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@ Unsupervised Learning:
given {x;}i=1,. N, X; € X
characterize Pr (x)

@ Supervised Learning:
given {(xi, %) }i=1,..N
estimate f: X — )Y such that f(x) ~ y
in other words, characterize Pr (y |x)

e Semi-Supervised Learning (SSL):
goal like for supervised,
with additional unlabeled data {x;},—n+1,. . N+M

Why SSL?
Labels are often expensive.



Generative model: Pr(x,y)

Pr(data|0) = [[Pr(xi,uil0) ][] Pr(x;10)
i J

= HPr(xi,yi\Q)HZPT@jaZ/W)
i y

J
Maximize log likelihood:

log£L(0) = ZlogPr(xi,yi\9)+Zlog <ZPT(Xj,y]9)>

typically convex typically non-convex

Standard tool for optimization (=training):
Expectation-Maximization (EM) algorithm



Unlabeled data can be misleading...

high likelihood low likelihood

wrong correct

from [Semi-Supervised Learning, ICML 2007 Tutorial; Xiaojin Zhu]



Discriminative model: Pr (y|x)

£ = [[Prwx.0)

Problem: Density of x does not help to estimate conditional
Pr(y|x)!



Why would unlabeled data be useful at all?

O -

Uniform data do not help.



Cluster Assumption

1. The data form clusters.
2. Points in the same cluster are likely to be of the same class.

o« . .,
X
.

(Reall the standard Supervised Learning Assumption:
Similar points tend to have similar labels.)



Cluster Assumption
Points in the same cluster are likely to be of the same class.

@ The cluster assumption seems to hold for many real data sets.
@ Most SSL algorithms (implicitly) make use of it.

@ No corresponding assumption for regression.

Equivalent assumption:

Low Density Separation Assumption
The decision boundary lies in a low density region.

= Algorithmic idea: Low Density Separation



Example application: recognize handwritten digits 2, 4, 8

0.4} :

0.2f

-06 -04 -0.2 0 02 04 06

[non-linear 2D-embedding with “Stochastic Neighbor Embedding”]



S3VM: . .
semi-supervised ¢ *
SVM . o
. X . .
: 1 yi({w,x;) +b) =2 1
min — (W, W s.t.
w2t yi({ww,;) +8) > 1

regularizer



soft margin .
S3VM .
. X .
5 (W, w) §i>0 §>0
min +C> . & st yi((wex)+b)>1-¢

Wb (i), (&) o >i& yi((w,x;) +b) > 1 - ¢



Supervised Support Vector Machine (SVM)

min 1 <W W> s t gl Z 0
W’bv(gk) +CZ 62 o yi(<W7Xi> + b) 2 ]- - 51

@ maximize margin on (labeled) points

@ convex optimization problem (QP)

Semi-Supervised Support Vector Machine (S?VM)

3 (W, w) & >0 >0
bmin +CY . & st yi((wx)+b)>1-¢
Wb (i), (&) o > & i ((w,x;) +b) > 1— ¢

@ maximize margin on labeled and unlabeled points

@ combinatorial optimization problem (optimize y; € {0,1})



min Liw, wy+CS . &+ C* Y. &
W:by(y,j)7(§k) 2 < > ZZ§ Z] 6.7

s.t. yi((w,x;) +0)>1-& & >0
Mixed Integer Programming [Bennett, Demiriz; NIPS 1998]

@ global optimum found by standard optimization packages
(eg CPLEX)

@ NP-hard ! = only works for small sized problems

Branch & Bound [Chapelle, Sindhwani, Keerthi; NIPS 2006]
@ global optimum found
@ problem structure exploited to reduce space to be searched

@ again, only works for rather small sized problems




“Two Moons” toy data

@ easy for human (0% error) - % ‘O
e hard for S3VMs! T

S3VM optimization method test error objective value
global min. {Branch & Bound 0.0% 7.81
Find CCCP 64.0% 39.55
Yocal S3VMlight 66.2% 20.94
e VS3VM 59.3% 13.64
cS*VM 45.7% 225

@ objective function is good for SSL
@ = try to find better local minimal



W7b7(yj)?(£k) 2 < > ZZ g Z] 5.]

st yi((w,x;) +0)>1-& & >0
o yi((w,x;) +b) >1-¢ & >0

S3VMUght [T, Joachims; ICML 1999]
@ train SVM on labeled points, predict y;'s

@ in prediction, always make sure that

Hy =+1 _ _ #Hui=+1}

# unlabeled points ~ # labeled points

@ with stepwise increasing C* do

@ train SVM on all points, using labels (v;), (v;)
@ predict new y;'s s.t. “balancing constraint” (¥*)




min 1W7W L O 64 CF S g
Wb, (y;)5(€k) 2 ( ) 2.6 256
yi((w,x;) +b) >21-& & >0

S (wex) D) 21— & >0

Balancing constraint required to avoid degenerate solutions!




min
wyby(yj)7(§k)

s.t.

