Multiple Kernel Learning (*MKL*)

Lecture

Marius Kloft Klaus-Robert Müller

Motivating example

Multi-label image categorization

• given: a set of images

Goal: assign novel images to correct category

• Specific characteristic of the application: images can be described by various groups of features: colors, textures, shape information, etc.

Formal problem setting

Classification

here: categorization of novel images.

Given: data/label pairs $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$ and multiple feature maps, each giving rise to a kernel k_j , j = 1, ..., m

Example (image classification): Color-kernel, texture-kernel, shape-kernel (in this example, x has a block structure)

- **Goal:** learning a classification model $f : \mathcal{X} \to \mathcal{Y} \stackrel{\text{e.g.}}{=} \{0, 1\}$
 - and an optimal kernel mixing $K = \sum_{j=1}^{m} \beta_j K_j$, $\beta \ge 0$

What is the optimal kernel mixture?

We focus on linear kernel mixtures $K = \sum_{j=1}^{m} \beta_j K_j$ and SVMs.

Heuristic 2: the uniform kernel mixture $\beta_1 = \cdots = \beta_m = \frac{1}{m}$ ("average kernel") Disadvantage: arbritrary choice \rightarrow irrelevant kernels considered.

Heuristic 3: Brute-Force: try out all possible mixtures (e.g. grid search)

Infeasible: computationally too demanding (if #kernels large).

Can we do better?

Truly integrate feature/kernel selection into the learning machine, e.g., Support Vector Machine (SVM) (i.e., really learning the optimal weights!)

Problem setting:

Optimally we would like to minimize the expected loss $E_{(x,y)\sim P}\left[\left(l\left(f_K(x),y\right)\right]\right]$ with respect to the optimal kernel $K = \sum_j \beta_j K_j$ where $f_K(x) = \langle w, \phi_K(x) \rangle$ and ϕ_K is the feature map corresponding to K

Unfortunately, the underlying probability distribution is unknown

 \rightarrow i.e., no access to the expected risk

Remedy: instead minimize *empirical* risk

$$\widehat{E}\left[\left(l\left(f_K(x), y\right)\right] = \frac{1}{n} \sum_{i=1}^n \left[\left(l\left(f_K(x_i), y_i\right)\right)\right]$$

Problem relaxation

Key observation:

empirical risk is upper bounded by SVM objective:

$$\widehat{E}\Big[(l\big(f_{K}(x),y\big)\Big] = \frac{1}{n} \sum_{i=1}^{n} \Big[(l\big(f_{K}(x_{i}),y_{i}\big)\Big] \le \underbrace{\frac{C}{2} \|w\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \Big[(l\big(f_{K}(x_{i}),y_{i}\big)\Big]}_{\text{SVM}(K,w)}$$

MKL idea:

→ minimize SVM objective also over the kernel mixing β : min SVM($\sum \beta_i K_i, w$)

$$\min_{w,\boldsymbol{\beta}} \quad \mathrm{SVM}\big(\sum_{j} \beta_j K_j, w\big)$$

Wait a minute....

[Lanckriet et al., 2004]

Mini-review SVMs

Key observation:

empirical risk is upper bounded by SVM objective:

$$\widehat{E}\Big[(l\big(f_{K}(x),y\big)\Big] = \frac{1}{n} \sum_{i=1}^{n} \Big[(l\big(f_{K}(x_{i}),y_{i}\big)\Big] \le \underbrace{\frac{C}{2} \|w\|_{2}^{2} + \frac{1}{n} \sum_{i=1}^{n} \Big[(l\big(f_{K}(x_{i}),y_{i}\big)\Big]}_{\text{SVM}(K,w)}$$

MKL idea:

→ minimize SVM objective instead:

$$\min_{w,\boldsymbol{\beta}} \quad \mathrm{SVM}\big(\sum_{j} \beta_j K_j, w\big)$$

[Lanckriet et al., 2004]

Problem:

Overfits! \rightarrow need regularizer on β (for the same reason that we need one on **w**)

Example: consider MKL problem

$$\min_{w,\beta} \quad \frac{C}{2} \|w\|_2^2 + \frac{1}{n} \sum_{i=1}^n \left[(l(f_K(x_i), y_i)) \right]$$

s.t.
$$K = \sum_{j=1}^m \beta_j K_j, \quad f_K(x) = \langle w, \phi_K(x) \rangle$$

and the special case: m=1, i.e., $K=\beta_1K_1$

Then, we can decrease the objective by transferring weight from w to to β_1

- → Would lead to an unbounded, i.e., infinite β_1
- **\rightarrow** We do need regularization on β

Classical MKL approach

→ Impose a 1-norm constraint on β

0.2

1 2 3 4 5 6 7 8 9 10 11 12

kernel no.

