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Identifying temporally invariant components in complex multivariate time series is key to under-

standing the underlying dynamical system and predict its future behavior. In this Letter, we propose a

novel technique, stationary subspace analysis (SSA), that decomposes a multivariate time series into its

stationary and nonstationary part. The method is based on two assumptions: (a) the observed signals are

linear superpositions of stationary and nonstationary sources; and (b) the nonstationarity is measurable in

the first two moments. We characterize theoretical and practical properties of SSA and study it in

simulations and cortical signals measured by electroencephalography. Here, SSA succeeds in finding

stationary components that lead to a significantly improved prediction accuracy and meaningful topo-

graphic maps which contribute to a better understanding of the underlying nonstationary brain processes.
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Discovering and identifying invariances in the dynamics
of a physical system is a central task in empirical research.
The most fundamental invariances are the laws of physics.
In many practical settings, where the aim is to understand a
specific dynamical system, one of the most informative
invariances is stationarity. Even if the system as a whole
does not appear stationary, there may exist subsystems that
are stationary. Finding such subsystems is therefore key to
characterizing the system—it is here where we contribute
with our novel stationary subspace analysis (SSA)
technique.

For instance, when measuring cortical activity by elec-
troencephalography (EEG), the corresponding signals usu-
ally appear nonstationary. This is partly due to the inherent
nonstationary dynamics in the brain. However, even if
there exist stationary sources in the brain, these are not
discernible in the EEG since we can only measure super-
positions of stationary and nonstationary sources. Indeed,
we demonstrate that SSA can extract stationary sources
from the seemingly nonstationary EEG. This masking of
stationary sources by nonstationarities can be observed in a
wide range of problems where the observables reflect
superpositions of different processes, e.g., in stock market
analysis (where volatility in common price drivers conceal
long-term relationships [1]) and where only surface mea-
surements are available, e.g., in geophysics. Identifying the
stationary subsystem is essential to accurately predict the
future behavior of the system, since predictability neces-
sarily relies on the assumption that there are temporal
invariances that allow us to transfer knowledge from ob-
served data to the future. Moreover, the decomposition into
stationary and nonstationary components contributes to the
overall understanding of the system.

The proposed SSAmethod factorizes a multivariate time
series into its stationary and nonstationary components.
More precisely, we assume that the system of interest con-

sists of d stationary source signals ssðtÞ ¼ ½s1ðtÞ;
s2ðtÞ; . . . ; sdðtÞ�> (called s-sources) and D� d nonstation-
ary source signals snðtÞ ¼ ½sdþ1ðtÞ; sdþ2ðtÞ; . . . ; sDðtÞ�>
(also n-sources) where the observed signals xðtÞ are a
linear superposition of the sources,

x ðtÞ ¼ AsðtÞ ¼ As An
� � ssðtÞ

snðtÞ
� �

; (1)

and A is an invertible matrix [2]. Note that we do not
assume that the sources sðtÞ are independent; see Fig. 1
for an example. We refer to the spaces spanned by As and
An as the s- and n-space, respectively. The goal is to
factorize the observed signals xðtÞ according to Eq. (1),

i.e., to find a linear transformation Â�1 that separates the
s-sources from the n-sources. Given this model, the
s-sources and the n-space are uniquely identifiable
whereas the n-sources and the s-space are not [3].
Moreover, since the solution is undetermined up to scaling,
sign and linear transformations within the s- and n-space,
we set the estimated s-sources to zero mean and unit
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FIG. 1 (color online). Nonstationary and stationary source
with time-variable covariance illustrated by amplitude scatter
plots for four epochs.
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variance by centering and whitening the data; i.e., we write

the estimated demixing matrix as Â�1 ¼ B̂W where W ¼
CovðxÞ�1=2 is a whitening matrix and B̂ is an orthogonal
matrix [4].

