Kernel Functions
for Structured Data

Dr. Konrad Rieck

Technische Universitat Berlin

May 23, 2011

Konrad Rieck Kernel Functions for Structured Data

_ Review: Kerels Kemels for Strings Kemels for Trees ISR
Outline

Brief Review: Kernels
Definition and Properties

Kernels for Strings
Generic String Kernel
Bag-of-words, N-grams and Substrings
Efficient Implementation

Kernels for Trees
Parse Tree Kernel
Efficient Implementation

Konrad Rieck Kernel Functions for Structured Data

_ Review: Kerels Kemels for Strings Kemels for Trees ISR
Structured Data

Structured data ubiquituous in applied sciences
» Bioinfomatics 9
e.g. DNA and protein sequences %
» Natural language processing '
e.g. text documents and parse trees

» Computer security
e.g. network traffic and program behavior

» Chemoinformatics ‘;g%\
e.g. molecule structures and relations “Hes

Structured data # vectors = No machine learning?

Konrad Rieck Kernel Functions for Structured Data

Review: Kernels Definition and Properties

Brief review: Kernels

Konrad Rieck Kernel Functions for Structured Data

What is a Kernel?

Kernel function or short kernel:
» A positive semi-definite function k : X x X — R
» Similarity measure for objects in a domain X’
» Basic building block of many learning algorithms

Definition

A function k : X x X — Ris a kernel iff k is symmetric and positive
semi-definite for any subset {x1,...,x/} C X, thatis

m
Z C,'C,‘k(X,',X,') > 0 with Cl,...,Cm €R.
i =1

Konrad Rieck Kernel Functions for Structured Data

Kernels and Feature Spaces

Theorem
A kernel k induces a feature map 1 : X — F to a Hilbert space,
where k equals an inner product. That is, for all x,y € X

k(x,y) = ((x), ¥(y)) -

Interface to geometry in feature space
» Access to inner products, vector norms and distances, e.g.,

()2 = Vk(x,x)
19(x) = D(y)ll2 = Vk(x,x) + k(y,y) — 2k(x,y)

Konrad Rieck Kernel Functions for Structured Data

Classic Kernels

Let X C RY. Then kernels k : X x X — R are given by

> k(x,y) = (x,y) = 27:1 xiyi (Linear kernel)
> k(x,y) == ((x,y) +6)P (Polynomial kernel)

> k(x,y) := (” ;""2) (Gaussian kernel)

> k(x,y) :=tanh((x,y) +6) (Sigmoidal kernel)

However: Domain X not restricted to vectorial data!

Konrad Rieck Kernel Functions for Structured Data

_ Review: Kemels Kemels for Strings _Kemels for Trees | Definitionand Properties
Kernels and Structured Data

Kernels for structured data
» Definition of kernel k over non-vectorial domain X

» Any k valid, if symmetric and positive semi-definite
> Integration with kernel-based learning methods

X,y [|p(x) — ()|
Structured Feature | ' Machine
data space learning

k(x,2) — (¢(x), 9(2))

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel String & Substrings Implementation

Kernels for Strings

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel String & Substrings Implementation

Strings

Alphabet
An alphabet A is a finite set of discrete symbols
» DNA A= {ACGT}
» Natural language text, A = {a,b,c,...ABC,...}

String or Sequence
A string x is concatenation of symbols from A

» A" =all strings of length n
» A* =all strings of arbitary length
» |x| =length of a string

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel String & Substrings Implementation

Embedding Strings

Mapping of strings to a feature space

» Characterize strings using a language L C A*.
» Feature space spanned by occurences of words w € L

Feature map
A function ¢ : A* — RI!l mapping strings to Rl given by

x> (#w(x)\/’\TW)

where #,,(x) returns the occurences of w in string x and N, is a
weighting of individual words.

welL

Konrad Rieck Kernel Functions for Structured Data

String Kernels

Generic String Kernel
A generic string kernel k : A* x A* — R is given by

k(x,2) = (9(x), 6(2)) = D #w(x) - #u(2) - Nw

weL
Proof.
By definition k is an inner product in R and thus symmetric and
positive semi-definite. O

Konrad Rieck Kernel Functions for Structured Data

| Reviow:Kemels_Kemels for sirings _kemels for rees [REIE
Bag-of-Words

Characterization of strings using non-overlapping substrings

X = ‘ mary had a little lamb ‘ \/

‘ mary H had H a Hli‘ttleH lamb ‘

Bag-of-Words Kernel
String kernel using embedding language of words with delimiters D

= Hulx) - #uly) N with L= (A\D)*

weL

» Suitable for analysis of strings with known structure
e.g., natural language text, tokenized data, log files

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel ~ String & Substrings Implementation

Characterization of strings using substrings of length n

X = ‘ mary had a little lamb ‘ \/

Lomar [Lany [[[on [ha]

N-gram Kernel
String kernel using embedding language of n-grams:

KOGY) =D #w(X) - #wly) - No with L= A"

weL

» Suitable for analysis of strings with unknown structure,
e.g., DNA sequences, network attacks, binary data

Konrad Rieck Kernel Functions for Structured Data

All Substrings

Characterization of strings using all possible substrings

X = ‘ mary had a little lamb ‘ \/

‘ m H ma H mar “ a H ar ‘

All-Substring Kernel
String kernel using embedding language of all strings:

kOGy) =D #w(X) - #wly) - No with L= A"

weL

» Suitable for analysis of generic string data
» Encoding of prior knowledge in weighting N,

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel String & Substrings Implementation

Implementing String Kernels

Efficient computation of string kernel k(x, z)

» Feature space high-dimensional but sparsely populated
» Sufficient to consider only w with #,,(x) # 0 and #4(z) #0
» Application of special data structures for strings