Why 1-norm yields sparsity

Illustration: Level sets of a quadratic function (e.g., SVM) intersecting with an 1-norm equality constraint

Optimal solution x is attained when the functions "hit"

- → In the above example, x=(1,0)
- → thus x is sparse (means: "x has some zero entries")

Sparsity leads to MKL failing frequently

Results of a toy experiment (described later):

Reason: kernels often encode complementary properties of the data, in contrast to redundant ones

Geometry of the L_p-norm

Illustration: Comparison of the level sets of a quadratic function (SVM) intersecting a 1-norm (*left*) and a 2-norm constraint (*right*)

Optimal solution is attained when the functions "hit"
→ Leads to sparse (*left*) or non-sparse solutions (*right*)

"Desparsification" of MKL

→ take a general p>1-norm constraint $||\beta||_p \le 1$ instead of the sparsity-inducing 1-norm constraint

Note: the p-norm is defined as $||\beta||_p = \sqrt[p]{\sum_j |\beta_j|^p}$

→ Contains the important special cases *classical MKL (p=1)* and *uniform-kernel SVM* $(p = \infty)$

➔ Exemplary kernel mixtures output by MKL:

So-called "L_p-norm multiple kernel learning"

We finally obtain:

MKL constraints

 \rightarrow yields non-sparse $\beta > 0$

[Kloft et al., 2009/2011]

MKL optimization algorithm

L_p-norm MKL Optimization Problem

$$\min_{w,\boldsymbol{\beta}} \frac{C}{2} \|w\|_2^2 + \frac{1}{n} \sum_{i=1}^n \left[\left(l\left(f_K(x_i), y_i\right) \right] \right]$$

s.t. $K = \sum_{j=1}^m \beta_j K_j, \quad \boldsymbol{\beta} \ge \mathbf{0}, \ ||\boldsymbol{\beta}||_p \le 1$

Alternating optimization:

repeat

w-step: consider β as constant and optimize with respect to w (boils down to solving an SVM)

β-step: consider w as constant and optimize with respect to β (Can be done analytically: $\beta_j^* = \frac{\|w_j\|^{\frac{2}{p+1}}}{\sqrt[p]{\sum_l \|w_l\|^{\frac{2p}{p+1}}}}$) until converged

proof is left as an excercise at the acutal worksheet

Experiment 1: Toy experiment

Data set

- sampled binary labeled data
- from two isotrop gaussian distributions with opposing means μ_1 and $\mu_2 = -\mu_1$
- alignment of mean vectors $w_{\text{Bayes}} = \mu_1 \mu_2$ controls feature importance:
- Generated 6 data scenarios with varying alignments of mean vectors

Experimental setup

- 50-dimensional data; one feature per kernel; disjoint
- randomly drawn distinct training, tuning, and test sets (n=50/5000/10000)
- 250 repetitions, model selection

Experiment 1 (Toy): Empirical results

Scenarios:

Test error:

 ℓ_2 -MKL (blue line) achieves low test errors for most levels of redundancy.

 ℓ_2 -MKL is outperforms ℓ_1 -MKL in almost all scenarios

Experiment 2: Multi-label image categorization

[Binder et al.]

doq

bird

Data set

- VOC 2008 challenge data set:
 - 8780 images
 - 20 categories (aeroplane, bird, dog, ...).

Feature extraction

- employed 12 domain-specific kernels (variation: 30 kernels)
 - based on several combination of basic features:
 - e.g. histogram of visual words, color sets, pyramid level tilings
- all kernels are normalized.

Experimental setup

- train a binary model for each category (one-vs.-rest)
- randomly drawn distinct training, tuning, and test sets
- 10 repetitions, model selection.

