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Today's Topic

Methods:
m Adaption of Fisher's Discriminant Classifier.

m In particular, iterative adaption of means and inverse
(extended) covariance matrix.

Real world application:
m Classification of motor imagery conditions in a BCI paradigm.

m Update of the classifier to changes occuring during the
experimental session.



Experimental Design

Subject sitting relaxed in a chair with armrests.

Visual cues (arrows) indicate which type of motor imagery is to be
performed: left hand, right hand, right foot.

Every 15 trials, a break of 15 s is given. In total 105 trials of each
motor imagery condition are recorded.

— Pause of several hours —

Visual cues are provided again.
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-+
f t t i
2 sec 4 sec 2 sec

Note: today's data is artificially modified to increase the difference
between the two recordings.



Reminder: Subject-to-Subject Variability

m Experiment: 6 subjects performed left vs. right hand finger
tapping.

m Even though the task involves a highly overlearned motor
competence, the averaged brain patterns exhibit a great
diversity between subjects:
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» An optimal system needs adaption for each user.



Reminder: Session-to-Session Variability

m Experiment: One subject imagined left vs. right hand
movements on different days.

m Even though each ERD map represents an average across 140
trials, they exhibit an apparent diversity.
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» An optimal system needs adaption for (or within?) each session.



Reminder: Trial-to-Trial Variability

In this lesson we will take care of the changes within the session.
m Experiment: One subject imagined left vs. right hand

movements.
m Topographies show power in the alpha band during trials of

35s.
m They exhibit an extreme diversity, although recorded from one

subject on one day.

left hand right hand




Why do we need to adapt?

EEG changes:

m Class related short-term changes: performance of different
mental tasks.

m Class related long-term changes: due to feedback training
(learning). Mean of the features.

m (Class unrelated long-term changes: e.g. fatigue or lack of
concentration. Co-Variance of the features.

m Variation of other noise sources: e.g. changing impedance of
the electrodes.



Reminder: Fisher's Discriminant Analysis

Let x; be feature vectors of two conditions (k in C; resp. Cs) and

define
1
HZ = ‘CZ| Z Xk)u
keC;
Si=> (xn — i) g — i) "
keC;

w = (1 +52) (1 — p2)

Note: the vectors are column vectors.



Fisher's Discriminant: today’s variation

Today we use a equivalent variation:

S= > (= pa)xe— i)'

keC1,C2
/ —1
w =57 (1 — p2)
W/ = constant-w

With “some” mathematical effort one can show that the
classification result with both variations is the same.



Reminder: FD for Classification

Let x; € R™ be feature vectors of two classes (k € Cy resp.
k € C2). Then the FD vector w as defined above separates R™ in
two classes by virtue of the decision function:

—1 fwlz+b<0
1 else

fR" =R, z+— {
The bias can, e.g., be chosen as b = —w ' (1 + p12)/2.

To estimate the bias in today's variation, we use the pooled mean
instead of the average of the class means:

M:%' > X

keC1,C2

Note: FDA is equivalent to Linear Discriminant Analysis.



Mean estimation

Mean estimation of a stochastic (random) process x(t): at ¢, x(t)
is observed, with IV observations. The mean value estimate p, is

where n is the width of the window and w; are the weighting
factors.



Mean Estimation

Commonly: rectangular window, w; =1

1’n—1
—Zazt—z t>n
=0

Recursive formula for the rectangular window approach:

3

pa(t) = pialt = 1)+ (alt) —alt—m)  t>n

Need to keep the n past sample values in memory and an initial
112 (0).



Mean Estimation

Next formula needs no memory of past values of z:

pe(t) = (1—UC)  po(t— 1)+ UC-x(t)  t>1 (1)

UC= update coefficient of an exponential weighting window. One
needs an initial estimate 1, (0).

w; =UC-(1-UC)" ie{0,...,n—1}



Mean Estimation

Table: Computational effort of mean estimators (per dimension and time

step).
Method Memory effort Computational effort
stationary 0(1) 0(1)
weighted sliding window O(n) O(n)
rectangular sliding window O(n) O(n)
recursive (only for rectangular) O(n) 0(1)
adaptive (exponential window) O(1) 0(1)

Note: if the window length and UC are properly chosen, a similar
characteristic can be obtained.



Variance Estimation

The overall variance 2 of z(t) can be estimated with

1 & )
var(z) = o} Nz = E((z(t) — pa)”)

t=1

An adaptive estimator for the variance is this one

0.(1)2 = (1-UC) - 0,(t—1)>4+UC- (x(t) — pa(t))*  t>1
(2)
One needs the initial 0,(0)? and 1, (1).