%<W7W>+CZi§i+C*Zj§j

yi((w,x;) +b) >1-& &>0
yi((w,x;) +b) >1-¢& & >0

Effective Loss Functions

& = min{l — y;((w,x;) + b),0}
min {1 —y;((w,x;) +b),0}

y;€{+1,-1}

loss
functions

& \




min Liw, wy+CS . &+ C* Y. &
Wb, (y;)5(€k) 2 { ) 2.8 Z] &
yi((w,x;) +b) >21-& & >0

S (W) b)) > 1—& & >0

Resolving the Constraints

% (w,w) + € 0 (i (w,3) + ) + C7 3 L ({ww,3,) + )

loss 0 0, \

functions e B \ = :




% (w,w) + € Y (5 (w,x) + ) + C7 3 L (fww,3,) + )

J

S3VM as Unconstrained Differentiable Optimization Problem

original
loss 0 0,

functions - L

smooth
loss 0 \\ 0,

functions — —




% (w,w) + CZ& (yi({w,x;) + b)) + C* qu ((w,x;) +b)

J

VS3VM [Chapelle, Zien; AISTATS 2005]

@ simply do gradient descent!

@ thereby stepwise increase C*

contS*VM [Chapelle et al.; ICML 2006]

next slide...




The Continuation Method in a Nutshell

[llustration

Procedure
@ smooth function
until convex
@ find minimum

© track minimum
while decreasing
amount of
smoothing




Comparison of S?VM Optimization Methods

On three tasks (with ~2000 points each, 100 of which labeled)

e TEXT:

e do newsgroup texts refert to mac or to windows?
= binary classification
e bag of words representation: ~7500 dimensions, sparse

e USPS

e recognize handwritten digits
e 10 classes = 45 one-vs-one binary tasks
o 16 x 16 pixel image as input (256 dimensions)

e COIL

o recognize 20 objects in images: 20 classes
o 32 x 32 pixel image as input (1024 dimensions)



Comparison of S*VM Optimization Methods

20 T
I SVM
8 I sPyM-light| T
18 [Jgrad-S*M| |
I cont-S5VM
14

test ermror [%)
P ® ® © ™

]

TEXT

@ averaged over
splits (and pairs
of classes)

| @ fixed

0 I IHI IHHL

hyperparams
(close to hard
margin)

@ similar results

for other
hyperparameter
settings

[Chapelle, Chi, Zien; ICML 2006]




Manifold Assumption

1. The data lie on (or close to) a low-dimensional manifold.
2. Its intrinsic distance is relevant for classification.

o, o,
© ¢ y

[images from “The Geometric Basis of Semi-Supervised Learning”, Sindhwani, Belkin, Niyogi
in “Semi-Supervised Learning” Chapelle, Scholkopf, Zien]

Algorithmic idea: use Nearest-Neighbor Graph



Graph Construction

@ nodes: data points xy,
e edges: every edge (xi,X;) weighted with ag; > 0

e weights: represent similarity, eg ax; = exp(— ||xx — x¢||)

approximate manifold / achieve sparsity — two choices:
@ k nearest neighbor graph (usually prefered)
@ ¢ distance graph

Learning on the Graph

estimation of a function on the nodes, ie f: V — {—1,+1}
[recall: for SVMs, f: X — {—1,+1}, x > sign({w,x) + D) ]



Regularization on a Graph — penalize change along edges

ming(y) with g(y Z Zakl e — i)’
Yj

9(y) ;(Zzaklyk+zzaklyz> > anyru
kool
Z Zakl Zzykaklyl

k
= y'Dy-y'Ay = y'Ly

where D is the diagonal matrix with dy; = )", ax
and L := D — A is called the graph Laplacian

with constraints y; € {—1, 41} essentially yields min-cut problem



Label Propagation

relax: instead of y; € {—1,+1}, optimize free f;

= fix f; = (fi) = (yi), solve for £, = (f;), predict y; = sign(f;)
= convex QP (L is positive semi-definite)

0 = 0 f) ! LZZLJL—[ f;
= 8 fu, fu, Lu l Luu fu
0
= (£ Luth + LR + £TLLE)

= of'L), +2f,"L,,

@ = solve linear system  L,,f, = —LlTufl (f, = —L;&L;fl)
@ easy to do in O(n?) time; faster for sparse graphs

@ solution can be shown to satisfy f; € [—1, +1]



