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_ Review: Kerels Kemels for Strings Kemels for Trees ISR
Structured Data

Structured data ubiquituous in applied sciences
» Bioinfomatics 9
e.g. DNA and protein sequences %
» Natural language processing '
e.g. text documents and parse trees

» Computer security
e.g. network traffic and program behavior

» Chemoinformatics ‘;g%\
e.g. molecule structures and relations “Hes

Structured data # vectors = No machine learning?
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Brief review: Kernels
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What is a Kernel?

Kernel function or short kernel:
» A positive semi-definite function k : X x X — R
» Similarity measure for objects in a domain X’
» Basic building block of many learning algorithms

Definition

A function k : X x X — Ris a kernel iff k is symmetric and positive
semi-definite for any subset {x1,...,x/} C X, thatis

m
Z C,'C,‘k(X,',X,') > 0 with Cl,...,Cm €R.
i =1
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Kernels and Feature Spaces

Theorem
A kernel k induces a feature map 1 : X — F to a Hilbert space,
where k equals an inner product. That is, for all x,y € X

k(x,y) = ((x), ¥(y)) -

Interface to geometry in feature space
» Access to inner products, vector norms and distances, e.g.,

()2 = Vk(x,x)
19(x) = D(y)ll2 = Vk(x,x) + k(y,y) — 2k(x,y)
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Classic Kernels

Let X C RY. Then kernels k : X x X — R are given by

> k(x,y) = (x,y) = 27:1 xiyi  (Linear kernel)
> k(x,y) == ((x,y) +6)P (Polynomial kernel)

> k(x,y) := (” ;""2) (Gaussian kernel)

> k(x,y) :=tanh((x,y) +6) (Sigmoidal kernel)

However: Domain X not restricted to vectorial data!
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Kernels and Structured Data

Kernels for structured data
» Definition of kernel k over non-vectorial domain X

» Any k valid, if symmetric and positive semi-definite
> Integration with kernel-based learning methods

X,y [|p(x) — ()|
Structured Feature | ' Machine
data space learning

k(x,2) — (¢(x), 9(2))
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Kernels for Strings String Kernel String & Substrings Implementation

Kernels for Strings
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Kernels for Strings String Kernel String & Substrings Implementation

Strings

Alphabet
An alphabet A is a finite set of discrete symbols
» DNA A= {ACGT}
» Natural language text, A = {a,b,c,...ABC,...}

String or Sequence
A string x is concatenation of symbols from A

» A" =all strings of length n
» A* =all strings of arbitary length
» |x| =length of a string
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Kernels for Strings String Kernel String & Substrings Implementation

Embedding Strings

Mapping of strings to a feature space

» Characterize strings using a language L C A*.
» Feature space spanned by occurences of words w € L

Feature map
A function ¢ : A* — RI!l mapping strings to Rl given by

x> (#w(x)\/’\TW)

where #,,(x) returns the occurences of w in string x and N, is a
weighting of individual words.

welL
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String Kernels

Generic String Kernel
A generic string kernel k : A* x A* — R is given by

k(x,2) = (9(x), 6(2)) = D #w(x) - #u(2) - Nw

weL
Proof.
By definition k is an inner product in R and thus symmetric and
positive semi-definite. O

Konrad Rieck Kernel Functions for Structured Data



| Reviow:Kemels_Kemels for sirings _kemels for rees [ REIE
Bag-of-Words

Characterization of strings using non-overlapping substrings

X = ‘ mary had a little lamb ‘ \/

‘ mary H had H a Hli‘ttleH lamb ‘

Bag-of-Words Kernel
String kernel using embedding language of words with delimiters D

= Hulx) - #uly) N with L= (A\D)*

weL

» Suitable for analysis of strings with known structure
e.g., natural language text, tokenized data, log files

Konrad Rieck Kernel Functions for Structured Data



Kernels for Strings String Kernel ~ String & Substrings Implementation

Characterization of strings using substrings of length n

X = ‘ mary had a little lamb ‘ \/

Lomar [Lany [ [[on [ ha ]

N-gram Kernel
String kernel using embedding language of n-grams:

KOGY) =D #w(X) - #wly) - No with L= A"

weL

» Suitable for analysis of strings with unknown structure,
e.g., DNA sequences, network attacks, binary data
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All Substrings

Characterization of strings using all possible substrings

X = ‘ mary had a little lamb ‘ \/

‘ m H ma H mar “ a H ar ‘

All-Substring Kernel
String kernel using embedding language of all strings:

kOGy) =D #w(X) - #wly) - No with L= A"

weL

» Suitable for analysis of generic string data
» Encoding of prior knowledge in weighting N,
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Kernels for Strings String Kernel String & Substrings Implementation

