Semi-Supervised Learning Machine Learning II (SS 2008, TU Berlin)

Prof. Dr. Klaus-Robert Müller Dr. Alex Zien

22. 04. 2008

- Semi-Supervised Learning (SSL)
- The Semi-Supervised SVM (S³VM)
 Training a S³VM
- Graph-Based MethodsConnections to Low Density Separation
- Other SSL Approaches
 - Co-Training
 - Transduction
- 5 Overview of SSL and Summary

• Unsupervised Learning:

given $\{\mathbf{x}_i\}_{i=1,...,N}$, $\mathbf{x}_i \in \mathcal{X}$ characterize $Pr(\mathbf{x})$

Supervised Learning:

given $\{(\mathbf{x}_i, y_i)\}_{i=1,\dots,N}$ estimate $f: \mathcal{X} \to \mathcal{Y}$ such that $f(\mathbf{x}) \approx y$ in other words, characterize $Pr(y|\mathbf{x})$

• Semi-Supervised Learning (SSL):

goal like for supervised, with additional unlabeled data $\{\mathbf{x}_i\}_{i=N+1,...,N+M}$

Why SSL?

Labels are often expensive.

Generative model: $Pr(\mathbf{x}, y)$

$$\begin{split} Pr\left(data\left|\theta\right.\right) &= &\prod_{i} Pr\left(\mathbf{x}_{i}, y_{i}\left|\theta\right.\right) \prod_{j} Pr\left(\mathbf{x}_{j}\left|\theta\right.\right) \\ &= &\prod_{i} Pr\left(\mathbf{x}_{i}, y_{i}\left|\theta\right.\right) \prod_{j} \sum_{y} Pr\left(\mathbf{x}_{j}, y\left|\theta\right.\right) \end{split}$$

Maximize log likelihood:

$$\log \mathcal{L}(\theta) = \underbrace{\sum_{i} \log Pr(\mathbf{x}_{i}, y_{i} | \theta)}_{typically \ convex} + \underbrace{\sum_{j} \log \left(\sum_{y} Pr(\mathbf{x}_{j}, y | \theta) \right)}_{typically \ non-convex}$$

Standard tool for optimization (=training): **Expectation-Maximization (EM)** algorithm

Unlabeled data can be misleading...

from [Semi-Supervised Learning, ICML 2007 Tutorial; Xiaojin Zhu]

Discriminative model: $Pr(y|\mathbf{x})$

$$\mathcal{L}(\theta) = \prod_{i} Pr(y_{i} | \mathbf{x}_{i}, \theta)$$

Problem: Density of \mathbf{x} does not help to estimate conditional $Pr(y|\mathbf{x})!$

Why would unlabeled data be useful at all?

Uniform data do not help.

Cluster Assumption

- 1. The data form clusters.
- 2. Points in the **same cluster** are likely to be of the **same class**.

(Reall the standard **Supervised Learning Assumption**: Similar points tend to have similar labels.)

Cluster Assumption

Points in the **same cluster** are likely to be of the **same class**.

- The cluster assumption seems to hold for many real data sets.
- Most SSL algorithms (implicitly) make use of it.
- No corresponding assumption for regression.

Equivalent assumption:

Low Density Separation Assumption

The decision boundary lies in a low density region.

⇒ Algorithmic idea: **Low Density Separation**

Example application: recognize handwritten digits 2, 4, 8

[non-linear 2D-embedding with "Stochastic Neighbor Embedding"]

$$\min_{\mathbf{w},b,(\mathbf{y_j})} \quad \underbrace{\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle}_{\text{regularizer}} \quad s.t. \quad \frac{\mathbf{y_i}(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \ge 1}{\mathbf{y_j}(\langle \mathbf{w}, \mathbf{x_j} \rangle + b) \ge 1}$$

$$\min_{\mathbf{w},b,(\mathbf{y_j}),(\xi_k)} \begin{array}{c} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle & \xi_i \geq 0 \quad \xi_j \geq 0 \\ + C \sum_i \xi_i & s.t. & y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_i \\ + C^* \sum_j \xi_j & y_j (\langle \mathbf{w}, \mathbf{x}_j \rangle + b) \geq 1 - \xi_j \end{array}$$

