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Security Today

The Internet — a risk factor?

I Omnipresence of security threats and attacks
I Severe economic damage due to Internet crime
I Emergence of new criminal “industries”

Example: Careless users may fall victim to ...

I Credit card, password and identity theft
I Remote control of personal computers
I Involvement in crime as “stepping stone”
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Basics of Security

Principle goals of computer security

1. Protection of confidentiality of resources

2. Protection of integrity of resources

3. Protection of availability of resources

Example: Suppose you send an email ...

FriendYou

1. 3.

2.
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Security Measures

Preventive security: Prevention and protection

I Access control and security policies
I Encryption, authentication and verification of data
I Redundancy and distribution of data

Reactive Security: Detection and response

I Anti-virus scanners and malware removal tools
I Intrusion detection and prevention systems
I Incident management and computer forensics
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Intrusion Detection Systems (IDS)

Attack
Attempt to comprise the confidentiality, integrity or availibility

Intrusion detection system (IDS)

System monitoring a stream of events for attacks

Differentiation of IDS

I Event source −→ host, network, application
I Analysis type −→ signatures, rules, machine learning
I Response type −→ messaging, blocking, sandboxing
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Intrusion Detection in Detail

Data acquisition

IDS Architecture

Feature extraction

Intrusion detection

I Data acquisition
Monitoring a stream of events,
e.g. packets, system calls

I Feature extraction
Extraction of features from
events, e.g. addresses, users

I Intrusion detection
Analysis of extracted features:
misuse or anomaly detection
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Classic Intrusion Detection

Identification of attacks using signatures

I Detection patterns, e.g., strings, regular expressions, rules
I Manual development of signatures from novel attacks
I Frequent update of signatures in intrusion detection systems

Example: Network packet and matching signature

Data payloadHeader

TCP ..%c1%9c.. Nimda worm

... | IP | TCP   GET /scripts/..%c1%9c../system32/cmd.exe

..%c1%9c..

Attack pattern Equivalent variants

..%255c..

..%c1%af.. ..%c0%9v..

..%252f..

..%c1%9c..

..%%35c..

...
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Drawbacks of Signatures

Classic intrusion detection likely to fail in the future

I Inherent delay from discovery to availability of signature
I Unable to scale with diversity and amount of attacks
I Ineffective against novel and unknown attacks

Data payloadHeader

TCP ..%c1%9c.. Nimda worm

... | IP | TCP   GET /scripts/..%c1%9c../system32/cmd.exe

..%c1%9c..

Attack pattern Equivalent variants

..%255c..

..%c1%af.. ..%c0%9v..

..%252f..

..%c1%9c..

..%%35c..

...

→ Need for automatic and adaptive detection technology
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Machine Learning for IDS

Application of machine learning for intrusion detection

I “Let computers learn to automatically detect attacks”
I Independent of signature generation and updates
I Complimentary to existing detection techniques

However: Not the average machine learning task

I Complex and structured data −→ Expressive features

I Unknown and novel attacks −→ One-class learning

I “Poisoned” training data −→ Robust learning
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Features for
Intrusion Detection
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Feature Extraction

Numerical features
(Vectors)

Length 14
Entropy 3,4

Alpha. 12

Punct. 1

x = GET index.html

Event

Extraction of
features

Sequential features
(Sequences)

...
GET▯
ET▯/
T▯/i
▯/in

Structural features
(Trees, graphs)

GET

index
html
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Numerical Features

Mapping of events to a vector space using numerical features

I Definition of a set F of numerical features
I Characterize event x by measuring numerical features
I Feature space ≡ vector space of features F

Feature map

Function φ : X → Rn mapping events X to Rn given by

x 7−→

φ1(x)
...

