
Review: Kernels Kernels for Strings Kernels for Trees

Kernel Functions
for Structured Data

Dr. Konrad Rieck

Technische Universität Berlin

May 23, 2011

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees

Outline

Brief Review: Kernels
Definition and Properties

Kernels for Strings
Generic String Kernel
Bag-of-words, N-grams and Substrings
Efficient Implementation

Kernels for Trees
Parse Tree Kernel
Efficient Implementation

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees

Structured Data

Structured data ubiquituous in applied sciences
I Bioinfomatics

e.g. DNA and protein sequences
I Natural language processing

e.g. text documents and parse trees
I Computer security

e.g. network traffic and program behavior
I Chemoinformatics

e.g. molecule structures and relations

I

fall
asleep

Structured data 6= vectors⇒ No machine learning?

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Definition and Properties

Brief review: Kernels

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Definition and Properties

What is a Kernel?

Kernel function or short kernel:

I A positive semi-definite function k : X × X → R
I Similarity measure for objects in a domain X
I Basic building block of many learning algorithms

Definition
A function k : X × X → R is a kernel iff k is symmetric and positive
semi-definite for any subset {x1, . . . , xl} ⊂ X , that is

m∑
i,j=1

cicjk(xi, xj) ≥ 0 with c1, . . . , cm ∈ R.

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Definition and Properties

Kernels and Feature Spaces

Theorem
A kernel k induces a feature map ψ : X → F to a Hilbert space,
where k equals an inner product. That is, for all x, y ∈ X

k(x, y) = 〈ψ(x), ψ(y)〉 .

Interface to geometry in feature space

I Access to inner products, vector norms and distances, e.g.,

||ψ(x)||2 =
√

k(x, x)

||ψ(x)− ψ(y)||2 =
√

k(x, x) + k(y, y)− 2k(x, y)

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Definition and Properties

Classic Kernels

Let X ⊆ Rd. Then kernels k : X × X → R are given by

I k(x, y) := 〈x, y〉 =∑d
i=1 xiyi (Linear kernel)

I k(x, y) := (〈x, y〉+ θ)p (Polynomial kernel)

I k(x, y) := exp
(
||x−y||2

γ

)
(Gaussian kernel)

I k(x, y) := tanh(〈x, y〉+ θ) (Sigmoidal kernel)

However: Domain X not restricted to vectorial data!

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Definition and Properties

Kernels and Structured Data

Kernels for structured data

I Definition of kernel k over non-vectorial domain X
I Any k valid, if symmetric and positive semi-definite
I Integration with kernel-based learning methods

Machine
learning

Feature
space

Structured
data

||φ(x) − φ(y)||x, y

k(x, z) �→ �φ(x),φ(z)�

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Kernels for Strings

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Strings

Alphabet

An alphabet A is a finite set of discrete symbols

I DNA, A = {A,C,G,T}
I Natural language text, A = {a,b,c, . . .A,B,C, . . .}

String or Sequence

A string x is concatenation of symbols from A

I An = all strings of length n

I A∗ = all strings of arbitary length
I |x| = length of a string

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Embedding Strings

Mapping of strings to a feature space

I Characterize strings using a language L ⊆ A∗.
I Feature space spanned by occurences of words w ∈ L

Feature map

A function φ : A∗ → R|L| mapping strings to R|L| given by

φ : x 7−→
(
#w(x) ·

√
Nw

)
w∈L

where #w(x) returns the occurences of w in string x and Nw is a
weighting of individual words.

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

String Kernels

Generic String Kernel

A generic string kernel k : A∗ ×A∗ → R is given by

k(x, z) = 〈φ(x), φ(z)〉 =
∑
w∈L

#w(x) ·#w(z) · Nw

Proof.
By definition k is an inner product in R|L| and thus symmetric and
positive semi-definite.