Supervised Support Vector Machine (SVM)

$$\min_{\mathbf{w},b,(\xi_k)} \quad \frac{\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle}{+C \sum_i \xi_i} \quad s.t. \quad \frac{\xi_i \ge 0}{y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i}$$

- maximize margin on (labeled) points
- convex optimization problem (QP)

Semi-Supervised Support Vector Machine (S³VM)

$$\min_{\mathbf{w},b,(\mathbf{y_j}),(\xi_k)} \begin{array}{c} \frac{1}{2} \left\langle \mathbf{w}, \mathbf{w} \right\rangle & \xi_i \geq 0 \quad \xi_j \geq 0 \\ + C \sum_i \xi_i & s.t. & y_i (\left\langle \mathbf{w}, \mathbf{x_i} \right\rangle + b) \geq 1 - \xi_i \\ + C^* \sum_j \xi_j & y_j (\left\langle \mathbf{w}, \mathbf{x_j} \right\rangle + b) \geq 1 - \xi_j \end{array}$$

- maximize margin on labeled and unlabeled points
- combinatorial optimization problem (optimize $y_i \in \{0, 1\}$)

$$\min_{\mathbf{w},b,(\mathbf{y_j}),(\xi_k)} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_i \xi_i + C^* \sum_j \xi_j$$

$$s.t. \frac{\mathbf{y_i}(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \ge 1 - \xi_i \quad \xi_i \ge 0}{\mathbf{y_j}(\langle \mathbf{w}, \mathbf{x_j} \rangle + b) \ge 1 - \xi_j \quad \xi_j \ge 0}$$

Mixed Integer Programming [Bennett, Demiriz; NIPS 1998]

- global optimum found by standard optimization packages (eg CPLEX)
- NP-hard ! ⇒ only works for small sized problems

Branch & Bound [Chapelle, Sindhwani, Keerthi; NIPS 2006]

- global optimum found
- problem structure exploited to reduce space to be searched
- again, only works for rather small sized problems

"Two Moons" toy data

- easy for human (0% error)
- hard for S³VMs!

	S^3VM optim	ization method	test error	objective value	
	global min.	$\{Branch\ \&\ Bound$	0.0%	7.81	
	find local { minima	(CCCP	64.0%	39.55	
		S^3VM^{light}	66.2%	20.94	
		∇S^3VM	59.3%	13.64	
		cS ³ VM	45.7%	13.25	

- objective function is good for SSL
- ullet \Rightarrow try to find better local minima!

$$\min_{\mathbf{w},b,(\mathbf{y_j}),(\xi_k)} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_i \xi_i + C^* \sum_j \xi_j$$

$$s.t. \frac{y_i(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \ge 1 - \xi_i \quad \xi_i \ge 0}{y_j(\langle \mathbf{w}, \mathbf{x_j} \rangle + b) \ge 1 - \xi_j \quad \xi_j \ge 0}$$

S³VM^{light} [T. Joachims; ICML 1999]

- train SVM on labeled points, predict y_i 's
- in prediction, always make sure that

$$\frac{\#\{y_j = +1\}}{\# \text{ unlabeled points}} = \frac{\#\{y_i = +1\}}{\# \text{ labeled points}} \tag{*}$$

- with stepwise increasing C* do
 - train SVM on all points, using labels (y_i) , (y_i) 2 predict new y_i 's s.t. "balancing constraint" (*)

$$\min_{\mathbf{w},b,(\mathbf{y_j}),(\xi_k)} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i} \xi_i + C^* \sum_{j} \xi_j
s.t. \frac{y_i(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \ge 1 - \xi_i \quad \xi_i \ge 0}{y_j(\langle \mathbf{w}, \mathbf{x_j} \rangle + b) \ge 1 - \xi_j \quad \xi_j \ge 0}$$

Balancing constraint required to avoid degenerate solutions!

$$\min_{\mathbf{w},b,(\mathbf{y}_{j}),(\xi_{k})} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i} \xi_{i} + C^{*} \sum_{j} \xi_{j}$$

$$s.t. \frac{y_{i}(\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \geq 1 - \xi_{i} \quad \xi_{i} \geq 0}{y_{j}(\langle \mathbf{w}, \mathbf{x}_{j} \rangle + b) \geq 1 - \xi_{j} \quad \xi_{j} \geq 0}$$

