Multiple Kernel Learning
(MKL)



Motivating example

Multi-label image categorization

« given: a set of images

Goal: assign novel images to correct category

« Specific characteristic of the application: images can be described by

various groups of features: colors, textures, shape information, etc.
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Formal problem setting

Classification
here: categorization of novel images.

Given: data/label pairs (z:,y:) € X x Y and multiple feature maps,

N i = - B A D

each giving rise to a kernelk;, j=1,....m

Example (image classification):
Color-kernel, texture-kernel, shape-kernel
(in this example, x has a block structure)

Goal: - learning a classification model f: X — Y = {0,1}
« and an optimal kernel mixing K = Z?"zl B;K;, B=>0



What is the optimal kernel mixture?

We focus on linear kernel mixtures K = Z;”’:l B3;K; and SVMs.

Heuristic 1. use a single kernel

which is optimal in model selection (e.g. cross-validation)
Disadvantage:

weight

useful information discarded.

Heuristic 2: the uniform kernel mixture 51 = - - -
(“average kernel’)

05
Disadvantage:

_/8m_

12345678910
kernel no.

arbritrarv choice - irrelevant kernels considered.

12345678910




What is the optimal kernel mixture?

Heuristic 3: Brute-Force: try out all possible mixtures (e.g. grid
search)

Infeasible: computationally too demanding (if #kernels large).

Can we do better?

=>» Truly integrate feature/kernel selection into the learning
machine, e.g., Support Vector Machine (SVM)

(i.e., really learning the optimal weights!)



Problem formalization

Problem setting:
Optimally we would like to minimize the expected loss
E(zy)~p [(l(fK(iL')a y)}
with respect to the optimal kernel K = Z B;K;

where fx(x) = (w,¢x(x)) and ¢k is the feature map corresponding to K

Unfortunately, the underlying probability distribution is unknown
=> i.e., N0 access to the expected risk

Remedy: instead minimize empirical risk

E[0(@).)] = 23 [a(x e )]
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Problem relaxation

Key observation:
empirical risk is upper bounded by SVM objective:

Bl0t@)0)] = 5 32 [xte.0] < St + 53 [0(fste, )

1=1
. 7

SVM(K,W)

MKL idea:
= minimize SVM objective also over the kernel mixing S:

mm SVM ZBJKJ,UJ

Wait a minute....

[Lanckriet et al., 2004]
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Mini-review SVMs

SVM: |
maximum margin (wx> +bh=+p
classifier '
(w,x) +b=0
<W?X> T b= —p
max - p st yillw.x;) +0) 2 p.  |lwl=1

margin data fitting normalization



Let's jump back to the previous slide: P o b | em rel aX at| on

Key observation:
empirical risk is upper bounded by SVM objective:

(@] = 23 [wv)] < S + Z[ (U(fre(a),vs)

1=1

=)

A\ >

SVM(K,W)

MKL idea:
= minimize SVM objective instead:

[Lanckriet et al., 2004]
mm SVM ZB]KJ,w
Problem:

Overfits! =>» need regularizer on 3
(for the same reason that we need one on w )



MKL overfitting issue

Example: consider MKL problem

mip %kug 2 znj (U(fx (@), 0:)

n
P 1=1

s.t. K = Z/BjKj , fK(w) = <wa¢K($)>
j=1
and the special case: m=1, i.e., K=,K;

Then, we can decrease the objective by transferring weight from w to to 3,

=» Would lead to an unbounded, i.e., infinite 3,
= We do need regularization on 3
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Classical MKL approach

= Impose a 1-norm constraint on 8

SVM objective

Classical MKL problem: [Lanckrietetal.,zoV
MKL 1-norm constraint
C ] —

min w3+ = > | (@), v0)] 7

1=1

st fx(z) = (w,0x(x)), > BiK; B>0,|BlL=1
j=1

N >4

Y

MKL constraints

= (; = 0 for mosti: classical MKL 1

0.8

finds a sparse combination of kernels: 5os

204

0.2
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Why 1-norm yields sparsity

lllustration: Level sets of a quadratic function (e.g., SVM)

intersecting with an 1-norm equality constraint

—IIxl,=1

\ A Y A Y
\ .
'Y T | =—=quatric
A Y

Optimal solution x is attained when the functions “hit”
= In the above example, x=(1,0)

=» thus x is sparse (means: “x has some zero entries”)
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Sparsity leads to MKL failing frequently

Results of a toy experiment (described later):

0.25¢
1-norm MKL
—— SVM (uniform)
02r - o Bayes error
5 0.15 \
© 1
I
2 01 1
0.05r ~
0 ) ) . | 1 Il
0 44 64 82 92 o8

sparsity(w) = fraction of noise kernels [in %]

Reason: kernels often encode complementary properties of the data,
In contrast to redundant ones



Geometry of the L -norm

lllustration: Comparison of the level sets of a quadratic function (SVM)

intersecting a 1-norm (left) and a 2-norm constraint (right)

— |IxI1,=1 —[IxI,=1

quatric quatric

L.

Optimal solution is attained when the functions “hit”
=>» Leads to sparse (left) or non-sparse solutions (right)
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,Desparsification” of MKL

= take a general p>1-norm constraint ||8|lp <1

Instead of the sparsity-inducing 1-norm constraint

Note: the p-norm is defined as []l, = ¢/22; |5;1"

= Exemplary kernel mixtures output by MKL.:

1-norm 2-norm 0-NOrm
1 1 1 1 1 T T

0.8 108 108

-—

L
5,06 {08 {08

2 o4 104 104
0.2 H 102 102
0 o |
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kernel no.

