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Structured Data

Ubiquituous in important application domains

@ Bioinfomatics
e.g. DNA sequences and evolutionary trees

o Natural language processing
e.g. textual documents and parse trees

o Computer security
e.g. network packets and program behavior

@ Chemoinformatics
e.g. molecule structures and relations

How to incorporate structure into learning methods?
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ols Definition and properties

What is a Kernel?

@ A positive semi-definite function k : ¥ x X — R
@ Similarity measure for objects in a domain X
@ Basic building block for many learning algorithms

A symmetric function k : X x X — R is a Kernel if and only for
any subset {xy,...,x;} C X k is positive semi-definite, that is

/
Z C,'Cjk(X,',Xj) >0 with ¢,...,¢ €R.
i7j:1
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Bri >rnels Definition and properties

Classic Kernels

Let X C RY. Then kernels k : X x X — R are given by
o Linear kernel k(x,y) := (x,y) = 2721 XiVi
@ Polynomial kernel k(x,y) := ((x,y) + 0)P
@ Gaussian kernel k(x,y) :=exp <M)

But: type of domain X’ not restricted to vectorial data.

Prof. Dr. Klaus-Robert Mller Konrad Rieck Kernels for Structured Data



ols Definition and properties

Induced Feature Space

Theorem

A kernel k induces a feature map 1) : X — 'H to a Hilbert space,
such that for all x,y € X

k(x,y) = (®(x), ¥(y))

corresponds to an inner product in H.

@ Access to inner products, vector norms and distances, e.g.,

1902 = Vk(x; x)
b (x) = P(y)ll2 = \/k(x,x) +k(y,y) = 2k(x,y)
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ols Definition and properties

Why use Kernels for Learning?

Advantages
e Efficient computation in high-dimensional feature spaces
@ Non-linear feature maps for complex decision surfaces

@ Abstraction from data representation and learning methods
= application of learning methods to structured data

Kernel-based learning
@ Classification (Support Vector Machines, Kernel Peceptron)
o Clustering (Kernel k-means, Spectral Clustering)
@ Data projection (Kernel PCA, Kernel ICA)
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f-words and bsequenc

Kernels for Sequences
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Sequences

Alphabet

An alphabet A is a finite set of discrete symbols

e DNA, A ={AC,G T}
o Natural language text, A ={ab,c,...ABC,...}

Sequence

A sequence x is concatenation of symbols from A, i.e., x € A*

e A" =all sequences of length n
o A* = all sequences of arbitary length
@ |x| = length of a sequence

Prof. Dr. Klaus-Robe iller Konrad Rieck Kernels for Structured Data



Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Embedding Sequences

@ Characterize sequences using a language L C A*.
o Feature space spanned by frequencies of words w € L

A function ¢ : A* — RII mapping sequences to RI'! given by

where #,,(x) returns the frequency of w in sequence x.

welL

@ Refinement of embeddung using weighting constants N,

e Normalization, often ||¢(x)|[1 = 1 or ||¢(x)|]2 = 1.
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Example: Embedding

Embedding of new articles using the exemplary language
L = {McCain, Clinton, Obama}

Vectorial representation of
sequence content via language L

Data lies on quarter-sphere due
to [|¢(x)|l2 = 1 normalization

Source: news.google.com on
15. April 2008

. mccain
clinton
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Sequence Kernels

Generic Sequence Kernel

A sequence kernel k : A* x A* — R over ¢ is defined by

k(x,y) = (6(x), (y)) = Y #w(x) - #w(y) - N

welL

By definition k is an inner product in RII and thus symmetric
and positive semi-definite. O

<

@ Feature space induced by ¢ explicit but sparse.
@ Naive running time O(|x|* + |y|?)
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams  Subsequences

Bag-of-Words

Characterization of sequences by non-overlapping words.

x =“Hasta la vista, baby.” — { “Hasta”, “la”, “vista”, “baby” }

Bag-of-Words Kernel

Sequence kernel using embedding language containing words
L = Dictionary (explicit) or L = (A\D)* (implicit)

with D C A delimiter symbols, e.g., punctation and space.