Effective Loss Functions

$$\xi_i = \min \left\{ 1 - y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b), 0 \right\}$$
$$\xi_j = \min_{\mathbf{y}_j \in \{+1, -1\}} \left\{ 1 - y_j(\langle \mathbf{w}, \mathbf{x}_j \rangle + b), 0 \right\}$$

loss functions

$$\min_{\mathbf{w},b,(\mathbf{y_j}),(\xi_k)} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_i \xi_i + C^* \sum_j \xi_j$$

$$s.t. \frac{\mathbf{y_i}(\langle \mathbf{w}, \mathbf{x_i} \rangle + b) \ge 1 - \xi_i \quad \xi_i \ge 0}{\mathbf{y_j}(\langle \mathbf{w}, \mathbf{x_j} \rangle + b) \ge 1 - \xi_j \quad \xi_j \ge 0}$$

Resolving the Constraints

$$\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i} \ell_{l} \left(y_{i} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \right) + C^{*} \sum_{j} \ell_{u} \left(\langle \mathbf{w}, \mathbf{x}_{j} \rangle + b \right)$$

loss functions

$$\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i} \ell_{l} \left(y_{i} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \right) + C^{*} \sum_{i} \ell_{\mathbf{u}} \left(\langle \mathbf{w}, \mathbf{x}_{j} \rangle + b \right)$$

S³VM as Unconstrained Differentiable Optimization Problem

$$\frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i} \ell_{l} \left(y_{i} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \right) + C^{*} \sum_{i} \ell_{\mathbf{u}} \left(\langle \mathbf{w}, \mathbf{x}_{j} \rangle + b \right)$$

∇S^3 VM [Chapelle, Zien; AISTATS 2005]

- simply do gradient descent!
- ullet thereby stepwise increase C^*

contS³VM [Chapelle et al.; ICML 2006]

next slide...

The Continuation Method in a Nutshell

Procedure

- smooth function until convex
- find minimum
- track minimum while decreasing amount of smoothing

Comparison of S³VM Optimization Methods

On three tasks (with \sim 2000 points each, 100 of which labeled)

TEXT:

- do newsgroup texts refert to mac or to windows?
 - ⇒ binary classification
- bag of words representation: \sim 7500 dimensions, sparse

USPS

- recognize handwritten digits
- 10 classes ⇒ 45 one-vs-one binary tasks
- 16×16 pixel image as input (256 dimensions)

COII

- recognize 20 objects in images: 20 classes
- 32×32 pixel image as input (1024 dimensions)

[Chapelle, Chi, Zien; ICML 2006]

Manifold Assumption

- 1. The data lie on (or close to) a low-dimensional manifold.
- 2. Its intrinsic distance is relevant for classification.

[images from "The Geometric Basis of Semi-Supervised Learning", Sindhwani, Belkin, Niyogi in "Semi-Supervised Learning" Chapelle, Schölkopf, Zien]

Algorithmic idea: use Nearest-Neighbor Graph

Graph Construction

- ullet nodes: data points ${f x}_k$
- ullet edges: every edge $(\mathbf{x}_k, \mathbf{x}_l)$ weighted with $a_{kl} \geq 0$
- weights: represent similarity, eg $a_{kl} = \exp(-\gamma \|\mathbf{x}_k \mathbf{x}_l\|)$

approximate manifold / achieve sparsity – two choices:

- k nearest neighbor graph (usually prefered)
- $oldsymbol{0}$ ϵ distance graph

Learning on the Graph

estimation of a function on the nodes, ie $f: V \to \{-1, +1\}$ [recall: for SVMs, $f: \mathcal{X} \to \{-1, +1\}$, $\mathbf{x} \mapsto sign(\langle \mathbf{w}, \mathbf{x} \rangle + b)$]

