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Introduction
Dimensionality Reduction: Given the data z1,...,z, € R? in observation space,
- L] L] / L] L] L] L]
find corresponding coordinates vy, ..., vy, € R? in lower dimensional embedding

space (d’ < d) by some criterion.

The PCA criterion: Find projection on linear subspace that minimizes the
reconstruction error (alternatively: linear subspace that explains most of the

variance).

The Isomap criterion: Preserve pairwise distances between the observed data
measured as shortest paths along a graph which is expected to follow the data
manifold.

The LLE criterion: Preserve geometric properties of the local neighbourhood of
each observed data point.
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Why LLE? (1)

There exist toy-datasets where linear methods are bound to fail.

15 15
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Why LLE? (2)
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Outline of the Algorithm (pictorial)
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Outline of the Algorithm (formally)

1. For each datapoint z;, select its neighbours x,. ,...,x,. .

2. Find matrix of weights W* € R™*™ that minimizes the reconstruction error of a
datapoint from its neighbours

mn mn
W* = argmin E i — E Wijilfj
- =1

where W;; = 0 if z; is not a neighbour z; and »_, W;; =1 for all rows 1.

Analytic solution (matrix inversion)!
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3. Find embedding coordinates y7,...,vy; that minimize the embedding error

{i,...,ys} = argmin )
{yl,---,yn} 1=1

using the weights W* obtained in the observation space (step 2).

Analytic solution (eigenvalue problem)!

Yi — Z Wiy,
j=1
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Step 1: Finding Neighbours
e Use the k-nearest-neighbour rule: the neighbours of z; are the £k closest
datapoints x,,, ..., T, , with respect to the Euclidean norm.

e The e-ball rule is also applicable but choosing an appropriate € is even more
difficult than choosing £.
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Step 2: Finding the Weights (1) — Invariants

Let us first note some desirable properties.

The aim is to determine W* that minimizes the reconstruction error In

observation space
2

g(W) — Z r; — ZWZ']'ZIZ]'
1=1

1=1

subject to W;; = 0 if x; is not a neighbour z; and Zj W;; = 1 for all rows 3.

The minimizer W* of £(W) is invariant to rescaling, translation and rotation of
the observed data. This is what we want since W* is should capture the local
geometry of the data.
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Step 2: Finding the Weights (2) — Rescaling Invariance

Quick verification

Rescaling the data by a € R:

n

Z AX; — i Wij()éllfj = QQg(W)
7=1

1=1
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Step 2: Finding the Weights (3) — Translation Invariance

Quick verification

Translating the data by ¢t € R%:

Z CIZZ'—Ft— ZWw(CIﬁ] —I—t)
=1

g=1

3

/-(\3 S
% =
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Step 2: Finding the Weights (4) — Rotation Invariance

Quick verification

Rotating the data by R € R%*¢:

2
n

Z RZCZ — i WinCEj = r; —

i=1 j=1 i=1

N

Q.

N
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Step 2: Finding the Weights (5) — Reshaping the Problem

We want to find the minimizer

n

n
* .
|44 :argmlng xT; — E Wiz
W i=

j=1

subject to W;; = 0 if x; is not a neighbour z; and Zj W;; = 1 for all rows 3.

Minimize the reconstruction error of each xz; separately. Denote by w* the vector
of coefficients in the i-th row of W that correspond to its neighbours,

w' = |Wigys -, Wiy, | € RS
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Step 2: Finding the Weights (6) — Reshaping the Problem

Thus we find the minimizer w** for each datapoint x;

2 2
ki ki
w™ = argmin||z; — Y wix = argmin w(x; — oy, .)
- arsh ¢ gl ||~ arel j\Ti ™ Ty
w' j=1 w* j=1
_ - T - -
ki ki
— ] ,I: . — ,l: . —
= argmin E wi (T — Ty, E wi (T — Ty, )
w j=1 j=1
ki ki
_ - i o _ T iy
= argmin E g wiw Exz — Ty,) (T xmzz = argminw’ C'w
w? _ -~ w?
—.C;.l

subject to Zf’zl w? = 1 with the local covariance matrix C* € R**%i as defined
above.
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Step 2: Finding the Weights (7) — The Minimization

We can readily solve

w = argmin w'' C'w’
w?
subject to Zf’zl w? = w''1 =1 using the Lagrangian formulation

Lw', \) = w'" ' C'w' + AN(w' "1 —1)
which yields
OL(w',\) /0w’ = 2C*"w" + A1 and OL(w*,\)/O\ = w''1 — 1.