@ Extension using stemming techniques, “helping” = “help”
@ Weighting to control contribution of words
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams  Subsequences

Implementing Bag-of-Words

o Efficient realization using sorted arrays or hash tables

X = “to be or not to be”
o(x) = ["be” : 2] — [“not” : 1] — [“or” : 1] — [“to” : 2]

o Kernel computation similar to merging lists

¢(x)
oly) =

[“be” : 2] — [“not” : 1] — [“or” : 1] — [“to” : 2]
[“be” : 1] — [“free” : 1] — [“t0” : 1]
— 21 + 21

@ Run-time O(n|x| + n|y|) for words of length n.
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams  Subsequences

N-grams

Characterization of sequences by subsequences of length n

x = “Hasta la vista, baby.” — { “Has”, “ast”, “sta”, ...}

Spectrum Kernel

Sequence kernel using embedding language containing all
sequences of length n (n-grams):

L =A" (normal) or L= U A’ (blended)

i=1

@ No prior knowledge of application domain required
@ Note: n-grams have fixed overlap of n — 1 symbols
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams  Subsequences

Efficient data structure for storage of sequences

ﬁ/ >K @ “Trie” = Retrieval tree

L (also dictionary or keyword tree)
%) \? @ Path from root to marked node

t 7 represents stored sequence

. %) e Example sequences:

i //ast/// Nbau/// Nbaum/// I/beill/}
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Sequence kernels Bag-of-words and n-grams  Subsequences

AR R
A
B

and y =“baaaab”

1 (¢)) 1) @ 1 1

o Kernel computation via parallel traversal of matching nodes
@ Run-time O(n - min(|x|, |y|)) for n-grams
@ Blended n-grams by storing #(x) in inner nodes.
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams  Subsequences

Positional N-grams

Incorportation of positional information into n-gram concept

x = “Hasta la vista, baby.” — { “Hjazs3”, “axssts”, “ssteas”, ...}

Weighted Degree Kernel

Sequence kernel using n-grams and extended alphabet
A=AxN,

where for (a,p) € A, a encodes a symbol and p its position

@ Extension by incorporating minor positional shifts
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams  Subsequences

Implementation of Positional N-grams

Efficient realization by looping over sequences

k(s1,52) = w7 +Wwi1 + w2+ w2 + W3

S1—>—AGT GGACATCAGTAGACAGATTAAA—>

|- 11
CAAAGACATCAGTAGACITATT—>

S2—>— TTAT]
Implementation with shifts via multiple looping

k(xiXz) = Wes W3 + Wiy
TCGGATTG—)

CTACGTATT
X2—>—TT, AAGG CCTGAAGACGG—)

Run-time O(s - max(|x|, |y|)) with shift s
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Contiguous Subsequences

Characterization using all possible subsequences

x = “Hasta la vista, baby.” — { “H”, “Ha”, “Has”, ...}

Contiguous Subsequence Kernel

Sequence kernel using embedding language containing all
possible sequences

L:mzﬁm

i=1

@ Arbitary overlap = quadratic amount of subsequences

@ Weighting to control contribution of subsequences,
e.g. length-dependent N,, = A=l with 0 < X\ < 1

Prof. Dr. Klaus-Robe iller Konrad Rieck Kernels for Structured Data



Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Suffix Trees

e Efficient and versatile sequence representation
e Suffix Tree = Trie containing all suffixes of a sequence

nas s

"

@ Compact storage by edge compression, e.g. nas = [4, 6]
@ Example sequence: “ananas”
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Kernels for Sequences Sequence kernels Bag-of-words and n-grams Subsequences

Implementation of Subsequences

Efficient realization using generalized suffix trees (GST)

GST for x ="abbaa” and y ="baaaab” using z =“abaa$baaab$,”

a 1 2
(2.4) o/ \0 \/?(\2,2)
a” $ b aa $, baa$,
(1% l xl,l) (1,1% l \O
a” $; b$, $, baa$, aab$, $;
0,2
ab$, b$,

@ Kernel computation via depth-first search in suffix tree
@ O(|z|) inner nodes = run-time O(|z|) = O(|x| + |y|)
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Kernels for Trees
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Kernels for Trees Parse tree kernel Shallow tree kernel

Trees and Parse Trees

Atree x = (V, E, v*) is an acyclic graph (V, E) rooted at v* € V.