The rotation part B̂ of the demixing is determined using
an optimization procedure such that the estimated station-
ary sources, i.e., the first d components of the estimated

sources ŝðtÞ ¼ B̂WxðtÞ, are as stationary as possible.
Therefore, we split the data into N consecutive epochs
X1; . . . ;XN � RD and consider estimated sources as sta-
tionary if their joint distribution remains unchanged over
all epochs. In order to limit the influence of estimation
errors due to finite samples, we characterize the distribu-
tion in each epoch Xi by its empirical mean �̂i and

covariance matrix �̂i only. To generically compare distri-
butions up to their first two moments, we use the Kullback-
Leibler divergence DKL between Gaussians, which is the
maximum-entropy distribution that is consistent with the
specified moments [7]. Note that we do not assume the data
to be Gaussian; we only assume that the nonstationarities
are visible in the first two moments. Thus, we aim to
minimize the KL divergence between the distribution of

the estimated s-sources N ð�̂s
i ; �̂

s
i Þ across all epochs,

where �̂s
i ¼ IdBW�̂i, �̂

s
i ¼ IdBW�̂iðIdBWÞ>, Id is the

identity matrix truncated to the first d rows and B>B ¼ I is
the rotation to be determined. The optimization is carried
out using multiplicative updates: starting with a random
orthogonal matrix, we multiply the current matrix B0 in
each iteration by an orthogonal matrix B RB0. Since we
have set the estimated s-sources to zero mean and unit
covariance, minimizing the KL divergence across all
epochs is equivalent to minimizing the loss function

LB0
ðRÞ ¼XN

i¼1
DKL½N ð�̂s

i ; �̂
s
i Þ kN ð0; IÞ�

¼XN

i¼1
ð� log det�̂

s
i þ �̂s>

i �̂s
i Þ: (2)

By parametrizing the orthogonal matrices as the matrix
exponentials of antisymmetric matrices, i.e., R ¼ eM, we
arrive at a gradient of the shape

@LB0
ðeMÞ

@M

��������M¼0
¼ 0 Z
�Z> 0

� �
: (3)

The components of this matrix gradient can be interpreted
as infinitesimal rotation angles; i.e., the entry in row i and
column j is the angle by which axis i will be rotated

towards axis j. Hence, the nonzero part Z 2 Rd�ðD�dÞ
corresponds to the rotations between coordinates of the
s- and n-space [8]. Note that the derivative with respect to
the rotations within the two spaces must vanish because
they do not change the solution. Thus, we can reduce the
number of variables to dðD� dÞ. The optimization is then
carried out by conjugate gradient descend [9].

The feasibility of the SSA procedure depends on the
number of nonstationary sources D� d and available
epochs N. If the number of epochs is too small, we will
find spurious stationary directions outside the true
s-subspace due to the limited amount of observed variation
in the distributions. For instance, given two distinct
Gaussians in two dimensions with covariance matrices
�1,�2 and equal means, we can always find two seemingly
stationary directions w 2 R2, i.e., directions where the
variances of the projected Gaussians are equal, w>�1w ¼
w>�2w if only the matrix �1 � �2 has an indefinite
spectrum. However, the space spanned by these two direc-
tions is not stationary.
For the general case, it is possible to show that we need

N � D� dþ 1

2
þ 1 (4)

epochs to rule out the existence of spurious d-dimensional
stationary signals [3]. Because of space limitations, we will
only outline the geometrical intuition behind the proof.
From N epochs, we obtain 2ðN � 1Þ equations that restrict
the empirical s-subspace, N � 1 between the covariance
matrices and N � 1 equations between the epoch means:
w>ð�n ��nþ1Þw ¼ 0 and ð�n ��nþ1Þ>w ¼ 0 with 1 �
n � N � 1. Each of these equations yields a (D� 1)-

dimensional cone or hyperplane. Let �Bs the set-
complement of B> in D , i.e. all points in data space that
do not belong to the true stationary projection. To avoid
spurious d-dimensional stationary projections, we have to