Regularization on a Graph - penalize change along edges

$$\min_{(y_j)} g(\mathbf{y}) \quad \text{with} \quad g(\mathbf{y}) := \frac{1}{2} \sum_k \sum_l a_{kl} (y_k - y_l)^2$$

$$g(\mathbf{y}) = \frac{1}{2} \left(\sum_{k} \sum_{l} a_{kl} y_{k}^{2} + \sum_{k} \sum_{l} a_{kl} y_{l}^{2} \right) - \sum_{k} \sum_{l} a_{kl} y_{k} y_{l}$$

$$= \sum_{k} y_{k}^{2} \sum_{l} a_{kl} - \sum_{k} \sum_{l} y_{k} a_{kl} y_{l}$$

$$= \mathbf{y}^{\top} \mathbf{D} \mathbf{y} - \mathbf{y}^{\top} \mathbf{A} \mathbf{y} = \mathbf{y}^{\top} \mathbf{L} \mathbf{y}$$

where \mathbf{D} is the diagonal matrix with $d_{kl} = \sum_k a_{kl}$ and $\mathbf{L} := \mathbf{D} - \mathbf{A}$ is called the graph Laplacian

with constraints $y_i \in \{-1, +1\}$ essentially yields min-cut problem

Label Propagation

relax: instead of $y_j \in \{-1, +1\}$, optimize free $f_j \Rightarrow \text{fix } \mathbf{f_l} = (f_i) = (y_i)$, solve for $\mathbf{f_u} = (f_j)$, predict $y_j = sign(f_j) \Rightarrow \text{convex QP } (\mathbf{L} \text{ is positive semi-definite})$

$$0 = \frac{\partial}{\partial \mathbf{f}_{u}} \begin{pmatrix} \mathbf{f}_{l} \\ \mathbf{f}_{u} \end{pmatrix}^{\top} \begin{pmatrix} \mathbf{L}_{ll} \mathbf{L}_{ul}^{\top} \\ \mathbf{L}_{ul} \mathbf{L}_{uu} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{l} \\ \mathbf{f}_{u} \end{pmatrix}$$
$$= \frac{\partial}{\partial \mathbf{f}_{u}} \begin{pmatrix} \mathbf{f}_{u}^{\top} \mathbf{L}_{ul} \mathbf{f}_{l} + \mathbf{f}_{l}^{\top} \mathbf{L}_{ul}^{\top} \mathbf{f}_{u} + \mathbf{f}_{u}^{\top} \mathbf{L}_{uu}^{\top} \mathbf{f}_{u} \end{pmatrix}$$
$$= 2\mathbf{f}_{l}^{\top} \mathbf{L}_{ul}^{\top} + 2\mathbf{f}_{u}^{\top} \mathbf{L}_{uu}^{\top}$$

- ullet \Rightarrow solve linear system $\mathbf{L}_{uu}\mathbf{f}_{\mathbf{u}}^{}=-\mathbf{L}_{lu}^{ op}\mathbf{f}_{l}$ $(\mathbf{f}_{\mathbf{u}}^{}=-\mathbf{L}_{uu}^{-1}\mathbf{L}_{lu}^{ op}\mathbf{f}_{l})$
- ullet easy to do in $\mathcal{O}(n^3)$ time; faster for sparse graphs
- solution can be shown to satisfy $f_i \in [-1, +1]$

Called **Label Propagation**, as the same solution is achieved by iteratively propagating labels along edges until convergence

[images from "Label Propagation Through Linear Neighborhoods", Wang, Zhang, ICML 2006]

"Beyond the Point Cloud" [Sindhwani, Niyogi, Belkin]

Idea:

- model output f_j as linear function of the node value \mathbf{x}_j $f_k = \mathbf{w}^\top \mathbf{x}_k$ (with kernels: $f_k = \sum_l \alpha_l k(\mathbf{x}_l, \mathbf{x}_k)$)
- add graph regularizer to SVM cost function $R_g(\mathbf{w}) = \frac{1}{2} \sum_k \sum_l a_{kl} (f_k f_l)^2 = \mathbf{f}^{\top} \mathbf{L} \mathbf{f}$

$$\min_{\mathbf{w}} \quad \underbrace{\sum_{i} \ell(y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}))}_{\text{data fitting}} + \underbrace{\lambda \|\mathbf{w}\|^{2} + \gamma R_{g}(\mathbf{w})}_{\text{regularizers}}$$

- linear ($\mathbf{f} = \mathbf{X}\mathbf{w}$): $\Rightarrow \lambda \mathbf{w}^{\top} \mathbf{w} + \gamma \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{L} \mathbf{X} \mathbf{w}$
- w. kernel ($\mathbf{f} = \mathbf{K}\alpha$): $\Rightarrow \lambda \alpha^{\top} \mathbf{K}\alpha + \gamma \alpha^{\top} \mathbf{K} \mathbf{L} \mathbf{K}\alpha$

Graph Methods

Observation

graphs model density on manifold

 \Rightarrow graph methods also implement cluster assumption

Cluster Assumption

- 1. The data form clusters.
- 2. Points in the same cluster are likely to be of the same class.

