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Structured Data

Ubiquituous in important application domains

Bioinfomatics
e.g. DNA sequences and evolutionary trees

Natural language processing
e.g. textual documents and parse trees

Computer security
e.g. network packets and program behavior

Chemoinformatics
e.g. molecule structures and relations

How to incorporate structure into learning methods?
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What is a Kernel?

A positive semi-definite function k : X × X → R
Similarity measure for objects in a domain X
Basic building block for many learning algorithms

Definition
A symmetric function k : X × X → R is a Kernel if and only for
any subset {x1, . . . , xl} ⊂ X k is positive semi-definite, that is

l∑
i ,j=1

ci cj k (xi , xj ) ≥ 0 with c1, . . . , cl ∈ R.
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Classic Kernels

Let X ⊆ Rd . Then kernels k : X × X → R are given by

Linear kernel k (x, y) := 〈x, y〉 =
∑d

i=1 xi yi

Polynomial kernel k (x, y) := (〈x, y〉+ θ)p

Gaussian kernel k (x, y) := exp
(
||x−y||2

γ

)
. . .

But: type of domain X not restricted to vectorial data.
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Induced Feature Space

Theorem
A kernel k induces a feature map ψ : X → H to a Hilbert space,
such that for all x, y ∈ X

k (x, y) = 〈ψ(x), ψ(y)〉

corresponds to an inner product in H.

Access to inner products, vector norms and distances, e.g.,

||ψ(x)||2 =
√

k (x, x)

||ψ(x)− ψ(y)||2 =
√

k (x, x) + k (y, y)− 2k (x, y)
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Why use Kernels for Learning?

Advantages

Efficient computation in high-dimensional feature spaces

Non-linear feature maps for complex decision surfaces

Abstraction from data representation and learning methods
⇒ application of learning methods to structured data

Kernel-based learning

Classification (Support Vector Machines, Kernel Peceptron)

Clustering (Kernel k -means, Spectral Clustering)

Data projection (Kernel PCA, Kernel ICA)
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Kernels for Sequences
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Sequences

Alphabet

An alphabet A is a finite set of discrete symbols

DNA, A = {A,C,G,T}
Natural language text, A = {a,b,c, . . .A,B,C, . . .}

Sequence

A sequence x is concatenation of symbols from A, i.e., x ∈ A∗

An = all sequences of length n

A∗ = all sequences of arbitary length

|x| = length of a sequence
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Embedding Sequences

Characterize sequences using a language L ⊆ A∗.

Feature space spanned by frequencies of words w ∈ L

Feature map

A function φ : A∗ → R|L | mapping sequences to R|L | given by

x 7→
(
#w(x) ·

√
Nw

)
w∈L

where #w(x) returns the frequency of w in sequence x.

Refinement of embeddung using weighting constants Nw

Normalization, often ||φ(x)||1 = 1 or ||φ(x)||2 = 1.
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Example: Embedding

Embedding of new articles using the exemplary language
L = {McCain,Clinton,Obama}
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Vectorial representation of
sequence content via language L

Data lies on quarter-sphere due
to ||φ(x)||2 = 1 normalization

Source: news.google.com on
15. April 2008

Prof. Dr. Klaus-Robert Müller Konrad Rieck Kernels for Structured Data



Brief review: Kernels Kernels for Sequences Kernels for Trees Sequence kernels Bag-of-words and n-grams Subsequences

Sequence Kernels

Generic Sequence Kernel

A sequence kernel k : A∗ ×A∗ → R over φ is defined by

k (x, y) = 〈φ(x), φ(y)〉 =
∑
w∈L

#w(x) ·#w(y) ·Nw

Proof.

By definition k is an inner product in R|L | and thus symmetric
and positive semi-definite.

Feature space induced by φ explicit but sparse.

