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Motivation

Non-stationarities are ubiquitous in real-world data.

For example: different training and test distributions
→ hard to generalise.

Observation

Data generating systems are often only partly non-stationary.

Removing the non-stationary part can help prediction
methods.

Understanding non-stationary data by factorizing into
stationary and non-stationary components.
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Generative Model

Assumption

The non-stationarity is confined to a linear subspace of the
D-dimensional data space.

d stationary source signals ss(t) ∈ Rd

D − d non-stationary source signals sn(t) ∈ R(D−d)

Observed signals: instantaneous linear superpositions of
sources

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]
As and An span the stationary and non-stationary subspace
respectively.
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Goal of Stationary Subspace Analysis

Model

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]

Goal of SSA

Given only x(t), find an estimate for the demixing matrix B̂ = Â−1

that separates s-sources from n-sources.[
ŝs(t)
ŝn(t)

]
= B̂x(t) =

[
B̂s

B̂n

]
x(t)

Clearly, Â = A is a solution. But are there other solutions? What
are the invariances inherent in the task of separating stationary
from non-stationary sources?

P. von Bünau, F. C. Meinecke, F. J. Király and K.-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Stationary and Non-stationary Sources
The Generative Model
Symmetries and Invariances
Application to Brain-Computer-Interfacing

Goal of Stationary Subspace Analysis

Model

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]

Goal of SSA

Given only x(t), find an estimate for the demixing matrix B̂ = Â−1
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Symmetries and Invariances (I)

Let’s express the true As and An as linear combinations of the
respective estimated subspaces

As = ÂsM1 + ÂnM2

An = ÂsM3 + ÂnM4

The composite transformation (true mixing followed by the
estimated demixing) reads[

ŝs(t)
ŝn(t)

]
= B̂As(t) =

[
B̂sAs B̂sAn

B̂nAs B̂nAn

]
s(t) =

[
M1 M3

M2 M4

] [
ss(t)
sn(t)

]
In order to find stationary sources ŝs(t) we only require that
non-stationary contributions vanish, i.e. that M3 = 0.
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Symmetries and Invariances (II)

The separation of stationary and non-stationary sources is unique
up to the linear transformations M1, M2 and M4.

As = ÂsM1 + ÂnM2

An = ÂnM4

→ we can identify the true non-stationary subspace but the not
the true stationary subspace.[

ŝs(t)
ŝn(t)

]
=

[
M1 0
M2 M4

] [
ss(t)
sn(t)

]
→ we can identify the true stationary sources (up to linear
transformation) but not the true non-stationary sources.

P. von Bünau, F. C. Meinecke, F. J. Király and K.-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Stationary and Non-stationary Sources
The Generative Model
Symmetries and Invariances
Application to Brain-Computer-Interfacing

Symmetries and Invariances (II)

The separation of stationary and non-stationary sources is unique
up to the linear transformations M1, M2 and M4.
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Symmetries and Invariances

We are therefore free to choose the linear transformations M1, M2

and M4 in order to formulate a more efficient algorithm.

Without loss of generality

We can center the data x(t) and write the estimated demixing
matrix as a whitening W followed by a rotation B̂>B̂ = I :

Â−1 = B̂W

with W = Cov(x)−1/2.

→ The estimated stationary components then have zero mean and
unit covariance.

Remaining task: Find orthogonal matrix B̂ such that the
estimated s-sources are as stationary as possible.
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Optimizing for Stationarity

Working definition of stationarity

Divide the data into N epochs. Time series is stationary if its
distribution is the same in each epoch.

Optimization Problem

Find rotation B̂ such that the estimated s-sources are as stationary
as possible. Therefore: Minimize the difference in distribution
between each epoch and the whole dataset.

Gaussian Approximation

Consider only differences in the first two moments of the
distributions → Gaussian approximation (Max. Entropy Principle)
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The Objective Function (I)

Objective function in words

Minimize the difference between the distribution of the estimated
s-sources in each epoch and the whole dataset.

Distribution of the estimated s-sources in epoch i

Let µ̂i and Σ̂i be the mean and covariance matrix of epoch i after
centering and whitening. Given the rotation part B>B = I of the
estimated demixing, the mean and covariance of the estimated
s-sources in epoch i can be written as

µ̂s
i = I dBµ̂i and Σ̂s

i = I dBΣ̂i (I dB)>

respectively, where I d is the identity matrix truncated to the first d
rows.
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The Objective Function (II)

We use the Kullback-Leibler divergence between Gaussians
KL(N (µ0,Σ0) || N (µ1,Σ1)) to measure differences in
distribution

Since we have centered and whitened the whole dataset, the
estimated s-sources have zero mean and unit covariance.

