Machine Learning for Intrusion Detection

Dr. Konrad Rieck

Technische Universität Berlin

May 30, 2011

Konrad Rieck Machine Learning for Intrusion Detection

Outline

Intrusion Detection

Security in a Nutshell Intrusion Detection Systems

Features for Intrusion Detection

Numerical Features Sequential Features Structural Features

Learning for Intrusion Detection Anomaly Detection with Hyperspheres Center of Mass & One-Class SVM

Results and Perspectives

Hackers target home users for cash 'It's war out there' says Symantec report

Zero-Day-Exploit für Internet Explorer breitet sich aus

Critical security hole in Google Chrome

Kampf gegen Botnetze weitgehend ineffizient

SPIONAGENETZ

Hacker fangen E-Mails des Dalai Lama ab

Mittwoch, 7. April 2010 03:40

Visa und MasterCard betroffen

Kommentare (0)

イロト イポト イヨト イヨト

Hacker knacken Millionen Kreditkarten-Konten

Security Today

The Internet — a risk factor?

- Omnipresence of security threats and attacks
- Severe economic damage due to Internet crime
- Emergence of new criminal "industries"

Example: Careless users may fall victim to ...

- Credit card, password and identity theft
- Remote control of personal computers
- Involvement in crime as "stepping stone"

Basics of Security

Principle goals of computer security

- 1. Protection of *confidentiality* of resources
- 2. Protection of integrity of resources
- 3. Protection of availability of resources

Example: Suppose you send an email ...

Security Measures

Preventive security: Prevention and protection

- Access control and security policies
- Encryption, authentication and verification of data
- Redundancy and distribution of data

Reactive Security: Detection and response

- Anti-virus scanners and malware removal tools
- Intrusion detection and prevention systems
- Incident management and computer forensics

Intrusion Detection Systems (IDS)

Attack

Attempt to comprise the confidentiality, integrity or availibility

Intrusion detection system (IDS)

System monitoring a stream of events for attacks

Differentiation of IDS

- Event source \longrightarrow host, network, application
- Analysis type \longrightarrow signatures, rules, machine learning
- Response type —> messaging, blocking, sandboxing

Intrusion Detection in Detail

IDS Architecture

Data acquisition

Monitoring a stream of events, e.g. packets, system calls

Feature extraction Extraction of features from events, e.g. addresses, users

Intrusion detection Analysis of extracted features: misuse or anomaly detection

Classic Intrusion Detection

Identification of attacks using signatures

- Detection patterns, e.g., strings, regular expressions, rules
- Manual development of signatures from novel attacks
- Frequent update of signatures in intrusion detection systems

Example: Network packet and matching signature

Header	Data payload		
IP TCP	GET /scripts/%cl%9c/system32/cmd.exe		
ТСР	%c1%9c	Nimda worm	

Drawbacks of Signatures

Classic intrusion detection likely to fail in the future

- Inherent delay from discovery to availability of signature
- Unable to scale with diversity and amount of attacks
- Ineffective against novel and unknown attacks

 \rightarrow Need for automatic and adaptive detection technology

Machine Learning for IDS

Application of machine learning for intrusion detection

- "Let computers learn to automatically detect attacks"
- Independent of signature generation and updates
- Complimentary to existing detection techniques

However: Not the average machine learning task

- Complex and structured data \longrightarrow *Expressive features*
- Unknown and novel attacks \longrightarrow One-class learning
- "Poisoned" training data \longrightarrow Robust learning

イロト 不得 トイヨト イヨト

Features for Intrusion Detection

Konrad Rieck Machine Learning for Intrusion Detection

イロト 不得 トイヨト イヨト

3

イロト イポト イヨト イヨト

Feature Extraction

Numerical Features

Mapping of events to a vector space using numerical features

- Definition of a set F of numerical features
- Characterize event x by measuring numerical features
- Feature space \equiv vector space of features *F*

Feature map

Function $\phi : \mathcal{X} \to \mathbb{R}^n$ mapping events \mathcal{X} to \mathbb{R}^n given by

$$x \longmapsto \begin{pmatrix} \phi_1(x) \\ \vdots \\ \phi_n(x) \end{pmatrix} \quad \begin{array}{c} \text{feature 1} \\ \vdots \\ \text{feature } n \\ \end{array}$$

Numerical Features

Example: Numerical features for network payloads

```
GET vorlesung/ids.html HTTP/1.1
Host: www.ml.tu-berlin.de
User-Agent: Feuerfuchs 3.14
Connection: keep-alive
```

Simple numerical features

 $\phi_1 =$ 113 (Length) $\phi_3 =$ 105 (# Printable) $\phi_2 =$ 4.9 (Entropy) $\phi_4 =$ 8 (# Non-printable)

Often need for normalization of features (std-mean, min-max, ...)

Sequential Features

Mapping of events to a vector space using sequential features

- Event x is sequence of symbols from *alphabet* A
- Characterize x using an embedding language $L \subseteq \mathcal{A}^*$
- Feature space spanned by frequencies of words $w \in L$

Feature map

Function $\phi: \mathcal{A}^* \to \mathbb{R}^{|\mathcal{L}|}$ mapping sequences to $\mathbb{R}^{|\mathcal{L}|}$ given by

$$x \mapsto (\#_w(x))_{w \in L}$$

where $\#_w(x)$ returns the frequency of w in sequence x.