Naive running time O(|x|2 + |y|2)
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Bag-of-Words

Characterization of sequences by non-overlapping words.

x =“Hasta la vista, baby.” −→ { “Hasta”, “la”, “vista”, “baby” }

Bag-of-Words Kernel

Sequence kernel using embedding language containing words

L = Dictionary (explicit) or L = (A\D)∗ (implicit)

with D ⊂ A delimiter symbols, e.g., punctation and space.

Extension using stemming techniques, “helping” ⇒ “help”

Weighting to control contribution of words
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Implementing Bag-of-Words

Efficient realization using sorted arrays or hash tables

x = “to be or not to be”

φ(x) = [“be” : 2] → [“not” : 1] → [“or” : 1] → [“to” : 2]

Kernel computation similar to merging lists

φ(x) = [“be” : 2] → [“not” : 1] → [“or” : 1] → [“to” : 2]

φ(y) = [“be” : 1] → [“free” : 1] → [“to” : 1]

−→ 2 · 1 + 2 · 1

Run-time O(n|x|+ n|y|) for words of length n.
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N-grams

Characterization of sequences by subsequences of length n

x = “Hasta la vista, baby.” −→ { “Has”, “ast”, “sta”, . . . }

Spectrum Kernel

Sequence kernel using embedding language containing all
sequences of length n (n-grams):

L = An (normal) or L =
n⋃

i=1

Ai (blended)

No prior knowledge of application domain required

Note: n-grams have fixed overlap of n − 1 symbols

Prof. Dr. Klaus-Robert Müller Konrad Rieck Kernels for Structured Data



Brief review: Kernels Kernels for Sequences Kernels for Trees Sequence kernels Bag-of-words and n-grams Subsequences

Tries

Efficient data structure for storage of sequences

a b

s a e

t u i

m l

a na s

na s nas s

nas s

lalala

lalal

1

“Trie” = Retrieval tree
(also dictionary or keyword tree)

Path from root to marked node
represents stored sequence

Example sequences:
{“ast”, “bau”, “baum”, “beil”}
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Implementation of N-grams

Efficient realization using Trie representation

SIMILARITY MEASURES FOR SEQUENTIAL DATA

mark[x]

phi[x]

X Y

a b a b

b a b a a

b a a a b a

(1) (1) (1) (2) (1) (1)

Figure 2: Tries of 3-grams for x = abbaa and y = baaaab. The number in brackets at leaves

indicate the number of occurrences. Marked nodes are squared. White nodes are implicit

and not maintained in a compact trie representation.

Algorithm. Comparison of two tries is performed as in Algorithm 2: Starting at the root nodes,

one recursively traverses both tries in parallel. If the traversal passes at least one marked node the in-

ner function m is computed as either a matching or mismatching word occurred (Rieck et al., 2006).

To simplify presentation of the algorithm, we assume that mark[NIL] returns false and child[NIL, i]

returns NIL.

Algorithm 2 Trie-based sequence comparison

1: function COMPARE(X,Y : Trie) : R

2: s ← e

3: if X = NIL and Y = NIL then " Base case
4: return s

5: for i ← 1, |A| do
6: x ← child[X, i], y ← child[Y, i]

7: if mark[x] and not mark[y] then "Mismatch at x
8: s ← s⊕m(phi[x],0)

9: if not mark[x] and mark[y] then "Mismatch at y
10: s ← s⊕m(0,phi[y])

11: if mark[x] and mark[y] then "Match at x and y
12: s ← s⊕m(phi[x],phi[y])

13: s ← s⊕ COMPARE(x, y)
14: return s

Run-time. The trie-based approach enables linear-time similarity measures over a larger set of

formal languages than sorted arrays. For tries we require allw ∈ L withw % x to have either constant
overlap in x or to be prefix of another word, for example, as for the blended k-gram embedding

languages.