φn(x)

 feature 1
...

feature n
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Numerical Features

Example: Numerical features for network payloads

GET vorlesung/ids.html HTTP/1.1

Host: www.ml.tu-berlin.de

User-Agent: Feuerfuchs 3.14

Connection: keep-alive

Simple numerical features

φ1 = 113 (Length) φ3 = 105 (# Printable)
φ2 = 4.9 (Entropy) φ4 = 8 (# Non-printable)

Often need for normalization of features (std-mean, min-max, ...)
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Sequential Features

Mapping of events to a vector space using sequential features

I Event x is sequence of symbols from alphabet A
I Characterize x using an embedding language L ⊆ A∗
I Feature space spanned by frequencies of words w ∈ L

Feature map

Function φ : A∗ → R|L| mapping sequences to R|L| given by

x 7−→ (#w(x))w∈L

where #w(x) returns the frequency of w in sequence x.
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Sequential Features

Common embedding language: L = An (N-grams)
−→ Independent of attack and protocol characteristics

Example: 2-grams extracted from network payloads

GET vorlesung/ids.html HTTP/1.1

Host: www.ml.tu-berlin.de

User-Agent: Feuerfuchs 3.14

Connection: keep-alive

er ml

φ(x) = (. . . , 0, 0, 3, 0, 0, . . . , 0, 0, 2, 0, 0, . . .)︸ ︷︷ ︸
Space of all 2-grams (L = A2)
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Structural Features

Mapping of events to a vector space using structural features

I Event x is a structure (tree,graph) of labeled nodes
I Characterize event x using contained substructures
I Binary feature space spanned by substructures s ∈ S

Feature map

Function φ : S → R|S| mapping structures to R|S| given by

x 7−→ (Is(x))s∈S

where Is(x) indicates if s is a substructure of x.
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Structural Features

Example: Extraction of parse trees for the HTTP protocol

RQ

ME URI HDRS

GET PATH

/index.asp

PARAM . . .

KEYP VALP

q= 42

HDR . . .

KEYH VALH

Agent: Firefox

Fig. 1. Exemplary parse tree for the stateless HTTP network protocol.

2.1 Stateless Protocols

Stateless network protocols process data independently of previous transmis-
sions, such as the hyper text transfer protocol (HTTP) [4]. Internal states are
not stored and relevant information about the actual transmission needs to be
encoded in each network request. A HTTP request, for instance, must contain
the respective transmission method which defines how user-supplied data (e.g.,
URI parameters) is provided to the server, see also Figure 1.

Moreover, stateless protocols possess a variety of different grammatical sym-
bols (e.g., various HTTP headers). That is, trees, derived from a stateless proto-
col, hardly share identical labels. Thus, the specificity of nodes in a tree increases
in terms of their depth and observing equally labeled leaf nodes is rather unlikely.

2.2 Stateful Protocols

In contrast to stateless protocols, stateful protocols do maintain the actual state
of a communication, such that network requests are processed in the context
of previous transmissions. An example is the file transfer protocol (FTP) [18],
where a single FTP session may comprise storage and retrieval of multiple files.

Stateful protocols transmit network requests sequentially. Translated into
parse trees, transmissions generate identically labeled nodes in higher levels, see
Figure 2. Similar to stateless protocols, individual requests of stateful commu-
nications decompose into an operational part and a set of arguments containing
user-supplied data. However, there is only a marginal information gain contained
in the top levels of stateful protocol trees since the majority of nodes exhibit iden-
tical labelings. The relevant information in stateful transmissions is carried in
leaves and lower parts of the trees.

3 Kernels for Parse Trees

Let G be a grammar and X = (V, E, x0) a parse tree rooted at x0 ∈ V , where V
is the set of nodes and E the set of edges. We denote by ẋ = {x′ : (x, x′) ∈ E}

φ(x) = (. . . , 0, 1, 0, 0, 0, 0, 0, 0, 0, . . .)︸ ︷︷ ︸
Space of all subtrees
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From Features to Kernels

The feature space dilemma: expressiveness↔ efficiency

Concept of kernel functions

I Implicit access to feature space using kernel functions
I Efficient kernels for vectors, sequences, trees, graphs, ...

Machine 
learning

Feature 
space

Structured 
data

||φ(x) − φ(y)||x, y

k(x, y) �→ �φ(x),φ(y)�
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Learning for
Intrusion Detection
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Learning Intrusion Detection?