Manifold Assumption

- 1. The data lie on (or close to) a low-dimensional manifold.
- 2. Its intrinsic distance is relevant for classification.

Semi-Supervised Smoothness Assumption

- 1. The density is non-uniform.
- 2. If two points are close in a high density region (⇒ connected by
- a high density path), their outputs are similar.

S³VMs

0 _____

- Cluster Assumption
- points within same cluster are of same class
- non-convex

Graph methods

- Semi-Supervised Smoothness
- points within same cluster have same class probabilities
- convex

Assumption: Independent Views Exist

There exist subsets of features, called views, each of which

- is **independent** of the others given the class;
- is **sufficient** for classification.

Algorithmic idea: Co-Training

Transduction

image from [Learning from Data: Concepts, Theory and Methods. V. Cherkassky, F. Mulier. Wiley, 1998.]

- concept introduced by Vladimir Vapnik
- philosophy: solve simpler task
- S³VM originally called "Transductive SVM" (TSVM)

SSL vs Transduction

- Any SSL algorithm can be run in "transductive setting": use test data as unlabeled data.
- The "Transductive SVM" (S³VM) is inductive.
- Some graph algorithms are transductive: prediction only available for nodes.

SSL Approaches

Assumption	Approach	Example Algorithm			
Cluster Assumption	Low Density Separation	S^3VM (and many others)			
Manifold Assumption	Graph- based Methods	• build weighted graph (w_{kl}) • $\min_{(y_j)} \sum_k \sum_l w_{kl} (y_k - y_l)^2$			
Independent Views	Co-Training	• train two predictors $y_j^{(1)}$, $y_j^{(2)}$ • couple objectives by adding $\sum_j \left(y_j^{(1)} - y_j^{(2)}\right)^2$			

SSL Benchmark

average error [%] achieved with 100 labeled, ~ 1400 labeled points

Method	g241c	g241d	Digit1	USPS	COIL	BCI	Text
1-NN	43.93	42.45	3.89	5.81	17.35	48.67	30.11
SVM	23.11	24.64	5.53	9.75	22.93	34.31	26.45
MVU + 1-NN	43.01	38.20	2.83	6.50	28.71	47.89	32.83
LEM + 1-NN	40.28	37.49	6.12	7.64	23.27	44.83	30.77
Label-Prop.	22.05	28.20	3.15	6.36	10.03	46.22	25.71
Discrete Reg.	43.65	41.65	2.77	4.68	9.61	47.67	24.00
S ³ SVM	18.46	22.42	6.15	9.77	25.80	33.25	24.52
SGT	17.41	9.11	2.61	6.80	_	45.03	23.09
Cluster-Kernel	13.49	4.95	3.79	9.68	21.99	35.17	24.38
Data-Dep. Reg.	20.31	32.82	2.44	5.10	11.46	47.47	-
LDS	18.04	23.74	3.46	4.96	13.72	43.97	23.15
Graph-Reg.	24.36	26.46	2.92	4.68	11.92	31.36	23.57
CHM (normed)	24.82	25.67	3.79	7.65	_	36.03	_

[Semi-Supervised Learning. Chapelle, Schölkopf, Zien. MIT Press, 2006.]

SSL Benchmark

[Semi-Supervised Learning. Chapelle, Schölkopf, Zien. MIT Press, 2006.]

Combining S³VM with Graph-based Regularizer

- apply SVM and S³VM in the "warped space"
- strength of graph regularizer on
 - x-axis
- MNIST digit classification data, "3" vs "5"

[A Continuation Method for S^3VM ; Chapelle, Chi, Zien; ICML 2006]

Summary

- unlabeled data can improve classification (most useful if few labeled data available)
- verify whether assumptions hold!
- two ways to use unlabeled data:
 - in the loss function (S³VM, co-training) non-convex optimization method matters!
 - in the regularizer (graph methods) convex, but graph construction matters
- combination seems to work best