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Today's Topic

Methods:

Adaption of Fisher's Discriminant Classi�er.

In particular, iterative adaption of means and inverse
(extended) covariance matrix.

Real world application:

Classi�cation of motor imagery conditions in a BCI paradigm.

Update of the classi�er to changes occuring during the
experimental session.



Experimental Design

Subject sitting relaxed in a chair with armrests.
Visual cues (arrows) indicate which type of motor imagery is to be
performed: left hand, right hand, right foot.
Every 15 trials, a break of 15 s is given. In total 105 trials of each
motor imagery condition are recorded.
� Pause of several hours ��
Visual cues are provided again.

2 sec 2 sec4 sec

baseline motor imagery rest

Note: today's data is arti�cially modi�ed to increase the di�erence
between the two recordings.



Reminder: Subject-to-Subject Variability

Experiment: 6 subjects performed left vs. right hand �nger
tapping.

Even though the task involves a highly overlearned motor

competence, the averaged brain patterns exhibit a great
diversity between subjects:
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ä An optimal system needs adaption for each user.



Reminder: Session-to-Session Variability

Experiment: One subject imagined left vs. right hand
movements on di�erent days.

Even though each ERD map represents an average across 140
trials, they exhibit an apparent diversity.
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ä An optimal system needs adaption for (or within?) each session.



Reminder: Trial-to-Trial Variability

In this lesson we will take care of the changes within the session.

Experiment: One subject imagined left vs. right hand
movements.
Topographies show power in the alpha band during trials of
3.5 s.
They exhibit an extreme diversity, although recorded from one

subject on one day.

left hand right hand



Why do we need to adapt?

EEG changes:

Class related short-term changes: performance of di�erent
mental tasks.

Class related long-term changes: due to feedback training
(learning). Mean of the features.

Class unrelated long-term changes: e.g. fatigue or lack of
concentration. Co-Variance of the features.

Variation of other noise sources: e.g. changing impedance of
the electrodes.



Reminder: Fisher's Discriminant Analysis

Let xk be feature vectors of two conditions (k in C1 resp. C2) and
de�ne

µi =
1
|Ci|

∑
k∈Ci

xk,

Si =
∑
k∈Ci

(xk − µi)(xk − µi)>

w = (S1 + S2)−1(µ1 − µ2)

Note: the vectors are column vectors.



Fisher's Discriminant: today's variation

Today we use a equivalent variation:

S =
∑

k∈C1,C2

(xk − µi)(xk − µi)>

w′ = S−1(µ1 − µ2)
w′ = constant ·w

With �some� mathematical e�ort one can show that the
classi�cation result with both variations is the same.



Reminder: FD for Classi�cation

Let xk ∈ Rm be feature vectors of two classes (k ∈ C1 resp.
k ∈ C2). Then the FD vector w as de�ned above separates Rm in
two classes by virtue of the decision function:

f : Rm → R; z 7→

{
−1 if w>z + b < 0
1 else

The bias can, e.g., be chosen as b = −w>(µ1 + µ2)/2.

To estimate the bias in today's variation, we use the pooled mean
instead of the average of the class means:

µ =
1
N
·
∑

k∈C1,C2

xk

Note: FDA is equivalent to Linear Discriminant Analysis.



Mean estimation

Mean estimation of a stochastic (random) process x(t): at t, x(t)
is observed, with N observations. The mean value estimate µx is

mean(x) = µx =
1
N

N∑
t=1

x(t) = E〈x(t)〉

For a time-varying estimation, we need a (sliding) window:

µx(t) =
1∑n−1

i=0 wi

n−1∑
i=0

wi · x(t− i) t ≥ n

where n is the width of the window and wi are the weighting
factors.



Mean Estimation

Commonly: rectangular window, wi = 1

µx(t) =
1
n

n−1∑
i=0

x(t− i) t ≥ n

Recursive formula for the rectangular window approach:

µx(t) = µx(t− 1) +
1
n
· (x(t)− x(t− n)) t ≥ n

Need to keep the n past sample values in memory and an initial
µx(0).



Mean Estimation

Next formula needs no memory of past values of x:

µx(t) = (1−UC) · µx(t− 1) +UC · x(t) t ≥ 1 (1)

UC= update coe�cient of an exponential weighting window. One
needs an initial estimate µx(0).

wi = UC · (1− UC)i i ∈ {0, . . . , n− 1}



Mean Estimation

Table: Computational e�ort of mean estimators (per dimension and time
step).

Method Memory e�ort Computational e�ort

stationary O(1) O(1)
weighted sliding window O(n) O(n)
rectangular sliding window O(n) O(n)
recursive (only for rectangular) O(n) O(1)
adaptive (exponential window) O(1) O(1)

Note: if the window length and UC are properly chosen, a similar
characteristic can be obtained.



Variance Estimation

The overall variance σ2
x of x(t) can be estimated with

var(x) = σ2
x =

1
N

N∑
t=1

(x(t)− µx)2 = E〈(x(t)− µx)2〉

An adaptive estimator for the variance is this one

σx(t)2 = (1−UC) ·σx(t−1)2+UC ·(x(t)− µx(t))2 t ≥ 1
(2)

One needs the initial σx(0)2 and µx(1).