=» Contains the important special cases classical MKL (p=1) and
uniform-kernel SVM (p = 00)
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So-called »Lp-norm multiple kernel learning*

We finally obtain:

L,-norm MKL optimization problem: SVM objective
/ MKL p-norm constraint
C 1 —
: 2
c LS [0t
min o flwll; + ;:1: [( (fx (), i) j

st fr(z) = (w,¢x(x)), K= B;K; B>0,[Bl,<1
j=1

A

7
"

MKL constraints

=> yields non-sparse 3 >0 ‘

0.4
0.2

2345678 s8101112 [KlOft et al., 2009/2011]



MKL optimization algorithm

L,-norm MKL Optimization Problem
. C 1 &
min —[wl3 + =37 | ((Fx (@), v0)]

1=1

st. K=Y BiK;, 8>0,8],<1

j=1
Alternating optimization:
repeat

w-step: consider B as constant and optimize with respect to w

( boils down to solving an SVM )

B-step: consider w as constant and optimize witl2'1 respect to B

2w ][ PTH )

( Can be done analytically: 37 =
J P 2p_
until converged \/lelwz||P+1

proof is left as an excercise at the acutal worksheet
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Experiment 1. Toy experiment

Data set S

« sampled binary labeled data . '|_ .

« from two isotrop gaussian distributions ° ik . : ;:Liﬁ?%
with opposing means 11 and o = —puq . LT

* alignment of mean vectors wgayes = 41 — U2

controls feature importance:

_ _ feature

- Generated 6 data scenarios with importance i
varying alignments of mean vectors feature no.
Experimental setup
« 50-dimensional data; one feature per kernel ; disjoint
« randomly drawn distinct training, tuning, and test sets (n=50/5000/10000)

« 250 repetitions, model selection
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Experiment 1 (Toy): Empirical results

Scenarios: Test error:
- 0.251
Scatter plot of Bayes-w r——
—— SVM (uniform)
Scenario no.1 Scenariono.2  Scenario no.3 o2t e Bayes error
1 2r
2-norm MKL
1
0.5
I _—_—
o % 50 100 o 1
% ! Scenario no.4 Scenario no.6 Scenario no.6 ﬁ 0.1
£ B 5
S 05
o
£ I
0 50 100 0.05¢
feature/kernel no.
0 1 1 1 1 1 1
0 44 64 82 92 98

sparsity(w) = fraction of noise kernels [in %]

¢5 -MKL (blue line) achieves low test errors for most levels of redundancy.

l2-MKL is outperforms 1 -MKL in almost all scenarios
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Experiment 2:
Multi-label image categorization

[Binder et al.]
Data set
« VOC 2008 challenge data set:
— 8780 images

— 20 categories (aeroplane, bird, dog, ...).

Feature extraction
« employed 12 domain-specific kernels (variation: 30 kernels)
— based on several combination of basic features:
e.g. histogram of visual words, color sets, pyramid level tilings
« all kernels are normalized.

Experimental setup

 train a binary model for each category (one-vs.-rest)
« randomly drawn distinct training, tuning, and test sets
« 10 repetitions, model selection.
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Image categorization experiment:
empirical results (AP)

aeroplane bicycle bird boat bottle bus car
1-norm 40.8+0.9 § 66.9+6.8 364+6.6 44.1+£57 56.8+£5.0 19.24+3.8 393x106 49.0+£2.8
oc-norm || 40.8+1.0 | 66.4+£6.6  39.1£5.9 43.34£5.8  57.5£5.0 18.443.6  42.349.1 489433
p-single 42.3+£0.9 | 67.1+6.3  40.7+6.6 44.7+£54  57.8+54 19.54+3.6 41L.7+9.5 50.3t34
I p-joint 42.6:£0.7 § 67.61£6.0 41.6L£6.8 453£5.7  58.4L5.6 19.44+3.8 445499  50.6L2.9
p selected 1.1562 1.1250 1.2500 1.2500 1.2500 2.0000 1.2500
cat chair COw diningtable dog horse motorbike
1-norm 47.7+£3.8 44.1+£49 10.8£35  27.1£7.0 3M4+44 396458 41.7145
OC-norm 46.1£3.2 43.0+47 8.24+2.9 29.5+9.1 33.24£2.7 425465 428429
p-single 48.9+3.7 449438 10.31+31  30.1%6.2 34034 42.0£6.6  44.7L4.2
p-joint 49.61+3.0  45.3+3.9  9.8+L28 J0.7+8.3 34.0+3.8 43.2+7.1 44.3L3.5
p selected 1.1250 1.0312 1.09338 1.3125 1.3125 1.3750 1.2500
person pottedplant sheep sofa train tvmonitor
1-norm 84.1£1.3 14745  26.3£7.7 33.0£7.2 50.9£9.8  50.8£5.5
SC-Norm 83.9+1.2  15.5+4.3 22.9+7.0 31.3+6.5 50.94+9.2  S5L0L5.7
p-single 84.5+1.2  16.1+4.7 27.5+£7.6 339469  53.7199 529457
p-joint 84.5+1.3  157£5.0 27.6£7.5 34.0£8.5 54.1£10.1 52,2452
p selected 1.1250 1.2500 1.0312 1.3125 1.2500 1.1250

p-single = p optimized class-wise
p-joint = one joint p for all classes

t»,-MKL outperforms ¢;-MKL and the uniform mixture (£~ -norm MKL)

t,-MKL best prediction model for all classes
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Conclusion

Multiple kernel learning
simultaneously learning a model and kernel weightings
incorporate optimization over the weights into the (SVM) optimization problem
use p-norm regularizer to avoid overfitting
1-norm yields sparsity, p>1 yields non-sparsity
classical MKL uses 1-norm

empirically, p-norm MKL often better than classical 1-norm MKL

Free implementation...:

http://www.shogun-toolbox.org/
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