Differences between revisions 1 and 11 (spanning 10 versions)
Revision 1 as of 2011-03-29 18:50:33
Size: 236
Editor: PaulBuenau
Comment:
Revision 11 as of 2011-04-15 15:02:24
Size: 2291
Editor: PaulBuenau
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
== Praktikum Maschinelles Lernen und Datenanalyse ==
Line 2: Line 3:
{{{#!html
<iframe src="https://www.google.com/calendar/embed?src=pd5q3lv0b7833f3lnebbmqudjc%40group.calendar.google.com&ctz=Europe/Berlin" style="border: 0" width="800" height="600" frameborder="0" scrolling="no"></iframe>
 || '''Schedule:''' || Irregular, see [[https://www.google.com/calendar/embed?src=pd5q3lv0b7833f3lnebbmqudjc%40group.calendar.google.com&ctz=Europe/Berlin|calendar]] ||
 || '''Room:''' || FR 1505 (Mondays) und FR 6043 (Wednesday) ||
 || '''Lecturer''' || Prof. Dr. Klaus-Robert Müller ||
 || '''Contact:''' || [[http://www.user.tu-berlin.de/paulbuenau/|Paul von Bünau]] ||
 || '''Module:''' || M.Sc. Module Praktikum Maschinelles Lernen und Datenanalyse ||

The aim of this lab course is to practice the process of explorative data analysis and understand the main algorithms.
The focus is on dimensionality reduction, clustering, classification and regression. For each assignment, a number
of algorithms have to be implemented (in Matlab) and analyzed in experiments on real or synthetic data. Taking the
[[Main/SS11_MatlabKurs|Matlab course]] and the [[Main/WS10_MaschinellesLernen1|Machine Learning lecture]] is highly
recommended but not a formal prerequisite.

The lab course consists of two parts: a lecture (Mondays at 10.15am), which is held only when a new assignment is handed out,
and a consultation on Wednesdays (10.15am) in all following weeks. Please have a look at the [[https://www.google.com/calendar/embed?src=pd5q3lv0b7833f3lnebbmqudjc%40group.calendar.google.com&ctz=Europe/Berlin|calendar]] for the exact schedule.

Please register in the [[http://groups.google.com/group/mikiobraun-lehre|google group]] to receive announcements
and ask questions.

More information can be found in the german [[attachment:Praktikum_ML_Info.pdf|Informationsblatt.]]

=== Schedule ===

See [[https://www.google.com/calendar/embed?src=pd5q3lv0b7833f3lnebbmqudjc%40group.calendar.google.com&ctz=Europe/Berlin|calendar]]

=== Material ===

   * [[attachment:ML_Praktikum_U01.pdf|Übungsblatt Nr. 1]] (Abgabemodalitäten werden ab dem 20.4. bekanntgegeben)
Line 6: Line 32:
}}} ==== Skript ====

[[attachment:guide.pdf|Lecture notes (as of April 2010)]]

==== Ergebnisse ====

|| '''Matrikelnr.''' || '''Blatt 1''' || '''Blatt 2''' || '''Blatt 3''' || '''Blatt 4''' || '''Blatt 5''' ||

=== Technik ===

Die Server {{{ {bolero,pepino,fiesta}.cs.tu-berlin.de }}} sind von aussen per ssh zu erreichen.

Praktikum Maschinelles Lernen und Datenanalyse

  • Schedule:

    Irregular, see calendar

    Room:

    FR 1505 (Mondays) und FR 6043 (Wednesday)

    Lecturer

    Prof. Dr. Klaus-Robert Müller

    Contact:

    Paul von Bünau

    Module:

    M.Sc. Module Praktikum Maschinelles Lernen und Datenanalyse

The aim of this lab course is to practice the process of explorative data analysis and understand the main algorithms. The focus is on dimensionality reduction, clustering, classification and regression. For each assignment, a number of algorithms have to be implemented (in Matlab) and analyzed in experiments on real or synthetic data. Taking the Matlab course and the Machine Learning lecture is highly recommended but not a formal prerequisite.

The lab course consists of two parts: a lecture (Mondays at 10.15am), which is held only when a new assignment is handed out, and a consultation on Wednesdays (10.15am) in all following weeks. Please have a look at the calendar for the exact schedule.

Please register in the google group to receive announcements and ask questions.

More information can be found in the german Informationsblatt.

Schedule

See calendar

Material

Skript

Lecture notes (as of April 2010)

Ergebnisse

Matrikelnr.

Blatt 1

Blatt 2

Blatt 3

Blatt 4

Blatt 5

Technik

Die Server  {bolero,pepino,fiesta}.cs.tu-berlin.de  sind von aussen per ssh zu erreichen.

IDA Wiki: Main/SS11_MLPraktikum (last edited 2011-09-07 13:01:52 by JanSaputraMueller)