Called Label Propagation, as the same solution is achieved by
iteratively propagating labels along edges until convergence

t=10

Note: here
color = classes

[images from “Label Propagation Through Linear Neighborhoods”, Wang, Zhang, ICML 2006)]



“Beyond the Point Cloud” [Sindhwani, Niyogi, Belkin]

Idea:

@ model output f; as linear function of the node value x;
fe=w'xy (with kernels: fi, = >, apk(xy, %))

@ add graph regularizer to SVM cost function
Ry(w) = 31>, > am(fr — fi)? =fTLf

min 30 6w %)) + AW + 7 Ry(w)

data fitting regularizers

@ linear (f = Xw): = AW w4+yw XTLXw
o w. kernel (f =Ka): = Xa'Ka+vya KLKa



Graph Methods

Observation

graphs model density on manifold
= graph methods also implement cluster assumption




Cluster Assumption

1. The data form clusters.
2. Points in the same cluster are likely to be of the same class.

<

Manifold Assumption

1. The data lie on (or close to) a low-dimensional manifold.
2. Its intrinsic distance is relevant for classification.

Semi-Supervised Smoothness Assumption

1. The density is non-uniform.
2. If two points are close in a high density region (= connected by
a high density path), their outputs are similar.

v




Graph methods

. ° i- i h
o Cluster Assumption Semi-Supervised Smoothness

@ points within same cluster
have same class
probabilities

@ points within same cluster are
of same class

@ non-convex
@ convex



Assumption: Independent Views Exist

There exist subsets of features, called views, each of which
@ is independent of the others given the class;
e is sufficient for classification.

view 2 . .

Algorithmic idea: Co-Training



Transduction

deduction

image from [Learning from Data: Concepts, Theory and Methods. V. Cherkassky, F. Mulier. Wiley, 1998.]

@ concept introduced by Vladimir Vapnik
@ philosophy: solve simpler task
e S3VM originally called “Transductive SVM” (TSVM)



SSL vs Transduction

@ Any SSL algorithm can be run in “transductive setting”:
use test data as unlabeled data.

@ The “Transductive SVM" (S3VM) is inductive.

@ Some graph algorithms are transductive:
prediction only available for nodes.



SSL Approaches

Assumption | Approach Example Algorithm
Cluster Low Density | SVM (and many others)
Assumption | Separation
Manifold Graph- @ build weighted graph (wy;)
Assumption | based o min w 2
k\Yk — Y1
Methods () zk: Zl: ( )
. : di O IC)

Independent | Co-Training @ train two predictors y, °, Y,
Views

@ couple objectives by adding

SURY



SSL Benchmark

average error [%)] achieved with 100 labeled, ~ 1400 labeled points

Method g241c g241d Digitl USPS COIL BCl  Text
1-NN 4393  42.45 3.89 581 17.35 48.67 30.11
SVM 23.11  24.64 5.53 9.75 2293 3431 26.45
MVU + 1-NN 43.01  38.20 2.83 6.50 28.71 47.89 32.83
LEM + 1-NN 40.28  37.49 6.12 7.64 2327 4483 30.77
Label-Prop. 22.05  28.20 3.15 6.36 10.03 46.22 25.71
Discrete Reg. 4365  41.65 2.77 4.68 9.61 47.67 24.00
S3SVM 18.46  22.42 6.15 9.77 25.80 33.25 2452
SGT 17.41 9.11 2.61 6.80 - 45.03 23.09
Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 3517 24.38
Data-Dep. Reg. | 20.31  32.82 2.44 5.10 11.46 47.47 -
LDS 18.04  23.74 3.46 496 13.72 43.97 23.15
Graph-Reg. 2436  26.46 2.92 468 11.92 3136 23.57
CHM (normed) 24.82  25.67 3.79 7.65 - 36.03 -

[Semi-Supervised Learning. Chapelle, Schélkopf, Zien. MIT Press, 2006.]



SSL Benchmark

[Semi-Supervised Learning. Chapelle, Schélkopf, Zien. MIT Press, 2006.]



Combining S*VM with Graph-based Regularizer

@ apply SVM and

3 . 0.091
S°VM in the ool
“warped space” 007

@ strength of graph S 005
regularizer on Boos
X-axis 0.04¢

.. 0.031

o MNIST digit ooal
classification data, 001
ll3” Vs “5”

0 1 1o 190 10 10 10
T\ TA

[A Continuation Method for S3VM; Chapelle, Chi, Zien; ICML 2006]




Summary

@ unlabeled data can improve classification
(most useful if few labeled data available)

o verify whether assumptions hold!

@ two ways to use unlabeled data:

o in the loss function (S*VM, co-training)
non-convex — optimization method matters!
o in the regularizer (graph methods)
convex, but graph construction matters

@ combination seems to work best
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