Introduction to Optimization

Outline:

® Standard form optimization problem and terminology.
® (Convex optimization problems.

® |agrange duality.

e (Optimization methods.



Optimization problem

Optimization problem in standard form

minimize  fo(x)
subject to  f;(x)
hi(z)
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where

x € R" is the optimized vector of variables.
fo: R™ — R is the objective function.
fi:R™ — R is the inequality constraint function.

h;: R™ — R is the equality constraint function.



Explicit /implicit constraints

Explicit constraints are f;(x) < 0 and h;(x) = 0; unconstrained problem
has no explicit constrains (i.e. m = p = 0).

Implicit constraint is & € D where D is a common domain of the objective
function and constraint functions

™m p
D = ﬂdomfiﬂﬂdomhi.
i=0 i=1
Feasible set: contains points which satisfy implicit and explicit constraints

Xieas =DN{x | fi(lx) <0,i=1,...,m,hj(x)=0,7=1...,n}

Example: (minimal entropy discrete distribution)
minimize —> "  x;logx;
. n
subjectto Y ., x; =1.

which has explicit constraint ", x; = 1, implicit constraints x; > 0 and
feasible set Xtoas = {x | >, xi=1,2;>0,i=1,....n}.



Example: Linear Programming and Quadratic Programming

LP problem QP problem

minimize cl'x minimize sx'Hz + c'@

subjectto Ax = b subjectto Ax = b
Dx < g Dx < gq

where

x € R™ is a vector of optimized variables

c € R", be RP ge& R™ are vectors

A cRPX? D e R™"™ H € R" ™ are matrices

Note that LP and QP can be always rewritten to a simpler form using the
slack variables trick: the inequality constraints Dx < q are replaced by

equivalent constraints Dax + & = q and £ > 0.



Optimal and locally optimal solution

(Globally) optimal value:
p" =inf{fo(x) | © € Xicas}

oo if the problem is infeasible, i.e., Xjeas = {0}.

°
i
|

—o0 If the problem is unbounded.
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Optimal solutions: « is the optimal solution if it is feasible and f(x) = p*;

Xopt = {x | fo(x) = p* , T € Xjeas} is the set of optimal solutions.

Locally optimal: x is locally optimal if there exist R > 0 such that @ is
optimal for

minimize  fo(y)
subject to y € Xeas N{y | ||z —y|| < R}



Example: Optimal and locally optimal solution

*k >k
Liocal Lolobal
Xfeas




Convex sets

A set X C R"™ is convex if the line segment connecting any
two points from X lies in X, i.e., for all &1, x5 € X and all
such that 0 < 8 < 1 it holds

$1(1—9)+9$26X.

Convex set Non-convex set




Convex functions

A function f € R™ — R is convex if dom f is convex and for
all x1, &5 € dom f and all 8 such that 0 <8 <1 it holds

f@1(1 = 0) + 220) < f(21)(1 = 0) + f(22)0 .

Convex function Non-convex function




First and Second order conditions on convexity

First-order condition: Suppose that f: R™ — R is differentiable, i.e.,
gradient V f(x) € R" exists at each point * € dom f. Then f is convex
if and only if dom f is convex and

f(x) > f(x) + V() (x—=x), Ve, o' € X .

fz)

Second-order condition: Suppose that f twice differentiable, i.e., the
Hessian matrix of second derivatives VZf(x) exists at each point
x € dom f. Then f is convex if and only if dom f is convex and
VZ2f(x) is positive semi-definite for all € dom f.



Convex optimization problem

The optimization problem is convex if the objective function
fo(x) is convex and the feasible set Xf.,5 is convex.

In particular, the problem is convex if fg, f1,..., f,, are convex and the
equality constraints h; are affine, i.e., h;(z) = alx — b; = 0.
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The standard form of the convex optimization problem

minimize  fo(x)
subject to  f;(x)
Ax = b
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Basic property of the convex problems: Any locally optimal solution is
globally optimal = greatly simplifies optimization.

e We can use descent methods: iteratively move in a descent
direction until we reach the optimum.

e For non-convex problems we can get stuck in a local optimum; it
is difficult to identify whether the attained optimum is local or global.



Example: Linear Programming and Quadratic Programming 10

LP problem QP problem

minimize cl'x minimize sx'Hzx + '@

subjectto Ax = b subjectto Ax = b
Dx < g Dx < g

Linear Programming is a convex problem since the objective is a convex
function, the equality functions are affine, the inequality constraints
define a convex set.

