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Exercise Sheet 3: Clustering

Deadline: See course calendar.

For this problem set please hand in code as well as written solutions. The code and an electronic
version of the written solutions should be submitted to PASS (see the link on the website).

Aufgaben

Teil 1: Implementation

Exercise 1 (2.5 points)

Implement K-means Clustering as a function

[ mu, r ] = kmeans(X, k, max iter, prog fun)

which, with respect to the columns of the d × n Matrix X, calculates the d × k Matrix for the k

Cluster centroids mu as well as the n-dimensional vector r of cluster membership: the i-th entry
of r should contain the index of the Clusters to which the i-th datapoint belongs.

The algorithm should terminate when the membership no longer changes or after max iter

(optional parameter with default value 100) no. of steps depending on which comes first.
The function should read out the following information after each iteration:

• The number of iterations performed so far.

• The number of cluster memberships which changed in the preceding step.

• The loss function value (see script).

The optional paramater prog fun should be a handle to a function (see the matlab function
feval) which is called after every step, to inform the user with regard to the progress of the
algorithm.

The signature is:-

prog fun(X, mu, r)

where mu are the actual cluster centroids, r cluster memberships and X are the data.

Exercise 2 (0.5 points)

Write a visualisation function for K-means clustering (see the argument prog fun) with the name
plot kmeans USPS which displays the actual centroids in a figure as a 16x16 figure (greyscale) and
waits for keyboard input. The centroids should be marked with the individual cluster indices.

Exercise 3 (2 Points)

Implement setwise optimal hierarchichal agglomerative clustering with the K-means criterion as a
function.

[ R, kmloss, mergeidx ] = kmeans agglo(X, r)

which given the columnds of the d×n Matrix X and the initial clustering solution given by the 1×n
membership vector r calculate a hierarchical clustering solution. The result should be returned in
the following format:

• R is a(k− 1) × n matrix which contains the memberships at every step - every line is thus a
clustering solution.

• kmloss is a k × 1 vector, which contains the loss function values at every step.

• mergeidx is a (k − 1) × 2 matrix, which contains the indices of the clusters together.

1



Exercise 4 (1 Point)

Implement a function which given a hierarchical clustering sets up a dendrogram plot:

agglo dendro(kmloss, mergeidx)

The parameters kmloss and mergeidx correspond to the the results of kmeans agglo. In the
script there is an example for a dendrogram plot.

Exercise 5 (3 Points)

Implement the EM algorithm for gaussian mixture models as a function:

[pi, mu, sigma] = em_mog(X, k, max_iter, init_kmeans, prog_fun)

where the parameters have the following definitions:

Output pi 1 × k-Matrix of π̂k
mu d× k-Matrix of µ̂k (Center Points)

sigma Cell-array of length k of the d× d covariance matrices Σ̂k

Input X d× n-Matrix of datapoints
k number of normally distributed components

max_iter Optional: maximal number of Iterations (default: 100)
init_kmeans Optional: Initialisation by means of K-Means Cluster solution (default: 0)

prog_fun Optional: Name or handle of the visualisations function (default: [])

The visualisation function prog fun should be called after every step to inform the user as to the
progress of the algorithm; the signature should be:

prog fun(X, mu, sigma)

where X are the data and mu sigma the actual parameters of the estimated mixture models. If
init kmeans has the value 1, then the centerpoints, covariances and mixture coefficients should
be initialised with the result of a K-means clustering.

After every step the function should return the number of the iteration and the log likelihood
per datapoint. The algorithm should terminate when the maximal number of iterations max iter

has been reached or the log likelihood doesn’t change - that is, a local maximum has been reached.

Exercise 6 (1 Point)

Write a visualisation function for the 2 dimensional version of the EM -algorithm (see argument
prog fun ) with the name plot_em2d which plots the data as well as the the covariances sigma as
ellipses and waits for keyboard input to continue. Tip: the eigenvectors of Sigma gives the primary
axes and the squareroots of the eigenvalues returns the radii.

Teil 2: Application

Please clarify your answers to the following questions with suitable plots.

Exercise 7 (4 Points)

Analyse the 5gaussians dataset with all methods für k = 2, . . . , 10 Cluster.

1. Do all methods find the 5 clusters reliably?

2. What role does the initialisation of the EM algorithm with a K-means solution play in the
number of necessary iterations and the quality of the solution?

3. What does the Dendrogramm of the hierarchical clustering look like and is it possible to
pick a suitable value of k from the Dendrogramm?
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Exercise 8 (3 Points)

Analyse the 2gaussians dataset with k-means and the EM-algorithm.

1. Which algorithm works better and why?

2. How does the solution of the EM-algorithm depend on the intialisation?

Exercise 9 (3 Points)

Use Em and K-means clustering on the USPS dataset with k = 10.

1. Which algorithm delivers better results?

2. Set up a Dendrogramm to the hierarchical clustering solution and also a plot which displays
the cluster centroids as a 16 × 16 image at every agglomarative step.
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