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Multi-label image categorization

• given: a set of images

Goal: assign novel images to correct category

• Specific characteristic of the application:  images can be described by 

various groups of features: colors, textures, shape information, etc.

Motivating example

2



Formal problem setting

Classification

here: categorization of novel images.

Given:  data/label pairs                            and multiple feature maps, 

each giving rise to a kernel

Goal: •  learning a classification model 

•  and an optimal kernel mixing 

Example (image classification):

Color-kernel,  texture-kernel, shape-kernel

(in this example, x has a block structure)



We focus on linear kernel mixtures                              and SVMs.

Heuristic 1:  use a single kernel

which is optimal in model selection (e.g. cross-validation)

Disadvantage:  

useful information discarded.

Heuristic 2:  the uniform kernel mixture

(“average kernel”)

Disadvantage:  

arbritrary choice   irrelevant kernels considered.

What is the optimal kernel mixture?



Heuristic 3:  Brute-Force:  try out all possible mixtures (e.g. grid 

search)

Infeasible: computationally  too demanding  (if #kernels large).

Can we do better?

 Truly integrate feature/kernel selection into the learning 

machine, e.g., Support Vector Machine (SVM)

(i.e., really learning the optimal weights! )

What is the optimal kernel mixture?



Problem formalization

Problem setting:

Optimally we would like to minimize the expected loss

with respect to the optimal kernel 

where  and         is the feature map corresponding to K

Unfortunately, the underlying probability distribution is unknown

 i.e., no access to the expected risk

Remedy: instead minimize empirical risk
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Problem relaxation

Key observation:

empirical risk is upper bounded by SVM objective:

MKL idea:

 minimize SVM objective also over the kernel mixing β:

Wait a minute….
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[Lanckriet et al., 2004]
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Mini-review SVMs



Let‘s jump back to the previous slide: Problem relaxation

Key observation:

empirical risk is upper bounded by SVM objective:

MKL idea:

 minimize SVM objective instead:

Problem:

Overfits!    need regularizer on β

(for the same reason that we need one on w )
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[Lanckriet et al., 2004]



Example:  consider MKL problem

and the special case: m=1,  i.e.,  K=β1K1

Then, we can decrease the objective by transferring weight from w to to β1

 Would lead to an unbounded, i.e., infinite β1

 We do need regularization on β

MKL overfitting issue
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Classical MKL approach

 Impose a 1-norm constraint on β

Classical  MKL problem:

 for most i:  classical MKL 

finds a sparse combination of kernels:
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[Lanckriet et al., 2004]

MKL 1-norm constraint

SVM objective



Why 1-norm yields sparsity

Illustration: Level sets of a quadratic function  (e.g., SVM) 

intersecting with an 1-norm equality constraint 

Optimal solution x is attained when the functions “hit”

 In the above example, x=(1,0)

 thus x is sparse (means: “x has some zero entries”) 12



Results of a toy experiment (described later):

Reason: kernels often encode complementary properties of the data, 

in contrast to redundant ones

Sparsity leads to MKL failing frequently
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Geometry of the Lp-norm

Illustration: Comparison of the level sets of a quadratic function (SVM) 

intersecting a 1-norm (left)  and a  2-norm constraint (right)

Optimal solution is attained when the functions “hit”

 Leads to sparse (left) or non-sparse solutions (right)
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„Desparsification“ of MKL

 take a general p>1-norm constraint 

instead of the sparsity-inducing 1-norm constraint

Note:  the p-norm is defined as

 Exemplary kernel mixtures output by MKL:

 Contains the important special cases classical MKL (p=1) and          

uniform-kernel SVM
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So-called „Lp-norm multiple kernel learning“

We finally obtain:

Lp-norm  MKL optimization problem:

 yields non-sparse 

[Kloft et al., 2009/2011]

MKL p-norm constraint

SVM objective



Lp-norm MKL Optimization Problem

Alternating optimization:

repeat

w-step: consider β as constant and optimize with respect to w

( boils down to solving an SVM )

β-step: consider w  as constant and optimize with respect to β

( Can be done analytically:   )

until converged

MKL optimization algorithm
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proof is left as an excercise at the acutal worksheet



Data set

• sampled binary labeled data

• from two isotrop gaussian distributions

with opposing means

• alignment of mean vectors 

controls feature importance:    

• Generated 6 data scenarios with 

varying alignments of mean vectors

Experimental setup

• 50-dimensional data;  one feature per kernel ;  disjoint

• randomly drawn distinct training, tuning, and test sets  (n=50/5000/10000)

• 250 repetitions, model selection

Experiment 1:   Toy experiment
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Experiment 1 (Toy):  Empirical results

Scenarios: Test error:

-MKL (blue line) achieves low test errors for most levels of redundancy.

-MKL is outperforms     -MKL in almost all scenarios
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Scatter plot of Bayes-w



Experiment 2:  

Multi-label image categorization

Data set

• VOC 2008 challenge data set:   

– 8780 images

– 20 categories (aeroplane, bird, dog, …).

Feature extraction

• employed 12 domain-specific kernels   (variation: 30 kernels)

– based on several combination of basic features:  

e.g. histogram of visual words, color sets, pyramid level tilings

• all kernels are normalized.

Experimental setup

• train a binary model for each category  (one-vs.-rest)

• randomly drawn distinct training, tuning, and test sets

• 10 repetitions, model selection.
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bird dog

[Binder et al.]



Image categorization experiment:

empirical results (AP)
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-MKL outperforms -MKL and the uniform mixture (     -norm MKL)

-MKL best prediction model for all classes

p-single =  p optimized class-wise
p-joint =  one joint p for all classes



Conclusion
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Multiple kernel learning

simultaneously learning a model and kernel weightings

incorporate optimization over the weights into the (SVM) optimization problem

use p-norm regularizer to avoid overfitting

1-norm yields sparsity,  p>1 yields non-sparsity

classical MKL uses 1-norm

empirically,  p-norm MKL often better than classical 1-norm MKL

Free implementation…:

http://www.shogun-toolbox.org/
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