Stationary Subspace Analysis

Paul von Bünau Frank C. Meinecke Franz J. Király Klaus-R. Müller

Lecture Machine Learning II

Motivation

- Non-stationarities are ubiquitous in real-world data.
- For example: different training and test distributions
 → hard to generalise.

Motivation

- Non-stationarities are ubiquitous in real-world data.
- For example: different training and test distributions
 → hard to generalise.

Observation

Data generating systems are often only partly non-stationary.

- Removing the non-stationary part can help prediction methods.
- Understanding non-stationary data by factorizing into stationary and non-stationary components.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Stationary and Non-stationary Sources

non-stationary

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Generative Model

Assumption

The non-stationarity is confined to a linear subspace of the *D*-dimensional data space.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Generative Model

Assumption

The non-stationarity is confined to a linear subspace of the *D*-dimensional data space.

• d stationary source signals $s^{\mathfrak{s}}(t) \in \mathbb{R}^d$

Generative Model

Assumption

The non-stationarity is confined to a linear subspace of the *D*-dimensional data space.

- d stationary source signals $s^{\mathfrak{s}}(t) \in \mathbb{R}^d$
- D-d non-stationary source signals $s^{\mathfrak{n}}(t) \in \mathbb{R}^{(D-d)}$

Generative Model

Assumption

The non-stationarity is confined to a linear subspace of the *D*-dimensional data space.

- d stationary source signals $s^{\mathfrak{s}}(t) \in \mathbb{R}^d$
- D-d non-stationary source signals $s^{\mathfrak{n}}(t) \in \mathbb{R}^{(D-d)}$
- Observed signals: instantaneous linear superpositions of sources

$$x(t) = As(t) = \begin{bmatrix} A^{\mathfrak{s}} & A^{\mathfrak{n}} \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

 $A^{\mathfrak{s}}$ and $A^{\mathfrak{n}}$ span the stationary and non-stationary subspace respectively.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Goal of Stationary Subspace Analysis

Model

$$x(t) = As(t) = \begin{bmatrix} A^{\mathfrak{s}} & A^{\mathfrak{n}} \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

Goal of SSA

Given only x(t), find an estimate for the demixing matrix $\hat{B} = \hat{A}^{-1}$ that separates s-sources from n-sources.

$$\begin{bmatrix} \hat{s}^{\mathfrak{s}}(t) \\ \hat{s}^{\mathfrak{n}}(t) \end{bmatrix} = \hat{B}x(t) = \begin{bmatrix} \hat{B}^{\mathfrak{s}} \\ \hat{B}^{\mathfrak{n}} \end{bmatrix} x(t)$$

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Goal of Stationary Subspace Analysis

Model

$$x(t) = As(t) = \begin{bmatrix} A^{\mathfrak{s}} & A^{\mathfrak{n}} \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

Goal of SSA

Given only x(t), find an estimate for the demixing matrix $\hat{B} = \hat{A}^{-1}$ that separates s-sources from n-sources.

$$\begin{bmatrix} \hat{s}^{\mathfrak{s}}(t) \\ \hat{s}^{\mathfrak{n}}(t) \end{bmatrix} = \hat{B}x(t) = \begin{bmatrix} \hat{B}^{\mathfrak{s}} \\ \hat{B}^{\mathfrak{n}} \end{bmatrix} x(t)$$

Clearly, $\hat{A} = A$ is a solution. But are there other solutions? What are the invariances inherent in the task of separating stationary from non-stationary sources?