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Bag-of-Words

Characterization of strings using non-overlapping substrings

mary had a little lamb

mary a had little lamb

⤵

mary had a little lamb

mar ry_ ary y_h

⤵
..._ha

mary had a little lamb

m mar ma

⤵
... a ar ...

x =

x =

x =

Bag-of-Words Kernel

String kernel using embedding language of words with delimiters D

k(x, y) =
∑
w∈L

#w(x) ·#w(y) · Nw with L = (A \ D)∗

I Suitable for analysis of strings with known structure
e.g., natural language text, tokenized data, log files

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

N-grams

Characterization of strings using substrings of length n

mary had a little lamb

mary a had little lamb

⤵

mary had a little lamb

mar ry_ ary y_h

⤵
..._ha

mary had a little lamb

m mar ma

⤵
... a ar ...

x =

x =

x = N-gram Kernel

String kernel using embedding language of n-grams:

k(x, y) =
∑
w∈L

#w(x) ·#w(y) · Nw with L = An

I Suitable for analysis of strings with unknown structure,
e.g., DNA sequences, network attacks, binary data

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

All Substrings

Characterization of strings using all possible substrings

mary had a little lamb

mary a had little lamb

⤵

mary had a little lamb

mar ry_ ary y_h

⤵
..._ha

mary had a little lamb

m mar ma

⤵
... a ar ...

x =

x =

x =

All-Substring Kernel

String kernel using embedding language of all strings:

k(x, y) =
∑
w∈L

#w(x) ·#w(y) · Nw with L = A∗

I Suitable for analysis of generic string data
I Encoding of prior knowledge in weighting Nw

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Implementing String Kernels

Efficient computation of string kernel k(x, z)

I Feature space high-dimensional but sparsely populated
I Sufficient to consider only w with #w(x) 6= 0 and #w(z) 6= 0
I Application of special data structures for strings

Implementation strategies

1. Explicit but sparse representation of feature vectors,
−→ hash tables, tries and sorted arrays

2. Implicit representation of feature vectors,
−→ suffix trees and arrays

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Sorted Arrays

Example: strings x and y with embedding language L = A3

abbaax = baaaabz =

aa|1 ab|1 ba|1 bb|1

aa|3 ab|1 ba|1

φ(x)

φ(z)

Extracted words w stored with #w(x) in sorted array

abbaax = baaaabz =

aa|1 ab|1 ba|1 bb|1

aa|3 ab|1 ba|1

φ(x)

φ(z)

I Explicit kernel computation −→ parallel loop over arrays
I Run-time O(|x|+ |z|) for words with no or bounded overlap

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees String Kernel String & Substrings Implementation

Suffix Trees

Strings jointly stored in generalized suffix tree

SIMILARITY MEASURES FOR SEQUENTIAL DATA

a $1 $2 b

(2,4) (2,2)

a $1 b aa $2 baa$1

(1,3) (1,1) (1,1)

a $1 b$2 $2 baa$1 aab$2 $1

(0,2)

ab$2 b$2

Figure 3: Generalized suffix tree for x= abbaa$1 and y = baaaab$2. The numbers in brackets at

each inner node v correspond to phi[v,1] and phi[v,2]. Edges are shown with associated

subsequences instead of indices.

Smola (2004). At a node v the function takes length[v] and depth[v] of v as arguments to determine

how much the node and its incoming edge contribute to the similarity measure, for example, for the

embedding language of k-grams only nodes up to a path depth of k need to be considered.

Algorithm 3 GST-based sequence comparison

1: function COMPARE(X,Y :A∗) : R
2: T ← CONCAT(X,Y)

3: S ← SUFFIXTREE(T)

4: return TRAVERSE(root[S])

5: function TRAVERSE(v : Node) : R
6: s ← e

7: for c ← children[v] do

8: s ← s⊕ TRAVERSE(c) $ Depth-first traversal
9: n ← FILTER(length[v],depth[v]) $ Filter words on edge to v

10: s ← s⊕m(phi[v,1],phi[v,2])⊗ n

11: return s

Algorithm 4 shows a filter function for k-grams. The filter returns 0 for all edges that do not

correspond to a k-gram, either because they are too shallow or too deep in the GST, and returns 1 if

a k-gram terminates on the edge to a node v .

Algorithm 4 Filter function for k-grams, L = Ak

function FILTER(v : Node) : N
if depth[v]≥ k and depth[v]− length[v]< k then

return 1

return 0

35

3

abbaax =

baaaabz =

I Implicit kernel computation −→ depth first traversal
I Run-time O(|x|+ |z|) for arbitrary embedding languages

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Kernels for Trees

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Trees and Parse Trees

Tree
A tree x = (V, E, v∗) is an acyclic graph (V, E) rooted at v∗ ∈ V.