ensure that the intersection of these hypersurfaces with �Bs

has a dimension strictly smaller than d. Since �Bs is of
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FIG. 2 (color). Median error of SSA measured as the angle
between the true and estimated n-space (vertical axis) for vary-
ing numbers of epochs (horizontal axis) on synthetic 20-
dimensional data. The red and blue curves show the performance
for 14 and 6 nonstationary sources (mixed with a random
matrix), respectively. We consider two scenarios: only the co-
variance matrix of the n-sources is varied between epochs (solid
curves); and both the mean and the covariance matrix are chosen
at random (dashed curves). The impact of small sample statistics
is excluded by using the exact mean and covariance matrix
directly in the SSA procedure. The error bars stretch from the
25% to the 75% quantile estimated over 1000 random realiza-
tions of the data.
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dimension D, this intersection is at most [D� 2ðN � 1Þ]
dimensional and Eq. (4) follows. In the special case of con-
stant epoch means �i, Eq. (4) changes to N >D� dþ 1.

This effect can be observed in the results of the simula-
tions [10] shown in Fig. 2. For 14 nonstationary sources
with constant mean (solid red curve), twelve epochs are
sufficient to achieve negligible errors, and with six
n-sources (solid blue curve), four epochs are required.
Moreover, we see that fewer epochs are required when
the mean of the n-sources varies as well (dashed red line).

Unless the partitioning of the data into epochs is pre-
specified, we are confronted with a tradeoff: while a certain
number of epochs is required to guarantee determinacy,
smaller epoch sizes lead to stronger estimation errors. This
is illustrated in a second set of simulations with results
shown in Fig. 3: for N � 10, the error is due to small
sample statistics. Even though there is no fixed bound to
the maximum number of epochs N, the number of required
data points per epoch scales with the degrees of freedom in
SSA, that is dðD� dÞ. As a rule of thumb, N � K

dðD�dÞ
where K is the total number of available samples. In
practice, N should be chosen to lie in the plateau between
the two bounds (cf. Fig. 3) such that enough variability of
the n-sources is captured and the epochs are sufficiently
large. Ultimately, the choice of epochs depends on the
nature of the analyzed data, e.g., the time scale and strength
of the nonstationarities.

Having studied the properties of SSA both theoretically
and in simulations, we demonstrate its usefulness in the
context of brain computer interfacing (BCI). We have
chosen this specific example for two reasons: first, because
BCI is a prime example of a difficult task based on multi-
variate measurements from a nonstationary dynamical sys-
tem, the active human brain. Second, because in BCI, the
effect of SSA is directly visible in improved prediction
rates which allows an automated and objective assess-

ment without presupposing any domain-specific expert
knowledge.
The goal of BCI is to transmit information directly from

the brain to a computer system without the use of periph-
eral nerves or muscles, e.g., to control a neuroprostheses.
The Berlin BCI [11] noninvasively measures cortical ac-
tivity associated with certain motor imaginations by EEG,
in the reported case, imagined movements of the left (i.e.,
class 1) and right hand (i.e., class 2). In a short calibration
phase, the subject is asked to produce motor imagery
examples to generate data for both classes [12] which is
then used to calibrate a classifier that is able to distinguish
both imaginations in the subsequent application phase [11]
from the EEG activity. However, there are usually some
EEG sources that change from calibration to application.
These dynamical changes are one important reason for
prediction errors. We indeed find that a restriction to the
stationary signals as found by SSA can significantly im-
prove the classification accuracy.
The left panel of Fig. 4 shows the classification error,