Implementation strategies

1. Explicit but sparse representation of feature vectors,
— hash tables, tries and sorted arrays

2. Implicit representation of feature vectors,
— suffix trees and arrays

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel String & Substrings Implementation

Sorted Arrays

Example: strings x and y with embedding language L = A3

X:‘ abbaa ‘ zz‘baaaab‘

Extracted words w stored with #,,(x) in sorted array

B(x) >—‘ aal1 H ab1 H ba|1 H bb| 1 F
?(2) % aa|3 H ab1 H ba|1 }«

» Explicit kernel computation — parallel loop over arrays

» Run-time O(|x| + |z|) for words with no or bounded overlap

Konrad Rieck Kernel Functions for Structured Data

Kernels for Strings String Kernel String & Substrings Implementation

Suffix Trees

Strings jointly stored in generalized suffix tree

a $ $2 b
(3%\/ SN \/o&»
a $|] b

aa $, baa$,
(1,3) o B\(l,l) (1,1

a” $; b$, $, baa$, aab$, $
02) b NS s
ab$, b$,
e o

» Implicit kernel computation — depth first traversal
» Run-time O(|x| + |z|) for arbitrary embedding languages

Konrad Rieck Kernel Functions for Structured Data

Kernels for Trees Parse Tree Kernel Implementation

Kernels for Trees

Konrad Rieck Kernel Functions for Structured Data

Trees and Parse Trees

Tree
A tree x = (V, E,v*) is an acyclic graph (V, E) rooted at v* € V.

Parse tree

A tree x deriving from agrammar, such that each node v € V'is
associated with a production rule p(v).

Further notation
» v; = i-th child of nodev € V
» |v| = number of children of v € V
» T =set of all possible parse trees

Konrad Rieck Kernel Functions for Structured Data

Parse Trees

Tree representation of “sentences” derived from a grammar

Parse tree for "mary ate lamb”
with production rules

»pi:A—B
> pr: B — "mary” "ate" C
» p3: C— "lamb”

Common data structure in several application domains,
e.g., natural language processing, compiler design, ...

Konrad Rieck Kernel Functions for Structured Data

Kernels for Trees Parse Tree Kernel Implementation

Embedding Trees

Characterization of parse trees using contained subtrees

subtrees

Feature map
A function ¢ : T — RI7l mapping trees to R/l given by

¢ x> (#(X))ser

where #(x) returns the occurences of subtree ¢ in x.

Konrad Rieck Kernel Functions for Structured Data

Kernels for Trees Parse Tree Kernel Implementation

Parse Tree Kernel

Parse Tree Kernel
Atree kernel k : T x T — R is given by

k(x,2) = ((x), 0(2)) = > #4(x) - #4(2)

teT
Proof.
By definition k is an inner product in the space of all trees T and
thus symmetric and positive semi-definite. O

Konrad Rieck Kernel Functions for Structured Data

Counting shared subtrees

Parse tree kernel and counting

» Parse tree kernel counts the number of shared subtrees
» For each pair (v, w) determine shared subtrees at v and w.

k(x,z) = Z#t #i(z) = Z Z c(v,w)

teT veVy weV,
Counting function
» c(v,w) =0 if p(v) # p(w) (different production)
» c(v,w) =1 if |v|] = |w| =0 (leaf nodes)

» otherwise
[v]

c(v,w) = [J(1 + c(vi,wi))

i=1

Konrad Rieck Kernel Functions for Structured Data

Kernels for Trees Parse Tree Kernel Implementation

Counting in Detail

» First base case: c(v,w) = 0 if p(v) # p(w)
= trivial, no match = no shared subtrees

» Second base case: c(v,w) =1 if |v|=|w| =0
— trivial, one leave = one subtree

» Recursion: c(v,w) = HJ.VZ|1(1 + c(vi,w;))

(A) Count all combinations of shared
0 G subtrees below node A

n subtrees m subtrees C(VAv WA) = (n + 1) : (m + 1)

Konrad Rieck Kernel Functions for Structured Data

Kernels for Trees Parse Tree Kernel Implementation

Implementation of Tree Kernels

Efficient implementation using dynamic programming

» Explicit feature vector representations intractable
» Implicit kernel computation by counting shared subtrees

Nodes of tree x

Matrix of counts c(v, w) for all

% shared subtrees sorted by height
g - \ » Count small subtrees first
2) » Gradually aggregate counts
@ @ - Run-time O(|Vy| - |Vz]).
® ® grirees
©

Konrad Rieck Kernel Functions for Structured Data

Conclusions

Kernels for strings and trees

» Effective means for learning with structured data
» Several efficient kernels and implementations

More interesting kernels for structured data

» Kernel for graphs, images, sounds, ...
» Convolution kernels, approximate kernels, ...

Interesting applications (upcoming lectures)

» “Catching hackers": Network intrusion detection
» “Discovering genes": Analysis of DNA sequences

Konrad Rieck Kernel Functions for Structured Data

Kernels for Trees Parse Tree Kernel Implementation

References

@ Rieck, K., Krueger, T., Brefeld, U., and Miller, K.-R. (2010).
Approximate tree kernels.
Journal of Machine Learning Research, 11(Feb):555-580.

@ Rieck, K. and Laskov, P. (2008).
Linear-time computation of similarity measures for sequential data.
Journal of Machine Learning Research, 9(Jan):23-48.

@ Shawe-Taylor, J. and Cristianini, N. (2004).
Kernel methods for pattern analysis.
Cambridge University Press.

Konrad Rieck Kernel Functions for Structured Data

	Brief Review: Kernels
	Definition and Properties

	Kernels for Strings
	Generic String Kernel
	Bag-of-words, N-grams and Substrings
	Efficient Implementation

	Kernels for Trees
	Parse Tree Kernel
	Efficient Implementation