Parse tree
A tree x deriving from agrammar, such that each node v ∈ V is
associated with a production rule p(v).

Further notation
I vi = i-th child of node v ∈ V

I |v| = number of children of v ∈ V

I T = set of all possible parse trees

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Parse Trees

Tree representation of “sentences” derived from a grammar

A

B

C

lambatemary C

B

lamb

atemary

A

B

C

subtrees

...

x =

A

B C

n subtrees m subtrees

Parse tree for “mary ate lamb”
with production rules

I p1 : A −→ B

I p2 : B −→ “mary” “ate” C

I p3 : C −→ “lamb”

Common data structure in several application domains,
e.g., natural language processing, compiler design, ...

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Embedding Trees

Characterization of parse trees using contained subtrees

atemary C

B

subtrees

A

B

...

lamb

atemary

A

B

C

x =
A B C

Feature map

A function φ : T → R|T| mapping trees to R|T| given by

φ : x 7−→ (#t(x))t∈T

where #t(x) returns the occurences of subtree t in x.

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Parse Tree Kernel

Parse Tree Kernel
A tree kernel k : T × T → R is given by

k(x, z) = 〈φ(x), φ(z)〉 =
∑
t∈T

#t(x) ·#t(z)

Proof.
By definition k is an inner product in the space of all trees T and
thus symmetric and positive semi-definite.

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Counting shared subtrees

Parse tree kernel and counting

I Parse tree kernel counts the number of shared subtrees
I For each pair (v,w) determine shared subtrees at v and w.

k(x, z) =
∑
t∈T

#t(x) ·#t(z) =
∑
v∈Vx

∑
w∈Vz

c(v,w)

Counting function

I c(v,w) = 0 if p(v) 6= p(w) (different production)
I c(v,w) = 1 if |v| = |w| = 0 (leaf nodes)
I otherwise

c(v,w) =

|v|∏
i=1

(1 + c(vi,wi))

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Counting in Detail

I First base case: c(v,w) = 0 if p(v) 6= p(w)
=⇒ trivial, no match = no shared subtrees

I Second base case: c(v,w) = 1 if |v| = |w| = 0
=⇒ trivial, one leave = one subtree

I Recursion: c(v,w) =
∏|v|

i=1(1 + c(vi,wi))

A

B

C

lambatemary C

B

lamb

atemary

A

B

C

subtrees

...

x =

A

B C

n subtrees m subtrees

Count all combinations of shared
subtrees below node A

c(vA,wA) = (n + 1) · (m + 1)

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Implementation of Tree Kernels

Efficient implementation using dynamic programming

I Explicit feature vector representations intractable
I Implicit kernel computation by counting shared subtrees

A

B

C

A

B

A ...

height of
subtrees

Nodes of tree x

N
od

es
 o

f
tr

ee
 z

k(x,z)

Matrix of counts c(v,w) for all
shared subtrees sorted by height

I Count small subtrees first
I Gradually aggregate counts

Run-time O(|Vx| · |Vz|).

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

Conclusions

Kernels for strings and trees

I Effective means for learning with structured data
I Several efficient kernels and implementations

More interesting kernels for structured data

I Kernel for graphs, images, sounds, ...
I Convolution kernels, approximate kernels, ...

Interesting applications (upcoming lectures)

I “Catching hackers”: Network intrusion detection
I “Discovering genes”: Analysis of DNA sequences

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Kernels for Strings Kernels for Trees Parse Tree Kernel Implementation

References

Rieck, K., Krueger, T., Brefeld, U., and Müller, K.-R. (2010).

Approximate tree kernels.

Journal of Machine Learning Research, 11(Feb):555–580.

Rieck, K. and Laskov, P. (2008).

Linear-time computation of similarity measures for sequential data.

Journal of Machine Learning Research, 9(Jan):23–48.

Shawe-Taylor, J. and Cristianini, N. (2004).

Kernel methods for pattern analysis.

Cambridge University Press.

Konrad Rieck Kernel Functions for Structured Data

	Brief Review: Kernels
	Definition and Properties

	Kernels for Strings
	Generic String Kernel
	Bag-of-words, N-grams and Substrings
	Efficient Implementation

	Kernels for Trees
	Parse Tree Kernel
	Efficient Implementation