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (I)

Let's express the true A^{s} and A^{n} as linear combinations of the respective estimated subspaces

$$A^{\mathfrak{s}} = \hat{A}^{\mathfrak{s}} M_1 + \hat{A}^{\mathfrak{n}} M_2$$
$$A^{\mathfrak{n}} = \hat{A}^{\mathfrak{s}} M_3 + \hat{A}^{\mathfrak{n}} M_4$$

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (I)

Let's express the true A^{s} and A^{n} as linear combinations of the respective estimated subspaces

$$A^{\mathfrak{s}} = \hat{A}^{\mathfrak{s}} M_1 + \hat{A}^{\mathfrak{n}} M_2$$
$$A^{\mathfrak{n}} = \hat{A}^{\mathfrak{s}} M_3 + \hat{A}^{\mathfrak{n}} M_4$$

The composite transformation (true mixing followed by the estimated demixing) reads

$$\begin{bmatrix} \hat{s}^{\mathfrak{s}}(t) \\ \hat{s}^{\mathfrak{n}}(t) \end{bmatrix} = \hat{B}As(t) = \begin{bmatrix} \hat{B}^{\mathfrak{s}}A^{\mathfrak{s}} & \hat{B}^{\mathfrak{s}}A^{\mathfrak{n}} \\ \hat{B}^{\mathfrak{n}}A^{\mathfrak{s}} & \hat{B}^{\mathfrak{n}}A^{\mathfrak{n}} \end{bmatrix} s(t) = \begin{bmatrix} M_1 & M_3 \\ M_2 & M_4 \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (I)

Let's express the true A^{s} and A^{n} as linear combinations of the respective estimated subspaces

$$A^{\mathfrak{s}} = \hat{A}^{\mathfrak{s}} M_1 + \hat{A}^{\mathfrak{n}} M_2$$
$$A^{\mathfrak{n}} = \hat{A}^{\mathfrak{s}} M_3 + \hat{A}^{\mathfrak{n}} M_4$$

The composite transformation (true mixing followed by the estimated demixing) reads

$$\begin{bmatrix} \hat{s}^{\mathfrak{s}}(t) \\ \hat{s}^{\mathfrak{n}}(t) \end{bmatrix} = \hat{B}As(t) = \begin{bmatrix} \hat{B}^{\mathfrak{s}}A^{\mathfrak{s}} & \hat{B}^{\mathfrak{s}}A^{\mathfrak{n}} \\ \hat{B}^{\mathfrak{n}}A^{\mathfrak{s}} & \hat{B}^{\mathfrak{n}}A^{\mathfrak{n}} \end{bmatrix} s(t) = \begin{bmatrix} M_1 & M_3 \\ M_2 & M_4 \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

In order to find stationary sources $\hat{s}^{s}(t)$ we only require that non-stationary contributions vanish, i.e. that $M_{3} = 0$.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (I)

Let's express the true A^{s} and A^{n} as linear combinations of the respective estimated subspaces

$$A^{\mathfrak{s}} = \hat{A}^{\mathfrak{s}} M_1 + \hat{A}^{\mathfrak{n}} M_2$$
$$A^{\mathfrak{n}} = \hat{A}^{\mathfrak{n}} M_4$$

The composite transformation (true mixing followed by the estimated demixing) reads

$$\begin{bmatrix} \hat{s}^{\mathfrak{s}}(t) \\ \hat{s}^{\mathfrak{n}}(t) \end{bmatrix} = \hat{B}As(t) = \begin{bmatrix} \hat{B}^{\mathfrak{s}}A^{\mathfrak{s}} & \hat{B}^{\mathfrak{s}}A^{\mathfrak{n}} \\ \hat{B}^{\mathfrak{n}}A^{\mathfrak{s}} & \hat{B}^{\mathfrak{n}}A^{\mathfrak{n}} \end{bmatrix} s(t) = \begin{bmatrix} M_{1} & 0 \\ M_{2} & M_{4} \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

In order to find stationary sources $\hat{s}^{s}(t)$ we only require that non-stationary contributions vanish, i.e. that $M_{3} = 0$.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (II)

The separation of stationary and non-stationary sources is unique up to the linear transformations M_1 , M_2 and M_4 .