Quadratic Programming is a convex problem if and only if the matrix H is
positively semi-definite;

Recall the Second-order condition and notice that for QP the Hessian
matrix V2 f(x) = H.



Optimality conditions for convex problems 11

Suppose that fy is differentiable. Then a vector x is the optimal
solution if and only if it is feasible x € AXf.,s and

Vi) (y—x) >0 forall y & Xeas .
How to see this?

® Recall the definition of the directional derivative

fO(w7 5) _ hli>r{)l_|_ h

=V fo(z)'d.

The sign of fi(x;d) determines whether fj increases or decreases when
we move from a in the direction 9.

® Moving from a feasible point & along a feasible direction 6 = y — «,
Yy € Xreas by sufficiently small step produces a feasible point.

® A vector x is optimal iff there is no feasible direction which decreases the
objective function, i.e., for each y € Xjeas moving along 0 =y — @
Increases the objective so that

fox;6) >0 = Vf(x)'6>0 = Vfo(x)' (y—z)>0.



Lagrangian duality 12

What are we going to do?

® For the optimized problem (called primal in this context) we derive a
dual optimization problem.

What is it good for?

e Optimality certificate. Primal objective function is an upper bound
and the dual objective function is a lower bound on the optimal
value = theoretically justified stopping conditions for optimization.

e Simplifies optimization. The dual problem can be of lesser

complexity; in some cases the primal solution can be easily obtained
from the dual solution.

® New insight. The dual problem can bring a new insight to the
problem (e.g. Max-flow/Min-cut problems from graph theory are
dual, or Maximum-likelihood /Minimum-entropy density estimation
problems are dual).



Lagrangian

Primal optimization problem in standard form

minimize  fo(x)
subject to  f;(x)
hj(z)
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where D is the problem domain, p* is the optimal value.

Lagrangian: L:R" x R™ x RP — R with domain dom L =D x R™ x RP

p
L(x,\,v) = +Z)\fz +Zhiu7;
i=1

® sum of objective function plus weighted sum of constraint functions
® )\, is Lagrange multiplier associated with f;(x) <0

® y; is Lagrange multiplier associated with h;(x) = 0
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Lagrange dual function 14
Lagrange dual function g: R™ x RP — R

g\, v) = alngL(m’)\’V)

= {;gfp (fo(w) + Z Aifi(x) + Z VJM@))

® g(\,v) is a concave function since it is point-wise infimum of convex
functions of (A, v); note that it holds in general even for non-convex
primal problems.

® For many important problem g(\,v) has an analytical form.



Example: Lagrange dual function for LP problem

® \We start form the primal LP problem

T

minimize c'x
subject to Ax =
Dx <

b
q

e \We form the Lagrangian (using matrix notation for brevity)

L(x, A\, v)

fox) + > Nifi() + > hivi
i=1 i=1

= clz+ X' (Dx—q)+v'(Ax —b)
= (c+D' X+ A"z - Aqg—1v'b

® \We get the Lagrange dual function by minimizing w.r.t primal variables

g(Av) =inf L(z, A\, v) = {

—Al'g—v'hb
—00

if c+D'A+ATv=0
otherwise
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Weak duality

Weak duality: If A > 0 and x € Xj,5 then fo(x) > g(A,v), i.e. the
Lagrange dual function is a lower bound on the primal objective. In
particular, it lower bounds the optimal value p* > g(\,v), VA > 0, Vv.

To see this recall the Lagrangian

p
L(x,\,v) = —I—E:)\fZ ‘|‘th‘V7;
i=1

and notice that for x € Xi.as We have:

1. fi(x) <0 and thus > . \;f(x) <0 since \; > 0,
2. hz(.’E) — (0 and thus Zz VZhZ(CIZ) =0,

therefore

xcD

fo(m) > fo(m) + > Nifi(x) + Y hiv; = L(x, A, v) > inf L(z,Av).
=1

Note that the weak duality holds in general regardless the primal problem

IS convex or not.
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Dual problem 17

Dual problem

maximize g(\,v)
subjectto A >0

where we optimize w.r.t A € R™, v € RP; the optimal value denoted by d*.

® Solving the dual problem = finding the best lower bound d* on primal
optimal value p* which can be obtained from the Lagrangian.

e Duality gap is the difference between the primal and the dual optimal
values p* — d* > 0, i.e., it determines the tightness of the lower bound.

® The dual problem is always convex since g(\,v) is a concave function
regardless the primal problem is convex or not.