The objective function

B̂ = argmin
B>B=I

N∑
i=1

KL
[
N (µ̂s

i , Σ̂
s
i ) || N (0, I )

]
= argmin

B>B=I

N∑
i=1

(
− log det Σ̂s

i + µ̂s>
i µ̂s

i

)
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Optimization in the Special Orthogonal Group (I)

The Optimization Problem

B̂ = argmin
B>B=I

N∑
i=1

(
− log det Σ̂s

i + µ̂s>
i µ̂s

i

)
In order to maintain the constraint B>B = I we start with

B̂start = I

and find a multiplicative update RR> = I in each step,

B̂new ← RB̂.
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Optimization in the Special Orthogonal Group (II)

We parametrize R as

R = exp(M)

with M> = −M and minimize w.r.t. M.

Interpretation of elements Mij :

Rotation angle of axis i towards axis j

This leads to a gradient of the form

∂LB

∂M

∣∣∣∣
M=0

=

[
0 Z
−Z> 0

]
where Z ∈ Rd×(D−d) .
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P. von Bünau, F. C. Meinecke, F. J. Király and K.-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Stationary and Non-stationary Sources
The Generative Model
Symmetries and Invariances
Application to Brain-Computer-Interfacing

Optimization in the Special Orthogonal Group (II)

We parametrize R as

R = exp(M)

with M> = −M and minimize w.r.t. M.

Interpretation of elements Mij :

Rotation angle of axis i towards axis j

This leads to a gradient of the form

∂LB

∂M

∣∣∣∣
M=0

=

[
0 Z
−Z> 0

]
where Z ∈ Rd×(D−d) .
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Spurious Stationarity

Directions in the non-stationary space can appear stationary if
we have not observed enough variation.

The presence of spurious stationary directions renders the true
solution unidentifiable.

How many distinct epochs do we need to rule out spurious
stationary directions?
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How many Epochs?

Imagine we have a two-dimensional non-stationary space and the
epochs differ only w.r.t. the covariance matrix.

One epoch is certainly not enough.
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How many Epochs?

Imagine we have a two-dimensional non-stationary space and the
epochs differ only w.r.t. the covariance matrix.

With two epochs there will in general exist a spurious
stationary direction.
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How many Epochs?

Imagine we have a two-dimensional non-stationary space and the
epochs differ only w.r.t. the covariance matrix.

We need a third distinct epoch to eliminate this spurious
stationary direction.

P. von Bünau, F. C. Meinecke, F. J. Király and K.-R. Müller Stationary Subspace Analysis



Motivation
Problem Formalization

Stationary and Non-stationary Sources
The Generative Model
Symmetries and Invariances
Application to Brain-Computer-Interfacing

How many Epochs? – Theoretical Results

Theorem (Identifiability of SSA)

If the non-stationarity is expressed in both mean and
covariances, the stationary subspace can be uniquely identified
if

N >
D − d

2
+ 2.

If the non-stationarity is only expressed in either mean or
covariances, Identifiability is guaranteed for

N > D − d + 1.
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Simulations: Results

4 s-sources and 4 n-sources (correlated), random mixing
matrix A.

Fixed number of samples divided into epochs
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Brain-Computer-Interfacing (BCI)

Control a device using intentional changes of the brain state
(without muscles!)

Brain states are detected using EEG-measurements

Well discernable brain states: imagined (not executed!)
movements of the left and right arm/feet.

Berlin BCI: calibration phase / application phase

Problem

Classification accuracy deteriorates over time due to
non-stationarities associated with fatigue (change in α-rhythm).
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BCI Experiment: Results
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Conclusion

SSA factorizes a time-series into stationary and non-stationary
components.

Two (mild) assumptions:
The non-stationarities affect the first two moments.
The observed time series is a linear superposition of stationary
and non-stationary sources.

The number of distinct epochs necessary scales linearly with
the number of non-stationary sources.

Outlook

Determining the number of stationary sources.

Stationary w.r.t. time structure

Efficient computation using methods from Algebraic Geometry

Applications: finance, neuroscience, computer vision, etc.
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Thank you very much.

Paul von Bünau, Frank C. Meinecke, Franz J. Király, Klaus-Robert

Müller. Finding Stationary Subspaces in Multivariate Time Series.

Phys. Rev. Lett. 103, 214101 (2009)
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