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (II)

The separation of stationary and non-stationary sources is unique up to the linear transformations M_1 , M_2 and M_4 .

$$A^{\mathfrak{s}} = \hat{A}^{\mathfrak{s}} M_1 + \hat{A}^{\mathfrak{n}} M_2$$
$$A^{\mathfrak{n}} = \hat{A}^{\mathfrak{n}} M_4$$

 \rightarrow we can identify the true non-stationary subspace but the not the true stationary subspace.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Symmetries and Invariances (II)

The separation of stationary and non-stationary sources is unique up to the linear transformations M_1 , M_2 and M_4 .

$$\begin{array}{rcl} A^{\mathfrak{s}} & = & \hat{A}^{\mathfrak{s}}M_1 + \hat{A}^{\mathfrak{n}}M_2 \\ A^{\mathfrak{n}} & = & \hat{A}^{\mathfrak{n}}M_4 \end{array}$$

 \rightarrow we can identify the true non-stationary subspace but the not the true stationary subspace.

$$\begin{bmatrix} \hat{s}^{\mathfrak{s}}(t) \\ \hat{s}^{\mathfrak{n}}(t) \end{bmatrix} = \begin{bmatrix} M_1 & 0 \\ M_2 & M_4 \end{bmatrix} \begin{bmatrix} s^{\mathfrak{s}}(t) \\ s^{\mathfrak{n}}(t) \end{bmatrix}$$

 \rightarrow we can identify the true stationary sources (up to linear transformation) but not the true non-stationary sources.

Symmetries and Invariances

We are therefore free to choose the linear transformations M_1 , M_2 and M_4 in order to formulate a more efficient algorithm.

Without loss of generality

We can center the data x(t) and write the estimated demixing matrix as a whitening W followed by a rotation $\hat{B}^{\top}\hat{B} = I$:

$$\hat{A}^{-1} = \hat{B}W$$

with $W = Cov(x)^{-1/2}$.

 \rightarrow The estimated stationary components then have zero mean and unit covariance.

Symmetries and Invariances

We are therefore free to choose the linear transformations M_1 , M_2 and M_4 in order to formulate a more efficient algorithm.

Without loss of generality

We can center the data x(t) and write the estimated demixing matrix as a whitening W followed by a rotation $\hat{B}^{\top}\hat{B} = I$:

$$\hat{A}^{-1} = \hat{B}W$$

with $W = Cov(x)^{-1/2}$.

 \rightarrow The estimated stationary components then have zero mean and unit covariance.

Remaining task: Find orthogonal matrix \hat{B} such that the estimated \mathfrak{s} -sources are *as stationary as possible.*

Optimizing for Stationarity

Working definition of stationarity

Divide the data into N epochs. Time series is stationary if its distribution is the same in each epoch.

Optimizing for Stationarity

Working definition of stationarity

Divide the data into N epochs. Time series is stationary if its distribution is the same in each epoch.

Optimization Problem

Find rotation \hat{B} such that the estimated \mathfrak{s} -sources are as stationary as possible. Therefore: Minimize the difference in distribution between each epoch and the whole dataset.

Optimizing for Stationarity

Working definition of stationarity

Divide the data into N epochs. Time series is stationary if its distribution is the same in each epoch.

Optimization Problem

Find rotation \hat{B} such that the estimated \mathfrak{s} -sources are as stationary as possible. Therefore: Minimize the difference in distribution between each epoch and the whole dataset.

Gaussian Approximation

Consider only differences in the first two moments of the distributions \rightarrow Gaussian approximation (Max. Entropy Principle)

The Objective Function (I)

Objective function in words

Minimize the difference between the distribution of the estimated \mathfrak{s} -sources in each epoch and the whole dataset.

The Objective Function (I)

Objective function in words

Minimize the difference between the distribution of the estimated \mathfrak{s} -sources in each epoch and the whole dataset.