® (A, v) are dual feasible if A > 0 and g(\,v) > —inf, i.e. for dual
feasible points we have non-trivial lower bound.

It usually helps if the constraint g(\,v) > —inf is expressed explicitly in
the dual problem.



Example: Lagrange dual problem for LP problem

The primal LP problem

minimize cl'zx
subjectto Ax = b
Dx < ¢

with the Lagrange dual function
Ag—v'b if c+D'A+ATYv=0
g(A,v) = { !

— 00 otherwise
The dual problem reads
maximize g(\,v)
subjectto A >0

Making the constraint g(\,v) > —inf explicit, i.e., c+ DA+ Alv =0,
we get the dual LP problem

maximize —A'g—v'b
subject to A
c+D'X+ ATy

1V
-

18



Strong duality 19

Strong duality holds if the duality gap is zero, i.e., p* = d* and the
Lagrangian lower bound is tight.

When does it happen?
¢ |t does not hold in general.

¢ |t holds if the primal problem is convex and the Slater’s condition
(also called constraint qualification) holds:

Slater’s condition holds if there exists a strictly feasible point, i.e., there
exists € Xpeas such that f;(x) < 0,2 =1,...,m; note that this
condition is very mild.

® There also exist non-convex problems for which the strong duality holds.



Karush-Kuhn-Tucker optimality conditions 20

A triplet (x, A\, v) satisfy the Karush-Kuhn-Tucker conditions if:

OL(x, A
(ag V) =0 partial derivative of L w.r.t & vanishes
x
OL(x,\,v) L .
<0 implies fi(x) <0,7=1,...,m
O
OL(x, A
(@, A v) =0 implies h;(x) =0,i=1,...,p.
ov
A>0 duality constraint holds
Nifi(x) =0,2=1,...,m so called complementary slackness

e |f strong duality holds then KKT conditions are necessary for
(¢, A\, V) to be optimal.

¢ |f primal problem is convex and Slater’s condition holds then KKT
conditions are necessary and sufficient for (x, A, ) to be optimal.



Example: KKT optimality conditions for LP problem

The primal LP problem
T

minimize c'x
subjectto Ax = b
Dx < gq

with the Lagrangian
Lz, \,v)=c'z+ X' (Dx — q) + v (Ax — b)

The KKT conditions read:

aL(‘fg’)""):o —~ c+DTA+ATL =0
X
8L(a3,)\,1/)§0 . Dz_q<0
8L(:1(?>\)\ V)

= = Azxz—-b=0

ov
A>0 = A>0
Nifilx)=0,i1=1,...,m = X (Dzx—-q)=0



Descent method for unconstrained problems
Let us consider an unconstrained convex problem

minimize f(x)

General descent method:

Initialization: set x € dom f.

repeat
1. Determine a descent direction 9.

2. Line-search: find a step size ¢t = argmin, -, f(x +t'9).

3. Update x := x + t0.
until stopping condition is satisfied.
® |t generates a sequence of 1) x(?) .. such that f(x*)) > f(ax(*+D).
e For f differentiable, a vector 9 is a descent direction if

sy _ i (@ + )
f(w,d)—hlga h

=Vf(x)'d<0

e.g., gradient descent methods use 6 = —V f(x).
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Newton method for equality constrained problems 23

Let us consider equality constrained convex problem

minimize  f(x)
subject to Ax =0

® Using the KKT optimality conditions, * € dom f is optimal iff there
exist v such that

Ax =0, Vi) +Alv=0.

1
® For a convex quadratic function f(x) = §:BTH£B + ¢’ ¢ the KKT

conditions lead to an efficiently solvable set of linear equations:
Ax =0, Hx +c+Alv=0.
e Newton method is applicable for a general twice differentiable
function f(ax): it iteratively approximates f(x) by a quadratic function
f@) = (@~ @)V f (@)@ — ') + Vi) (@~ 2') + f(a)

and solves the KKT conditions for the approximation f ().



Barrier methods for a general constrained problem 24

Let us consider equality constrained convex problem

)

) <

minimize  fo(x
subject to  f;(x
Ax
e Constraints f;(x) < 0 can be made implicit using the barrier function
di(x) = - ,( )
oo if fi(x) >0
l.e., we can equivalently optimized equality constraint problem

minimize  fo(x) + >~ ¢i(x)

subjectto Ax = b

® Functions ¢;(x) are approximated by a differentiable convex functions

biw) = —log(~ ()

which for high t well approximates the step barrier function ¢;(x).
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