Learning setup

I No knowledge about future attacks
Anomaly detection: Learn model of normality

I Labeling real data expensive
Unsupervised learning: Learn model on dirty data

Underlying assumptions

I Attacks deviate from normal data
I Normal data is predominant
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Anomaly Detection

“normal” “anomalous”

... | IP | TCP   GET /scripts/..%c1%9c../system32/cmd.exe

Application payloadHeader

GET /scripts/..%%35c../system32/cmd.exe

GET /scripts/..%c0%9v../system32/cmd.exe
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Hyperspheres for Anomaly Detection

Concept: Model data using hypersphere in feature space

Deviation of normality = Distance from center of hypersphere

(a) Center of Mass (b) One-Class SVM
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Center of Mass

Model normality using hypersphere at center of mass

I For {x1, . . . xn} the center of mass is

µ =
1
n

n∑
i=1

φ(xi)

I Anomaly score a(z) of new point z

a(z) = ||φ(z)− µ||2

= k(z, z)− 2
n

n∑
i=1

k(z, xi) +
1
n2

∑
i,j=1

k(xi, xj)

µ

φ(z) φ(z)
ξi > 0

µ∗
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One-class SVM

Model normality using hypersphere with mimimum volume

I Seek hypersphere with center µ∗

min
µ,r,ξ

r2 + C
n∑

i=1

ξi

subject to ||φ(xi)− µ||2 ≤ r2 + ξi

ξi ≥ 0 for i = 1, . . . , n

I Anomaly score a(z) of new point z

a(z) = ||φ(z)− µ∗||

= k(z, z)− 2
n∑

i=1

αik(xi, z) +
n∑

i,j=1

αiαjk(xi, xj).

µ

φ(z) φ(z)
ξi > 0

µ∗

Konrad Rieck Machine Learning for Intrusion Detection



Intrusion Detection Features Learning Results Anomaly Detection Detection Methods

One-Class SVM in Dual

Dual formulation of One-class SVM

max
α

n∑
i=1

αik(xi, xi)−
n∑

i,j=1

αiαjk(xi, xj)

subject to
n∑

i=1

αi = 1 and 0 ≤ αi ≤ C for i = 1, . . . , n

One-class SVM = Quadratic program with linear constraints
I Very similar to two-class formulation of SVM
I Efficient computation with standard SVM/QP solvers
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Results and Perspectives
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ROC Curves

Receiver Operating Characteristic (ROC) Curves
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(c) Full ROC curve

0.0001 0.001 0.01
0

0.2

0.4

0.6

0.8

1

False−positive rate

T
ru

e−
po

si
tiv

e 
ra

te
(d) Bounded ROC curve

I Depiction of true-positive and false-positive rates
I AUCx = Area under ROC curve with false-positive rate ≤ x
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Comparison of Features

Evaluation of features for network intrusion detection

I 10 days of network traffic for HTTP and FTP protocol
I Artificial injection of recent network attacks
I One-class SVM as anomaly detection method

Numerical Sequential Structural
HTTP 0.77 ± 0.03 0.99 ± 0.00 0.87 ±0.03
FTP 0.99 ± 0.00 0.99 ± 0.00 0.28 ± 0.03

I Detection performance as AUC0.01 with standard error
I Sequential features provide almost perfect detection!
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Comparison with signature-based IDS

Comparative evaluation with popular IDS “Snort”
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(e) HTTP protocol
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(f) FTP protocol

I Prototype “Sandy” significantly outperforms Snort
I Detection of 80-97% attacks with >0.001% false-positives
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Conclusions and Outlook

Machine learning for intrusion detection

I Intelligent detection of attacks using machine learning
I Incorporation of numerical, sequential and structural features
I Effective anomaly detection using hyperspheres

Futher applications of machine learning for security

1. Analysis of malicious software (Worms, Botnets, ...)

2. Detection of Trojan horses and their communication

3. Automatic generation of attack signatures

Interesting topics for bachelor, master and diploma thesis...
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