i.e., the percentage of misclassified EEG epochs in the
application phase (i.e., on the test set) when using a
state-of-the-art classification method [13] on all 49 EEG
channels (red bar) and the error when using only the sta-
tionary signals (blue bar). For the presented subject, the
SSA preprocessing has reduced the classification error by
about one fourth from 16% to 12%. This result is highly
significant (Wilcoxon signed rank test on jackknife repli-
cas with p-value< 10�6). Note that the SSA decomposi-
tion is identified on the calibration set only; i.e., SSA is
able to correctly anticipate the structure of possible
changes between calibration—and application set without
using the latter.
In BCI experiments, one of the most prominent sources

of nonstationarity are the so-called alpha oscillations, a
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FIG. 3 (color online). Median error of SSA measured as the
angle between the true and estimated n-space (vertical axis) for
varying numbers of epochs (horizontal axis) that a fixed number
of samples is split into. The data consists of four s-sources
embedded in eight dimensions using a random mixing matrix.
The total size of the sample is K ¼ 1000; it is composed of seven
segments with random length, each with a random covariance
matrix for the n-sources. The error bars stretch from the 25% to
the 75% quantile computed over 1000 random realizations of the
data.
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FIG. 4 (color). The left panel shows the classification error on
the original EEG BCI data set with and without preprocessing by
SSA, the middle panel the evolution of the error for different
amounts of alpha oscillations that have been added. In the right
panel, the relative differences in signal power between calibra-
tion—and test set is plotted as a function of the electrode
position. The field pattern shows the head from above, each
cross is an electrode. The number of s-sources is d ¼ 44; the
number of epochs formed as consecutive trials is N ¼ 30. The
result is robust with respect to reasonable parameter variations.
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strong rhythm in the range between 8 and 12 Hz that
is associated with fatigue or tiredness [16]. To quan-
tify the robustness of a classifier in BCI, it is a well
established procedure [17] to simulate increasing tired-
ness over time by superimposing alpha oscillations to the
recorded EEG data. This procedure yields a controlled,
yet realistic scenario. We extracted typical alpha oscil-
lations from a previous EEG recording by a blind source
separation method [5] and added them to the data
such that the additional alpha power fluctuated around
0.2 (in units of the average signal strength at electrode
‘‘Oz’’) in the calibration set; on the test set, we gradually
increased the alpha power. The red curve in the middle
panel of Fig. 4 shows deteriorating classification per-
formance for increasing alpha with (blue, solid line) and
without (red, dashed line) SSA preprocessing. The figure
shows that while the state-of-the-art algorithm quickly
reaches error rates close to chance level (i.e., 50%), the
SSA preprocessing makes the classification much more
robust.

The right panel of Fig. 4 displays the relative differences
in signal power between calibration—and application set
in both estimated n and s-subspace as field pattern across
the scalp. The patterns not only show that the overall signal
in the s-subspace is more stable, but also provide valuable
insight into the spatial characteristics of the nonstationar-
ities. In this case, they clearly reflect occipital alpha activ-
ity and muscle or ocular artefacts that affect mostly the
outer electrodes.

SSA can be applied to a wide range of data because its
underlying assumptions are generic, namely, that the ob-
served signals are a linear superposition of sources and that
the nonstationarities alter the first two moments. In par-
ticular, note that the separation of n- and s-sources does
not require to impose a restrictive model of the data gen-
erating process as in cointegration methods [1]. SSA pro-
vides a novel type of analysis which can lead to useful
insights into complex physical systems by revealing the
location of n- and s-sources (if the sensors are spatially
distributed as in EEG), identifying meaningful stable rela-
tionships between variables (linear combinations in the
s-space correspond to stable equations between variables),
and separating s- from n-sources for the aim of inde-
pendent analysis such as prediction or visualization.
These are instrumental tasks in many fields of research
beyond the neurosciences, e.g., in geophysics (reflection
seismology deals with large-scale nonstationary measure-
ments generated by a multitude of sources [18]) and cli-
mate research where long-term relationships between
variables are difficult to discern due to nonstationary var-
iations in key factors [19]. In any of these domains,
SSA may contribute to a better prediction, modeling and
thus understanding of the underlying complex physical
system.
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