Note: this variance estimator is biased. In order to obtain an
unbiased estimator, one must multiply the result by N/(N — 1).



Variance Estimation

1
e 2 -

Alternatively, one can also compute the mean square

MSQ,(t)=(1-UC)-MSQ,(t—1)+UC - x(t)? (3)

One needs M SQ.(0) as initial condition.
The variance can be obtained by

02(t)* = MSQ,(t) — pa(t)? (4)



Variance-Covariance Estimation

Remember FDA, the covariances between the various dimensions
are of interest. The (stationary) variance-covariance matrix:

T

| N
cov() = Bg = = D (x(t) — ) - (x(t) — p1y)
t=1

Variances: diagonal elements. Off-diagonal, element \S; ; covariance
between the i-th and j-th element.
An adaptive estimator of the covariance matrix:

T

3o (t) = (1-UC)- B (t=1)+UC-(2(t) = p, (1)) (2 () — (1))

t is the sample time, UC' is the update coefficient. Necessary
3.(0) and p(1).



Variance-Covariance Estimation

Estimating the covariance implies estimating mean values as well.
To avoid this we define the extended covariance matrix (ECM) E as

N
ECM(z) = E, = Y [Lz(t)] - [Lz(t) =
t=1
=N, - 1 ‘ p - (5)
e | Za + pop,

Remember to divide through N,.



Variance-Covariance Estimation

Adaptive ECM estimator:

T

E.(t)=(1-UC)-E,(t—1)+UC"-[1;z(t)]-[1; =(t)] t>1

t is the sample time, UC is the update coefficient. Necessary
E;(0).
For the exercise: remember to normalize initial conditions!!



Adaptive Inverse Covariance Matrix Estimation

FDA needs the computation of X!, We can extract X from the
ECM (divided through N;) and compute its inverse

»~! = inv(ECM(2:end,2:end) — ECM(2:end,1) - ECM(1,2:end)))

Needs an explicit matrix inversion -> computational effort.



Adaptive Inverse Covariance Matrix Estimation

But X! can be obtained without an explicit matrix inversion.
Let's see first what the inverse of ECM is:

-1
iECM = E~! = { é g } with the inverse of a block matrix

[ Aty A7IBS-tlcA Y | —A71BS! ]

—S—tcA-t S
T _ T _T
-3, =7

with S=D - CA~'B



Adaptive Inverse Covariance Matrix Estimation

Now we obtain the adaptively estimated iECM = E~*.

Applying the matrix inversion lemma to equation (6)
A= (B+UDV)
The inverse is:
A" = (B+UDV) ' =
B'-B'U(D'+VB'U) VB!



Adaptive Inverse Covariance Matrix Estimation

We identify the matrices in (8) as follows:

A
B
U
D

E(t)
1-UC)-E(t-1)
V7T =)

uc

UC" update coefficient, x(t): the current sample vector.

Substituting in Eq. 8 the adaptive inverse covariance matrix is:

Et)! =

_ 1)1 _ uc Cay .y
<E(t b auvoyvcwn v Y )

1-UC

(9)

with v = E(t —1)~! - x(¢) and w(t)T - v is a scalar. You need an
estimate of E(0)~1.




Adaptive Inverse Covariance Matrix Estimation

iIECM can become asymmetric and singular. Avoid it like this:

(E(t)*l + E(t)j>
2

Bt = (10)

Now, the inverse covariance matrix 3! can be obtained by
estimating the extended covariance matrix and decomposing it
according to equation (7).

»~! = iECM(2:end,2:end)



Adaptive Inverse Covariance Matrix Estimation

For the usual covariance we follow the same procedure:

_1y-1 uc Sy
<E(t 1) (—vo)ruc-xt—pa) v Y >
1-UC

()=
(11)

with v = 3(t — 1)71 - (z(t) — p(t)) an d (z(t) — p(t) visa
scalar. You need an estimate of 3(0)~! and p(1). You need to
reinforce symmetry as well.



Reminder: Training CSP-based Classification

Determine most discriminative frequency band,
band-pass filter EEG in that band,

extract single trials using the time interval in which ERD/ERS
is expected,

calculate and select CSP filters,
and apply them to EEG single trials,

calculate the log variance within trials.

To obtain a low dimensional feature vector per trial.

—(The data of the exercise is pre-processed until here)—

Train a linear classifier like Fisher's Discriminant on the
features (w/o shrinkage).



Updating and applying the Classifier

Trial by trial:

m Compute features: filter in time (frequency band) and space
(CSP filters), compute variance and log -> already
pre-processed!

m Update the trained classifier using the current test feature
vector (note that you do not use class labels).

m Apply the new classifier in the next test feature vector.

We need some delay! Only apply the classifier to the features of the
next trial.