Note: this variance estimator is biased. In order to obtain an
unbiased estimator, one must multiply the result by N/(N − 1).



Variance Estimation

σ2
x =

1
N

N∑
t=1

x(t)2 − µ2
x

Alternatively, one can also compute the mean square

MSQx(t) = (1− UC) ·MSQx(t− 1) + UC · x(t)2 (3)

One needs MSQx(0) as initial condition.
The variance can be obtained by

σx(t)2 = MSQx(t)− µx(t)2 (4)



Variance-Covariance Estimation

Remember FDA, the covariances between the various dimensions
are of interest. The (stationary) variance-covariance matrix:

cov(x) = Σx =
1
N

N∑
t=1

(x(t)− µx) · (x(t)− µx)
>

Variances: diagonal elements. O�-diagonal, element Si,j covariance
between the i-th and j-th element.
An adaptive estimator of the covariance matrix:

Σx(t) = (1−UC)·Σx(t−1)+UC·(x(t)−µx(t))·(x(t)−µx(t))
>

t is the sample time, UC is the update coe�cient. Necessary
Σx(0) and µ(1).



Variance-Covariance Estimation

Estimating the covariance implies estimating mean values as well.
To avoid this we de�ne the extended covariance matrix (ECM) E as

ECM(x) = Ex =
Nx∑
t=1

[1;x(t)] · [1;x(t)]
>

=

= Nx ·

[
1 µ

>
x

µx Σx + µxµ
>
x

]
(5)

Remember to divide through Nx.



Variance-Covariance Estimation

Adaptive ECM estimator:

Ex(t) = (1−UC)·Ex(t−1)+UC ·[1;x(t)]·[1;x(t)]
>

t ≥ 1
(6)

t is the sample time, UC is the update coe�cient. Necessary
Ex(0).
For the exercise: remember to normalize initial conditions!!



Adaptive Inverse Covariance Matrix Estimation

FDA needs the computation of Σ−1. We can extract Σ from the
ECM (divided through Nx) and compute its inverse

Σ−1 = inv(ECM(2:end,2:end)− ECM(2:end,1) · ECM(1,2:end)))

Needs an explicit matrix inversion -> computational e�ort.



Adaptive Inverse Covariance Matrix Estimation

But Σ−1 can be obtained without an explicit matrix inversion.
Let's see �rst what the inverse of ECM is:

iECM = E−1 =
[
A B

C D

]−1

with the inverse of a block matrix

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]

=

[
1 + µ

>
x Σ−1

x µx −µ>x Σ−
>

x

−Σ−1
x µ

>
x Σ−1

x

]
(7)

with S = D − CA−1B



Adaptive Inverse Covariance Matrix Estimation

Now we obtain the adaptively estimated iECM = E−1.

Applying the matrix inversion lemma to equation (6)
A = (B + UDV )
The inverse is:

A−1 = (B + UDV )−1 =
= B−1 −B−1U

(
D−1 + V B−1U

)−1
V B−1 (8)



Adaptive Inverse Covariance Matrix Estimation

We identify the matrices in (8) as follows:

A = E(t)
B = (1− UC) ·E(t− 1)
U = V > = x(t)
D = UC

UC: update coe�cient, x(t): the current sample vector.
Substituting in Eq. 8 the adaptive inverse covariance matrix is:

E(t)−1 =

(
E(t− 1)−1 − UC

(1−UC)+UC·x(t)> ·v
· v · v>

)
1− UC

(9)

with v = E(t− 1)−1 · x(t) and x(t)
> · v is a scalar. You need an

estimate of E(0)−1.



Adaptive Inverse Covariance Matrix Estimation

iECM can become asymmetric and singular. Avoid it like this:

E(t)−1 =

(
E(t)−1 +E(t)−

>
)

2
(10)

Now, the inverse covariance matrix Σ−1 can be obtained by
estimating the extended covariance matrix and decomposing it
according to equation (7).

Σ−1 = iECM(2:end,2:end)



Adaptive Inverse Covariance Matrix Estimation

For the usual covariance we follow the same procedure:

Σ(t)−1 =

(
Σ(t− 1)−1 − UC

(1−UC)+UC·(x(t)−µ(t))> ·v
· v · v>

)
1− UC

(11)

with v = Σ(t− 1)−1 · (x(t)− µ(t)) and (x(t)− µ(t))
> · v is a

scalar. You need an estimate of Σ(0)−1 and µ(1). You need to
reinforce symmetry as well.



Reminder: Training CSP-based Classi�cation

Determine most discriminative frequency band,

band-pass �lter EEG in that band,

extract single trials using the time interval in which ERD/ERS
is expected,

calculate and select CSP �lters,

and apply them to EEG single trials,

calculate the log variance within trials.

To obtain a low dimensional feature vector per trial.

�(The data of the exercise is pre-processed until here)�

Train a linear classi�er like Fisher's Discriminant on the
features (w/o shrinkage).



Updating and applying the Classi�er

Trial by trial:

Compute features: �lter in time (frequency band) and space
(CSP �lters), compute variance and log -> already
pre-processed!

Update the trained classi�er using the current test feature
vector (note that you do not use class labels).

Apply the new classi�er in the next test feature vector.

We need some delay! Only apply the classi�er to the features of the
next trial.