Parse tree

A tree x derived from a context-free grammar, such that each
node v € V is associated with a production rule p(v).

Further notation
@ v; = i-th child of node v € V,
@ |v| = number of children of v € V
@ and the set 7 of all parse trees
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Kernels for Trees Parse tree kernel Shallow tree kernel

Parse Trees

Tree representation of “sentences” derived from a grammar

Parse tree for caab using
grammar over
{A,B,C,a,b,c} and
productions
ep:A—=BC

e p;:B—ca

ep;:C—ab

Common data structure in natural language processing and
design of programming languages, compilers, etc.
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Kernels for Trees Parse tree kernel Shallow tree kernel

Embedding subtrees

Characterization of parse trees by contained subtrees

c a a b a b a
e /\.

Feature map

A function ¢ : 7 — RIZ! mapping trees to R!7! given by

x = (Le(x)) et

where I;(x) indicates if t is a subtree of parse tree x.

@ Binary feature space spanned by indicator for subtrees
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Kernels for Trees Parse tree kernel Shallow tree kernel

Parse Tree Kernel

Parse Tree Kernel
A tree kernel k : 7 x T — R is given by

k(x.y) = (@(x): ¢(y)) = D Li(x)

teT

By definition k is an inner product in the space of all trees 7 and
thus is symmetric and positive semi-definite. O

4

@ 7 has infinite size = naive computation infeasible
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Kernels for Trees Parse tree kernel Shallow tree kernel

Counting shared subtrees

@ Parse tree kernel counts the number of shared subtrees
@ For each pair (v, w) determine shared subtrees at v and w.

k(x,y) =) L()L(y)= Y > c(v,w)

teT veVy wev,

Counting function

@ c(v,w)=0 if p(v) # p(w) (different)
o c(v,w)=1if|v|]=|w|=0 (leaves)

@ otherwise
Iv|

c(v,w) = H(1 + c(vi, wi))

i=1
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Kernels for Trees Parse tree kernel Shallow tree kernel

Counting function in Detail

@ First base case: c(v,w) =0 if p(v) # p(w)
= trivial, no match = no shared subtrees

@ Second base case: c(v,w) =1 if|v|=|w|=0
= trivial, one leave = one subtree

@ Recursion: c(v,w) = H‘,‘/:‘1(1 + c(vi,w;))

C(VA, WA) = (1 + C(VB, WB))
. (1 + C(VC7 Wc))

Pair all shared subtrees in B with C
including edges to A.
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Kernels for Trees Parse tree kernel Shallow tree kernel

Implementation of Parse Tree Kernel

Realization using dynamic programming table.

y
N + Matrix of all ¢(v, w) with
< + (v,w) € Vi x V, ordered by
X N > descending depth
s Run-time O(| V] - |V, ).

B A A A Speed-up by skipping

kxy)  non-matching node pairs.
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Kernels for Trees Parse tree kernel  Shallow tree kernel

Shallow Tree Kernel

Idea: map trees to sequences and apply sequence kernels

Flattening

A function f : 7 — A* mapping trees to sequences given by
f(x) — m(v*) with

m(v) — I[P m(V1) o= m(vlvl) & Y

4

Shallow tree kernel

A kernel k : 7 x T — R based on a sequence kernel k given by

k(x, y) = k(f(x),f(y)).
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Kernels for Trees Parse tree kernel  Shallow tree kernel

Flattening a Tree

Implementation of flattening
@ Computation by depth-first traversal of tree

@ Run-time dependent on traversal and sequence kernel

Example
e With labels f(x) = “[A[B[c][a]l[Cla]l[b]]]”
e Without labels f(x) = “[[[1111[11111”
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Kernels for Trees Parse tree kernel  Shallow tree kernel

Conclusions

Kernels for structured data
o Effective means for learning with structured data
@ Various efficient kernels for sequences and trees

More on structured data and kernels
o Kernel for graphs, images, sounds
° ...

Interesting applications (upcoming lectures)
@ “Catching hackers”: Network intrusion detection
e “Discovering genes”: Analysis of DNA sequences
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