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Drug Discovery Process
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1.Target Identifcation

Analyze the disease and the molecular 
mechanisms involved in order to fnd 
possible targets for drug intervention

Goal:
Find a receptor that can be blocked or
stimulated to alleviate a disease
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2.Identify Hits: (Virtual) Screening
Goal:

Find new compounds that bind to the identifed receptor

Set of Compounds Screening Hits Laboratory 
Tests Actives
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2.Identify Hits: (Virtual) Screening

Library

(millions of 2D structures)

Virtual 
Screening

Hits Laboratory 
Tests Actives

Samples

(about 2.000  samples)

Robot 
Screening

Hits Laboratory 
Tests Actives

Goal:
Find new compounds that bind to the identifed receptor



Katja Hansen Machine Learning in Chemical Research 7

3. From Actives to Candidate

First assessment of:   
bioavailability

toxicity
...

free of 
Intellectual Property

Leads

Optimization for:
target affinity
absorption
distribution
metabolism
excretion
toxicity

drug
candidate

Goal:
Optimize few compounds such that they have drug properties

Actives
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4. From Candidate to Drug

Preclinical Trials
(animal testing)

drug
candidate

Goal:
Exclude dangerous side effects and evaluate dose

Clinical Trials
(studies with patients)

new 
drug

Marketing 
authorization
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Summary Drug Discovery
 Target Identifcation

 (Virtual) Screening

 First Assessment 
 Lead Optimization

 Preclinical trials
 Clinical Trials

Compounds

2 Million

300 hits

5 leads

0.25 
candidates

0.05 
drugs

Money

400 Mil $

0 $

~
 1

0 
ye

ar
s
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Summary Drug Discovery
 Target Identifcation

 (Virtual) Screening

 First Assessment 
 Lead Optimization

 Preclinical trials
 Clinical Trials

Machine Learning ? 
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2.Identify Hits: (Virtual) Screening

Library

(millions of 2D structures)

Virtual 
Screening

Hits Laboratory 
Tests Actives

Goal:
Find new compounds that bind to the identifed receptor

Data:
● Small number of binding drugs 

known from literature
● Large libraries of unlabeled 

chemical structures 
● No negative examples

Methods:
● Semi-supervised learning
● Large-scale algorithms
● One-class detection
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3. From Actives to Candidate

First assessment of:   
bioavailability

toxicity
...

free of 
Intellectual Property

Leads

Optimization for:
target affinity
absorption
distribution
metabolism
excretion
toxicity

drug
candidateActives

Methods:
● Multivariate optimization
● Active learning
● Covariate shift problems

 (domain of applicability)
● Confdence estimation

Data:
● Many chemical properties of 

various complexity
● Size and quality of data vary 

according to property and time
● Hardly any data available in  

chemical space of interest
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Challenges for ML
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Challenges in Drug Discovery

 Find adequate description of chemical compounds

 Descriptors

Determine the reliability of individual predictions

Confdence Estimation

Understand and interpret the model

Model Interpretation
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1. Chemical Descriptors

Need to capture characteristics of molecules for 
computational analysis

Produce a vector of molecular descriptors

constitutional descriptors, 
counts

Molecular Descriptors 

structural fragments,
 fingerprints

Topology descriptors,
 graph invariants

quantum-chemical descriptors, 
surface and volume descriptors
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1. Chemical Descriptors

Need to capture characteristics of molecules for 
computational analysis

Use simplifed molecular graph and graph kernels

topo-
logical types

pharmaco-
phore

types
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2. Confdence Estimation

The model may fail due to missing data or “activity cliffs”

Need to know where the model gives reliable predictions

(domain of applicability or a confdence estimate)
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2. Confdence Estimation

Distance based
Model variance
Relevant compounds

3 approaches on confdence estimation:

Goal:
Estimate the prediction error of a single prediction
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2. Confdence Estimation

Idea:
● Identify neighboring compounds
● Use prediction error on neighborhood to estimate 

desired prediction error

Distance Based
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2. Confdence Estimation
Distance Based