By setting Ciw' + A1 = 0 and wT1 — 1 = 0 we arrive at

B (Ci)—ll
N 1T(Cz‘)—11’

,wi
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Step 2: Finding the Weights (8) — Wrap-up

Let’s look back:

For each datapoint z;, we can compute its optimal reconstruction weights w** by

solving the linear system
C'w' =1

and subsequent rescaling of w® to enforce the constraint w**'1 = 1.

Thus we can assemble the weight matrix W* € R™*" from w'*, ..., w™*.
The next step:
Find lower dimensional embedding coordinates y1,...,y, € R< that best fit the

reconstruction weights WW* obtained in observation space.
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Step 3: Finding the Coordinates (1) — The Cost Function

We want to find coordinates 47, ...y, € R? that minimize the reconstruction
error in embedding space using the fixed weights W* obtained from the observed
data in the previous step,

{yi,....yp} = argmin Y |lyi— > Wy,
{yla“')yn} =1 71=1

\ . 7

=0 ({y;}7)

subject to Y .-, y; = 0 (centering) and + " | v."'y; = I (unit covariance).

The objective function ®({y;}7) can be rewritten to yield an analytic solution.
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Step 3: Finding the Coordinates (2) — Algebraic Massage

Rewriting the objective function:

2
O({y:}1) = > |wi— > Wiy
i=1 =1
_ - T - -
mn mn mn
= vi— > Wiyl |wi— ) Wiy
i=1 =1 | L =1 |
= ?JzTyz — 2 Z W;;yjy] + Z Z W:]szy]—l—yk
i=1 =1 =1 k=1
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Step 3: Finding the Coordinates (3) — Algebraic Massage

Rewriting the objective function (continued):

(I)({yZ}?) — S: S‘éwyz y] 22 zgyz y] + ZZszijyz y]
=1 1=1 k=1
= ZZMijy;w
=1 j=1

where the Matrix M &€ R™"*" is defined as

Mij o= 035 — Wi = Wi+ Y WeEWe =1 -W5)T(I-W*).
k=1
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Step 3: Finding the Coordinates (4) — Algebraic Massage

Let 3y € R™ be the i-th embedding dimension, i.e. y¥* = [(y1)i,..., (yn)i]. Then
we can write down the objective function as

O({y:}) = D> Myyly;

i=1 j=1

which we want to minimize subject to (y*) "y’ = d;; and >_7_, ¢ = 0.
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Step 3: Finding the Coordinates (5) — Minimization

Thus the embedding dimensions y'*. ..., y%* € R™ are the d’ minimizers of

y** = argminy ' My

Yy

subject to (y*) 'y’ = ds; (unit covariance) and > 7, % = 0 (centering).

By the Rayleigh-Ritz Theorem (M is Hermitian) we find that the embedding
dimension y** is the (k + 1)-th bottom eigenvector of M.

The bottom eigenvector is the constant 1. The constraints are fulfilled by virtue
of orthogonality.

Hence we have found the embedding coordinates 47, ..., y; € RY. That’s it!
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Wrapping it all up

1. For each x;, determine its k; neighbours x;,..,...,x;, , using e.g. the k-nearest-
neighbour rule.

2. For each x;, compute its optimal reconstruction weights w** (from its neighbours)
as w™* = (C*)711/17(C*) =11 where C" is the local covariance matrix,

;:l = (x; — xmj)T(a:i — Ty, ).

1x 7%
oo .

3. Assemble the weight matrix W* from w , W

4. Obtain the embedding dimensions y'*, . .. ,yd/* as the bottom eigenvectors of

M=0-W""1-W*.
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Conclusion

e LLE is a powerful nonlinear method.

e LLE is fast and soluble in closed form.
However:

e Sampling of the manifold needs to be very dense (worse than Isomap).
e LLE did not prove very useful in practice (cf. PCA).
e Parameter k, regularization of C* and choice of eigensolver are weak spots.

e No built-in feature to determine embedding dimensionality.
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Thank you for listening.
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