+1)}} e^{-\frac{\hat{y}_p^2(j-d+1)}{2\hat{\sigma}_{\tilde{y}_p}^2(j-d+1)}} \\ \left(1 + \frac{\hat{\kappa}_{4,\tilde{y}_p}}{4!\sigma_{\tilde{y}_p}^4(j-d+1)} P_{\mathrm{H},n_d}\left(\frac{\tilde{y}_p(j-d+1)}{\hat{\sigma}_{\tilde{y}_p}(j-d+1)}\right) \right).$$

Resulting generalized multivariate score function:

$$\begin{split} \Phi_{y,PD}(\mathbf{y}(j)) &= \mathbf{A}(i) \left[\frac{\tilde{y}_p(j-d+1)}{\hat{\sigma}_{\tilde{y}_p}^2(j-d+1)} - \left(\frac{\sum_{j=iN_L}^{iN_L+N-1} \tilde{y}_p^4(j-d+1)}{3\left(\sum_{j=iN_L}^{iN_L+N-1} \tilde{y}_p^2(j-d+1)\right)^2} - 1 \right) \\ &\cdot \left(\frac{\tilde{y}_p^3(j-d+1)}{\hat{\sigma}_{\tilde{y}_p}^4(j-d+1)} - \frac{\tilde{y}_p(j-d+1)\sum_{j=iN_L}^{iN_L+N-1} \tilde{y}_p^4(j-d+1)}{\hat{\sigma}_{\tilde{y}_p}^6(j-d+1)} \right) \right] \end{split}$$
(0)

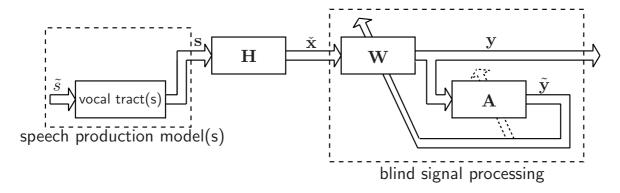
Herbert Buchner: BSS for Audio Signals

Page 21

TRINICON - Nearly Gaussian Densities as Source Model

<u>Filte</u>red-x-type interpretation (filtered versions of microphone signals and output signals in the coeff. update):

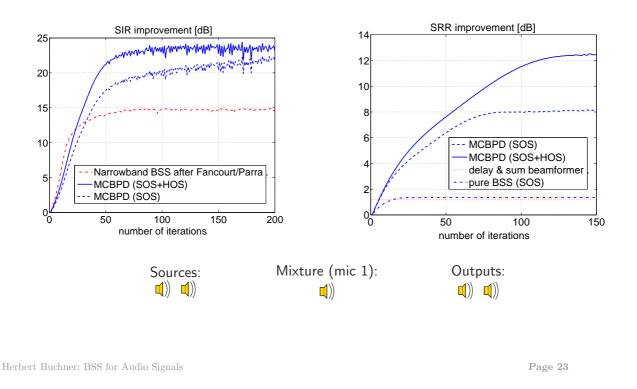
Inversion of the speech production models within the blind signal processing



- The coefficients in W and W are estimated in an alternating way.
- Note: The filtered input vector is calculated using the LP of the output signals.

Experimental Results – TRINICON for Dereverberation

• MCBPD, 2 sources, 4 mics., L=3000, offline adaptation; $T_{60}\approx 700 {\rm ms},~f_{\rm S}=16 kHz,~n_A=32$



Summary

- In acoustic preprocessing for hands-free speech communication,
 Blind MIMO signal processing seems appropriate for practical separation and dereverberation tasks.
- From a generic framework for adaptive signal processing, we can establish links between various known algorithms, and, so far, it has led to various novel algorithms for
 - robust BSS real-time system
 - robust TDOA estimation for localization of multiple sources
 - dereverberation without artifacts
 - ▷ improved supervised adaptive filtering, e.g., for acoustic echo cancellation