Implementing String Kernels

Efficient computation of string kernel k(x, z)

» Feature space high-dimensional but sparsely populated
» Sufficient to consider only w with #,,(x) # 0 and #4(z) #0
» Application of special data structures for strings

Implementation strategies

1. Explicit but sparse representation of feature vectors,
— hash tables, tries and sorted arrays

2. Implicit representation of feature vectors,
— suffix trees and arrays
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Kernels for Strings String Kernel String & Substrings Implementation

Sorted Arrays

Example: strings x and y with embedding language L = A3

X:‘ abbaa ‘ zz‘baaaab‘

Extracted words w stored with #,,(x) in sorted array

B(x) >—‘ aal1 H ab1 H ba|1 H bb| 1 F
?(2) % aa|3 H ab1 H ba|1 }«

» Explicit kernel computation — parallel loop over arrays

» Run-time O(|x| + |z|) for words with no or bounded overlap
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Kernels for Strings String Kernel String & Substrings Implementation

Suffix Trees

Strings jointly stored in generalized suffix tree

a $ $2 b
(3%\/ SN \/o&»
a $|] b

aa $, baa$,
(1,3) o B\(l,l) (1,1

a” $; b$, $, baa$, aab$, $
02) b NS s
ab$, b$,
e o

» Implicit kernel computation — depth first traversal
» Run-time O(|x| + |z|) for arbitrary embedding languages
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Kernels for Trees Parse Tree Kernel Implementation

Kernels for Trees
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Trees and Parse Trees

Tree
A tree x = (V, E,v*) is an acyclic graph (V, E) rooted at v* € V.

Parse tree

A tree x deriving from agrammar, such that each node v € V'is
associated with a production rule p(v).

Further notation
» v; = i-th child of nodev € V
» |v| = number of children of v € V
» T =set of all possible parse trees
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Parse Trees

Tree representation of “sentences” derived from a grammar

Parse tree for "mary ate lamb”
with production rules

»pi:A—B
> pr: B — "mary” "ate" C
» p3: C— "lamb”

Common data structure in several application domains,
e.g., natural language processing, compiler design, ...
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Kernels for Trees Parse Tree Kernel Implementation

Embedding Trees

Characterization of parse trees using contained subtrees

subtrees

Feature map
A function ¢ : T — RI7l mapping trees to R/l given by

¢ x> (#(X))ser

where #(x) returns the occurences of subtree ¢ in x.
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Kernels for Trees Parse Tree Kernel Implementation

Parse Tree Kernel

Parse Tree Kernel
Atree kernel k : T x T — R is given by

k(x,2) = ((x), 0(2)) = > #4(x) - #4(2)

teT
Proof.
By definition k is an inner product in the space of all trees T and
thus symmetric and positive semi-definite. O
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Counting shared subtrees

Parse tree kernel and counting

» Parse tree kernel counts the number of shared subtrees
» For each pair (v, w) determine shared subtrees at v and w.

k(x,z) = Z#t #i(z) = Z Z c(v,w)

teT veVy weV,
Counting function
» c(v,w) =0 if p(v) # p(w) (different production)
» c(v,w) =1 if |v|] = |w| =0 (leaf nodes)

» otherwise
[v]

c(v,w) = [J(1 + c(vi,wi))

i=1
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Kernels for Trees Parse Tree Kernel Implementation

Counting in Detail

» First base case: c(v,w) = 0 if p(v) # p(w)
= trivial, no match = no shared subtrees

» Second base case: c(v,w) =1 if |v|=|w| =0
— trivial, one leave = one subtree

» Recursion: c(v,w) = HJ.VZ|1(1 + c(vi,w;))

(A) Count all combinations of shared
0 G subtrees below node A

n subtrees  m subtrees C(VAv WA) = (n + 1) : (m + 1)
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Kernels for Trees Parse Tree Kernel Implementation

Implementation of Tree Kernels

Efficient implementation using dynamic programming

» Explicit feature vector representations intractable
» Implicit kernel computation by counting shared subtrees

Nodes of tree x

Matrix of counts c(v, w) for all

% shared subtrees sorted by height
g - \ » Count small subtrees first
2 ) » Gradually aggregate counts
@ @ - Run-time O(|Vy| - |Vz]).
® ® grirees
©
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Conclusions

Kernels for strings and trees

» Effective means for learning with structured data
» Several efficient kernels and implementations

More interesting kernels for structured data

» Kernel for graphs, images, sounds, ...
» Convolution kernels, approximate kernels, ...

Interesting applications (upcoming lectures)

» “Catching hackers": Network intrusion detection
» “Discovering genes": Analysis of DNA sequences

Konrad Rieck Kernel Functions for Structured Data



Kernels for Trees Parse Tree Kernel Implementation
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