To determine the run-time complexity on tries, we need to consider the following property: A

trie storing n words of maximum length k has depth k and at most kn nodes. Thus, a sequence x

containing O(|x|) words of maximum length k is embedded using a trie in O(k|x|) run-time. As an

33

Tries of 3-grams
for x =“abbaa”
and y =“baaaab”

Kernel computation via parallel traversal of matching nodes

Run-time O(n ·min(|x|, |y|)) for n-grams

Blended n-grams by storing #w(x) in inner nodes.
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Positional N-grams

Incorportation of positional information into n-gram concept

x = “Hasta la vista, baby.” → { “H1a2s3”, “a2s3t4”, “s5t6a7”, . . . }

Weighted Degree Kernel

Sequence kernel using n-grams and extended alphabet

Ã = A× N,

where for (a,p) ∈ Ã, a encodes a symbol and p its position

Extension by incorporating minor positional shifts
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Implementation of Positional N-grams

Efficient realization by looping over sequences

Implementation with shifts via multiple looping

k(x1,x2) = w6,3                      +                  w6,-3   + w3,4
x1
x2

Run-time O(s ·max(|x|, |y|)) with shift s
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Contiguous Subsequences

Characterization using all possible subsequences

x = “Hasta la vista, baby.” −→ { “H”, “Ha”, “Has”, . . . }

Contiguous Subsequence Kernel

Sequence kernel using embedding language containing all
possible sequences

L = A∗ =
∞⋃

i=1

Ai

Arbitary overlap ⇒ quadratic amount of subsequences

Weighting to control contribution of subsequences,
e.g. length-dependent Nw = λ|−w| with 0 < λ ≤ 1
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Suffix Trees

Efficient and versatile sequence representation

Suffix Tree = Trie containing all suffixes of a sequence

a b

s a e

t u i

m l

a na s

na s nas s

nas s

lalala

lalal

1

Compact storage by edge compression, e.g. nas ⇒ [4,6]

Example sequence: “ananas”
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Implementation of Subsequences

Efficient realization using generalized suffix trees (GST)

GST for x =“abbaa” and y =“baaaab” using z =“abaa$1baaab$2”

SIMILARITY MEASURES FOR SEQUENTIAL DATA

a $1 $2 b

(2,4) (2,2)

a $1 b aa $2 baa$1

(1,3) (1,1) (1,1)

a $1 b$2 $2 baa$1 aab$2 $1

(0,2)

ab$2 b$2

Figure 3: Generalized suffix tree for x= abbaa$1 and y = baaaab$2. The numbers in brackets at

each inner node v correspond to phi[v,1] and phi[v,2]. Edges are shown with associated

subsequences instead of indices.

Smola (2004). At a node v the function takes length[v] and depth[v] of v as arguments to determine

how much the node and its incoming edge contribute to the similarity measure, for example, for the

embedding language of k-grams only nodes up to a path depth of k need to be considered.

Algorithm 3 GST-based sequence comparison

1: function COMPARE(X,Y :A∗) : R

2: T ← CONCAT(X,Y )

3: S ← SUFFIXTREE(T )

4: return TRAVERSE(root[S])

5: function TRAVERSE(v : Node) : R

6: s ← e

7: for c ← children[v] do

8: s ← s⊕ TRAVERSE(c) $ Depth-first traversal
9: n ← FILTER(length[v],depth[v]) $ Filter words on edge to v
10: s ← s⊕m(phi[v,1],phi[v,2])⊗ n

11: return s

Algorithm 4 shows a filter function for k-grams. The filter returns 0 for all edges that do not

correspond to a k-gram, either because they are too shallow or too deep in the GST, and returns 1 if

a k-gram terminates on the edge to a node v .

Algorithm 4 Filter function for k-grams, L = Ak

function FILTER(v : Node) : N

if depth[v]≥ k and depth[v]− length[v]< k then

return 1

return 0

35

Kernel computation via depth-first search in suffix tree

O(|z|) inner nodes ⇒ run-time O(|z|) = O(|x|+ |y|)
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Kernels for Trees
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Trees and Parse Trees

Tree
A tree x = (V , E , v∗) is an acyclic graph (V , E) rooted at v∗ ∈ V .