Distribution of the estimated \mathfrak{s} -sources in epoch i

Let $\hat{\mu}_i$ and $\hat{\Sigma}_i$ be the mean and covariance matrix of epoch *i* after centering and whitening. Given the rotation part $B^{\top}B = I$ of the estimated demixing, the mean and covariance of the estimated \mathfrak{s} -sources in epoch *i* can be written as

$$\hat{oldsymbol{\mu}}_i^{\mathfrak{s}} = I^d B \hat{oldsymbol{\mu}}_i$$
 and $\hat{\Sigma}_i^{\mathfrak{s}} = I^d B \hat{\Sigma}_i (I^d B)^ op$

respectively, where I^d is the identity matrix truncated to the first d rows.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

The Objective Function (II)

• We use the Kullback-Leibler divergence between Gaussians $\operatorname{KL}(\mathcal{N}(\mu_0, \Sigma_0) || \mathcal{N}(\mu_1, \Sigma_1))$ to measure differences in distribution

The Objective Function (II)

- We use the Kullback-Leibler divergence between Gaussians $\operatorname{KL}(\mathcal{N}(\mu_0, \Sigma_0) || \mathcal{N}(\mu_1, \Sigma_1))$ to measure differences in distribution
- Since we have centered and whitened the whole dataset, the estimated s-sources have zero mean and unit covariance.

The Objective Function (II)

- We use the Kullback-Leibler divergence between Gaussians $\operatorname{KL}(\mathcal{N}(\mu_0, \Sigma_0) || \mathcal{N}(\mu_1, \Sigma_1))$ to measure differences in distribution
- Since we have centered and whitened the whole dataset, the estimated s-sources have zero mean and unit covariance.

The objective function

$$\begin{split} \hat{B} &= \operatorname*{argmin}_{B^{\top}B=I} \sum_{i=1}^{N} \mathsf{KL} \left[\mathcal{N}(\hat{\mu}_{i}^{\mathfrak{s}}, \hat{\Sigma}_{i}^{\mathfrak{s}}) \mid\mid \mathcal{N}(0, I) \right] \\ &= \operatorname*{argmin}_{B^{\top}B=I} \sum_{i=1}^{N} \left(-\log \det \hat{\Sigma}_{i}^{\mathfrak{s}} + \hat{\mu}_{i}^{\mathfrak{s}^{\top}} \hat{\mu}_{i}^{\mathfrak{s}} \right) \end{split}$$

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Optimization in the Special Orthogonal Group (I)

The Optimization Problem

$$\hat{B} = \operatorname*{argmin}_{B^{\top}B=I} \sum_{i=1}^{N} \left(-\log \det \hat{\Sigma}_{i}^{\mathfrak{s}} + \hat{\mu}_{i}^{\mathfrak{s}^{\top}} \hat{\mu}_{i}^{\mathfrak{s}} \right)$$

In order to maintain the constraint $B^{\top}B = I$ we start with

$$\hat{B}^{\text{start}} = I$$

and find a multiplicative update $RR^{\top} = I$ in each step,

$$\hat{B}^{\text{new}} \leftarrow R\hat{B}.$$

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Optimization in the Special Orthogonal Group (II)

We parametrize R as

 $R = \exp(M)$

with $M^{\top} = -M$ and minimize w.r.t. M.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Optimization in the Special Orthogonal Group (II)

We parametrize R as

 $R = \exp(M)$

with $M^{\top} = -M$ and minimize w.r.t. M.

Interpretation of elements M_{ij} :

Rotation angle of axis i towards axis j

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

Optimization in the Special Orthogonal Group (II)

We parametrize R as

 $R = \exp(M)$

with $M^{\top} = -M$ and minimize w.r.t. M.

Interpretation of elements M_{ij} :

Rotation angle of axis i towards axis j

This leads to a gradient of the form

$$\left. \frac{\partial L_B}{\partial M} \right|_{M=0} = \begin{bmatrix} 0 & Z \\ -Z^\top & 0 \end{bmatrix}$$

where $Z \in \mathbb{R}^{d imes (D-d)}$.