Challenges:
● Optimal distance metric to determine relevant 

neighbors:
– sparse high dimensional space (curse of 

dimensionality)
– input space or feature space

● Method of estimation 
(e.g. incorporate variance, weight distances)

● Success depends on training data set
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2. Confdence Estimation
Model Variance

● For Bayesian Methods, e.g., Gaussian Process: 
Prediction is a probability distribution

●  Idea:
use predicted variance for confdence estimation

● Drawback:
variance and prediction error are different concepts
the approach does not always work well in practice 
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2. Confdence Estimation
Model Variance

● For Bayesian Methods, e.g., Gaussian Process: 

Prediction is a probability distribution

●  Idea:
use predicted variance for confi dence estimation

● Drawback:
variance and prediction error are different concepts
the approach does not always work well in practice 
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2. Confdence Estimation
Contributing Compounds

Idea:
● Explain reasoning behind single predictions to human 

experts
● Enable human experts to develop own confdence 

estimation

  →  Explain prediction by 
visualizing the most contributing training compounds
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2. Confdence Estimation
Calculate Contributing Compounds

Setting: {x1 , y1 ,x2 , y2 , , xn , yn}

xy

Given training set

Find a model to predict property     for new compound

Identify elements of training set most relevant for prediction y
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2. Confdence Estimation
Calculate Contributing Compounds

Representer Theorem: y =∑
i=1

n

i⋅k x , x i = k⋅

Example: Gaussian Process
ŷ = k⃗⋅α⃗ = k⃗ (K+σ I )−1⏟

β

y⃗

= β⃗⋅y⃗

each compound of the training 
set contributes to the prediction 

n =


∑
i=1

n

∣i∣
normalized 
weight factor

→

weighted sum of property 
values

→

→
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2. Confdence Estimation
Evaluate Contributing Compounds

Method:
Used poll to evaluate 
approach:

Participants decided 
on reliability of 
mutagenicity 
prediction

Visualization of 
relevant contributing 
compounds or 
placebos 
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2. Confdence Estimation
Evaluate Contributing Compounds

Results:

Signifcant 
improvement when 
using explanation 
compounds
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2. Confdence Estimation

Distance based
Model variance based
Contributing compounds

3 approaches on confdence estimation:

No metrics to compare 
approaches available
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3. Model Interpretation
Goal (Lead Optimization):

Change compound slightly to reach better property 
value (e.g., high binding affinity)

Idea:
Use Machine Learning to identify relevant compound 
characteristics

   →  Calculate local gradients in chemical space
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3. Model Interpretation
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3. Model Interpretation
Evaluate Local Gradients

Example: Mutagenicity of Steroids
Results:

Relevant characteristics 
for single compound 
classes are detected, 
e.g.,
Oxiranes have no 
mutagenic effect on 
steroids
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3. Model Interpretation
Calculate Locale Gradients

ŷ (x) = k⃗ (K+σ I )−1 y⃗ =∑
i=1

n

αi⋅k (x , xi)

Example: Gaussian Process with RBF kernel

∂ ŷ
∂ x

=−∑
i=1

n

αi⋅k (x , x i)
1
σ2∥x−x i∥

derivative of kernel function  

differentiate with respect to x

→

→

k (x , x i) = e
−∥x−xi∥

2

2σ2
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Further Applications
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Materials Science
Goal:

● Understand the rare events 
leading from reactant to 
product using molecular 
dynamics

● Sample along the optimal 
transition state on the 
potential energy surface

Idea:
● Treat the setting as classifcation problem (product vs. 

reactant)
● Use local gradients of the learned machine to push 

sampling towards the transition state
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Materials Science

Movie
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Summary

● Machine Learning enhances the Drug Discovery process 
and saves costs, time and laboratory experiments

● Still many challenging problems, e.g.,
● optimal compound representation
● confdence estimation
● model interpretation

● There is room for improvement and I am looking forward 
to your ideas...
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