イロト 不得 トイヨト イヨト

Sequential Features

Common embedding language: $L = A^n$ (N-grams) \longrightarrow Independent of attack and protocol characteristics

Example: 2-grams extracted from network payloads

GET vorlesung/ids.html HTTP/1.1 Host: www.ml.tu-berlin.de User-Agent: Feuerfuchs 3.14 Connection: keep-alive

$$\phi(x) = \underbrace{(\dots, 0, 0, 3, 0, 0, \dots, 0, 0, 2, 0, 0, \dots)}_{\text{Space of all 2-grams } (L = A^2)}$$

Structural Features

Mapping of events to a vector space using structural features

- Event *x* is a structure (tree,graph) of labeled nodes
- Characterize event x using contained substructures
- Binary feature space spanned by substructures $s \in S$

Feature map

Function $\phi: \mathcal{S} \to \mathbb{R}^{|\mathcal{S}|}$ mapping structures to $\mathbb{R}^{|\mathcal{S}|}$ given by

$$x \mapsto (\mathbb{I}_{s}(x))_{s \in S}$$

where $\mathbb{I}_{s}(x)$ indicates if *s* is a substructure of *x*.

イロト 不得 トイヨト イヨト

イロト イポト イヨト イヨト

Structural Features

Example: Extraction of parse trees for the HTTP protocol

イロト イポト イヨト イヨト

From Features to Kernels

The feature space dilemma: expressiveness ↔ efficiency

Concept of kernel functions

- Implicit access to feature space using kernel functions
- Efficient kernels for vectors, sequences, trees, graphs, ...

Learning for Intrusion Detection

Learning Intrusion Detection?

Learning setup

- No knowledge about future attacks Anomaly detection: Learn model of normality
- Labeling real data expensive
 Unsupervised learning: Learn model on dirty data

Underlying assumptions

- Attacks deviate from normal data
- Normal data is predominant

Anomaly Detection

Hyperspheres for Anomaly Detection

Concept: Model data using hypersphere in feature space Deviation of normality = Distance from center of hypersphere

(a) Center of Mass

(b) One-Class SVM

Center of Mass

Model normality using hypersphere at center of mass

• For $\{x_1, \ldots x_n\}$ the center of mass is

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathsf{x}_i)$$

Anomaly score a(z) of new point z

$$a(z) = ||\phi(z) - \mu||^2$$

= $k(z, z) - \frac{2}{n} \sum_{i=1}^n k(z, x_i) + \frac{1}{n^2} \sum_{i,j=1}^n k(x_i, x_j)$

One-class SVM

Model normality using hypersphere with mimimum volume

• Seek hypersphere with center μ^*

$$\min_{\substack{\mu,r,\xi}} r^2 + C \sum_{i=1}^n \xi_i$$

subject to $||\phi(x_i) - \mu||^2 \le r^2 + \xi_i$
 $\xi_i \ge 0 \text{ for } i = 1, \dots, n$

Anomaly score a(z) of new point z

$$a(z) = ||\phi(z) - \mu^*||$$

= $k(z, z) - 2\sum_{i=1}^n \alpha_i k(x_i, z) + \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j)$

One-Class SVM in Dual

Dual formulation of One-class SVM

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x_{i}) - \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$$

subject to
$$\sum_{i=1}^{n} \alpha_{i} = 1 \text{ and } 0 \le \alpha_{i} \le C \text{ for } i = 1, \dots, n$$

One-class SVM = Quadratic program with linear constraints

- Very similar to two-class formulation of SVM
- Efficient computation with standard SVM/QP solvers

Results and Perspectives

・ロト ・ 同ト ・ ヨト ・ ヨト

ROC Curves

Receiver Operating Characteristic (ROC) Curves

- Depiction of true-positive and false-positive rates
- AUC_x = Area under ROC curve with false-positive rate $\leq x$

Comparison of Features

Evaluation of features for network intrusion detection

- ▶ 10 days of network traffic for HTTP and FTP protocol
- Artificial injection of recent network attacks
- One-class SVM as anomaly detection method

	Numerical	Sequential	Structural
HTTP	0.77 ± 0.03	0.99 ± 0.00	0.87 ± 0.03
FTP	$\textbf{0.99} \pm \textbf{0.00}$	$\textbf{0.99} \pm \textbf{0.00}$	$\textbf{0.28}\pm\textbf{0.03}$

- Detection performance as AUC_{0.01} with standard error
- Sequential features provide almost perfect detection!

Comparison with signature-based IDS

Comparative evaluation with popular IDS "Snort"

- Prototype "Sandy" significantly outperforms Snort
- Detection of 80-97% attacks with >0.001% false-positives

Conclusions and Outlook

Machine learning for intrusion detection

- Intelligent detection of attacks using machine learning
- Incorporation of numerical, sequential and structural features
- Effective anomaly detection using hyperspheres

Futher applications of machine learning for security

- 1. Analysis of malicious software (Worms, Botnets, ...)
- 2. Detection of Trojan horses and their communication
- 3. Automatic generation of attack signatures

Interesting topics for bachelor, master and diploma thesis...

References

Laskov, P., Rieck, K., and Müller, K.-R. (2008).

Machine learning for intrusion detection.

In Mining Massive Data Sets for Security, pages 366–373. IOS press.

Rieck, K. (2009).

Machine Learning for Application-Layer Intrusion Detection. Lulu Enterprises, Inc (lulu.com).

Schölkopf, B. and Smola, A. (2002).

Learning with Kernels.

MIT Press, Cambridge, MA.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis.

Cambridge University Press.