Image categorization experiment: empirical results (AP)

	average	aeroplane	bicycle	bird	boat	bottle	bus	car
1-norm	40.8±0.9	66.9±6.8	36.4 ± 6.6	44.1 ± 5.7	56.8 ± 5.0	19.2 ± 3.8	39.3±10.6	49.0 ± 2.8
∞ -norm	40.8 ± 1.0	66.4±6.6	39.1 ± 5.9	43.3 ± 5.8	57.5 ± 5.0	18.4 ± 3.6	42.3±9.1	48.9 ± 3.3
<i>p</i> -single	42.3±0.9	67.1±6.3	40.7 ± 6.6	44.7 ± 5.4	57.8 ± 5.4	19.5±3.6	41.7±9.5	50.3 ± 3.4
p-joint	42.6 ± 0.7	67.6±6.0	$41.6 {\pm} 6.8$	45.3 ± 5.7	$58.4 {\pm} 5.6$	19.4±3.8	44.5±9.9	50.6 ± 2.9
p selected		1.1562	1.1250	1.2500	1.2500	1.2500	2.0000	1.2500
		cat	chair	COW	diningtable	dog	horse	motorbike
1-norm		47.7±3.8	44.1±4.9	10.8 ± 3.5	27.1±7.0	34.4±4.4	39.6±5.8	41.7 ± 4.5
∞ -norm		46.1 ± 3.2	43.0 ± 4.7	$8.2{\pm}2.9$	29.5 ± 9.1	33.2 ± 2.7	42.5 ± 6.5	42.8 ± 2.9
p-single		48.9±3.7	44.9 ± 3.8	10.3 ± 3.1	30.1 ± 6.2	34.0 ± 3.4	42.0 ± 6.6	44.7 ± 4.2
p-joint		49.6±3.0	45.3±3.9	$9.8 {\pm} 2.8$	30.7 ± 8.3	34.0 ± 3.8	43.2 ± 7.1	44.3±3.5
p selected		1.1250	1.0312	1.0938	1.3125	1.3125	1.3750	1.2500
		person	pottedplant	sheep	sofa	train	tvmonitor	
1-norm		84.1±1.3	14.7 ± 4.5	26.3 ± 7.7	33.0±7.2	50.9 ± 9.8	50.8 ± 5.5	
∞ -norm		83.9±1.2	15.5 ± 4.3	22.9 ± 7.0	31.3 ± 6.5	50.9 ± 9.2	$51.0 {\pm} 5.7$	
p-single		84.5±1.2	16.1 ± 4.7	27.5 ± 7.6	33.9 ± 6.9	53.7±9.9	52.9 ± 5.7	
p-joint		84.5±1.3	$15.7 {\pm} 5.0$	27.6 ± 7.5	34.0 ± 8.5	54.1 ± 10.1	52.2 ± 5.2	
p selected		1.1250	1.2500	1.0312	1.3125	1.2500	1.1250	

p-single = *p* optimized class-wise *p*-joint = one joint *p* for all classes

 ℓ_p -MKL outperforms ℓ_1 -MKL and the uniform mixture (ℓ_{∞} -norm MKL) ℓ_p -MKL best prediction model for **all** classes

Conclusion

Multiple kernel learning

simultaneously learning a model and kernel weightings

incorporate optimization over the weights into the (SVM) optimization problem

use p-norm regularizer to avoid overfitting

1-norm yields sparsity, p>1 yields non-sparsity

classical MKL uses 1-norm

empirically, p-norm MKL often better than classical 1-norm MKL

Free implementation...:

http://www.shogun-toolbox.org/

References

- Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.-R., and Zien, A.: Efficient and accurate lp-norm multiple kernel learning. In: Advances in Neural Information Processing Systems, 2009.
- Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Müller, K.-R., and Zien, A.: Ip-norm multiple kernel learning. In: *JMLR*, 2011.
- Lanckriet, G., Christianini, N., Bartlett, P., El Ghaoui, L., and Jordan, M.: Learning the kernel matrix with demidefinite programming. In: *Journal of Machine Learning Research*, 5(Jan):27-72, 2004.
- Nakajima, S., Binder, A., Müller, C., Wojcikiewicz, S., Kloft, M., Brefeld, U., Müller, K.-R., and Kawanabe, M.: Classifying visual objects with multiple kernels. In: *IBIS* 2009.
- Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B.: Large scale multiple kernel learning. In: *Journal of Machine Learning Research*, 7(Jul):1531-1565, 2006.