Parse tree
A tree x derived from a context-free grammar, such that each
node v ∈ V is associated with a production rule p(v).

Further notation

vi = i -th child of node v ∈ V ,

|v| = number of children of v ∈ V

and the set T of all parse trees
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Parse Trees

Tree representation of “sentences” derived from a grammar

aa

A

c

C

b

B

Parse tree for caab using
grammar over
{A ,B ,C , a,b , c} and
productions

p1 : A → B C

p2 : B → c a

p3 : C → a b

Common data structure in natural language processing and
design of programming languages, compilers, etc.
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Embedding subtrees

Characterization of parse trees by contained subtrees

aa

A

c

C

b

B

−→ a

A

C

b

B

ac

C

bc

B

a a

A

Feature map

A function φ : T → R|T | mapping trees to R|T | given by

x 7→ (It (x))t∈T

where It (x) indicates if t is a subtree of parse tree x.

Binary feature space spanned by indicator for subtrees
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Parse Tree Kernel

Parse Tree Kernel
A tree kernel k : T × T → R is given by

k (x, y) = 〈φ(x), φ(y)〉 =
∑
t∈T

It (x)It (y)

Proof.
By definition k is an inner product in the space of all trees T and
thus is symmetric and positive semi-definite.

T has infinite size ⇒ naive computation infeasible
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Counting shared subtrees

Parse tree kernel counts the number of shared subtrees

For each pair (v,w) determine shared subtrees at v and w.

k (x, y) =
∑
t∈T

It (x)It (y) =
∑
v∈Vx

∑
w∈Vy

c(v,w)

Counting function

c(v,w) = 0 if p(v) 6= p(w) (different)

c(v,w) = 1 if |v| = |w| = 0 (leaves)

otherwise

c(v,w) =

|v|∏
i=1

(1 + c(vi ,wi ))
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Counting function in Detail

First base case: c(v,w) = 0 if p(v) 6= p(w)
⇒ trivial, no match = no shared subtrees

Second base case: c(v,w) = 1 if |v| = |w| = 0
⇒ trivial, one leave = one subtree

Recursion: c(v,w) =
∏|v|

i=1(1 + c(vi ,wi ))

B

A

C

c(vA ,wA ) = (1 + c(vB ,wB ))

· (1 + c(vC ,wC ))

Pair all shared subtrees in B with C
including edges to A .
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Implementation of Parse Tree Kernel

Realization using dynamic programming table.

k(x,y)

...

y

x

Matrix of all c(v,w) with
(v,w) ∈ Vx × Vy ordered by
descending depth

Run-time O(|Vx | · |Vy |).
Speed-up by skipping
non-matching node pairs.

Prof. Dr. Klaus-Robert Müller Konrad Rieck Kernels for Structured Data



Brief review: Kernels Kernels for Sequences Kernels for Trees Parse tree kernel Shallow tree kernel

Shallow Tree Kernel

Idea: map trees to sequences and apply sequence kernels

Flattening

A function f : T → A∗ mapping trees to sequences given by
f (x) 7→ m(v∗) with

m(v) = “[” ◦m(v1) ◦ · · ·m(v|v|) ◦ “]”

Shallow tree kernel

A kernel k : T × T → R based on a sequence kernel k̂ given by

k (x, y) = k̂ (f (x), f (y)).
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Flattening a Tree

Implementation of flattening

Computation by depth-first traversal of tree

Run-time dependent on traversal and sequence kernel

aa

A

c

C

b

B

Example

With labels f (x) = “[A[B[c][a]][C[a][b]]]”

Without labels f (x) = “[[[][]][[][]]]”
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Conclusions

Kernels for structured data

Effective means for learning with structured data

Various efficient kernels for sequences and trees

More on structured data and kernels

Kernel for graphs, images, sounds

. . .

Interesting applications (upcoming lectures)

“Catching hackers”: Network intrusion detection

“Discovering genes”: Analysis of DNA sequences
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