Spurious Stationarity

- Directions in the non-stationary space can appear stationary if we have not observed enough variation.
- The presence of *spurious stationary directions* renders the true solution unidentifiable.

Spurious Stationarity

- Directions in the non-stationary space can appear stationary if we have not observed enough variation.
- The presence of *spurious stationary directions* renders the true solution unidentifiable.

How many distinct epochs do we need to rule out spurious stationary directions?

	Stationary and Non-stationary Sources
Motivation	The Generative Model
Problem Formalization	Symmetries and Invariances
	Application to Brain-Computer-Interfacing

Imagine we have a two-dimensional non-stationary space and the epochs differ only w.r.t. the covariance matrix.

One epoch is certainly not enough.

Imagine we have a two-dimensional non-stationary space and the epochs differ only w.r.t. the covariance matrix.

With two epochs there will in general exist a spurious stationary direction.

Imagine we have a two-dimensional non-stationary space and the epochs differ only w.r.t. the covariance matrix.

With two epochs there will in general exist a spurious stationary direction.

Imagine we have a two-dimensional non-stationary space and the epochs differ only w.r.t. the covariance matrix.

We need a third distinct epoch to eliminate this spurious stationary direction.

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

How many Epochs? - Theoretical Results

Theorem (Identifiability of SSA)

• If the non-stationarity is expressed in **both** mean and covariances, the stationary subspace can be uniquely identified if

$$N>\frac{D-d}{2}+2.$$

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

How many Epochs? - Theoretical Results

Theorem (Identifiability of SSA)

• If the non-stationarity is expressed in **both** mean and covariances, the stationary subspace can be uniquely identified if

$$N>\frac{D-d}{2}+2.$$

• If the non-stationarity is **only** expressed in either mean **or** covariances, Identifiability is guaranteed for

$$N > D - d + 1.$$

Simulations: Results

- 4 s-sources and 4 n-sources (correlated), random mixing matrix A.
- Fixed number of samples divided into epochs

Simulations: Results

- 4 s-sources and 4 n-sources (correlated), random mixing matrix A.
- Fixed number of samples divided into epochs

Brain-Computer-Interfacing (BCI)

- Control a device using intentional changes of the brain state (without muscles!)
- Brain states are detected using EEG-measurements
- Well discernable brain states: imagined (not executed!) movements of the left and right arm/feet.
- Berlin BCI: calibration phase / application phase

Brain-Computer-Interfacing (BCI)

- Control a device using intentional changes of the brain state (without muscles!)
- Brain states are detected using EEG-measurements
- Well discernable brain states: imagined (not executed!) movements of the left and right arm/feet.
- Berlin BCI: calibration phase / application phase

Problem

Classification accuracy deteriorates over time due to non-stationarities associated with fatigue (change in α -rhythm).

Stationary and Non-stationary Sources The Generative Model Symmetries and Invariances Application to Brain-Computer-Interfacing

BCI Experiment: Results

Conclusion

SSA factorizes a time-series into stationary and non-stationary components.

- Two (mild) assumptions:
 - The non-stationarities affect the first two moments.
 - The observed time series is a linear superposition of stationary and non-stationary sources.
- The number of distinct epochs necessary scales *linearly* with the number of non-stationary sources.

Conclusion

SSA factorizes a time-series into stationary and non-stationary components.

- Two (mild) assumptions:
 - The non-stationarities affect the first two moments.
 - The observed time series is a linear superposition of stationary and non-stationary sources.
- The number of distinct epochs necessary scales *linearly* with the number of non-stationary sources.

Outlook

- Determining the number of stationary sources.
- Stationary w.r.t. time structure
- Efficient computation using methods from Algebraic Geometry
- Applications: finance, neuroscience, computer vision, etc.

Thank you very much.

Paul von Bünau, Frank C. Meinecke, Franz J. Király, Klaus-Robert Müller. Finding Stationary Subspaces in Multivariate Time Series. *Phys. Rev. Lett.* 103, 214101 (2009)