
Large Scale Learning Linear SVM Kernel SVM Summary

Large Scale Learning and Optimization
(using Support Vector Machines)

S. Sonnenburg†, K. -R. Müller†,+

+Technical University Berlin,
†Fraunhofer FIRST.IDA, Berlin

Vorlesung SS 2008, 3. Juni

Large Scale Learning Linear SVM Kernel SVM Summary

Outline

1 Large Scale Learning

2 Linear SVM

3 Kernel SVM

4 Summary

Large Scale Learning Linear SVM Kernel SVM Summary

Outline

1 Large Scale Learning

2 Linear SVM

3 Kernel SVM

4 Summary

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Large Scale Problems

What makes a Problem Large Scale?

Large number of data points

Extremely high dimensionality

High effort algorithms O(N3)

Large memory requirements

⇒ Anything that reaches current computers limits:
computational, memory, transfer costs

One may define a large scale problem to be a problem which to
solve reaches current computers limits be it computational, memory
or transfer costs wise. For machine learning this translates to high
effort algorithms (e.g.O(N3)), large number of data points or high
dimensionality.

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Applications I

Bioinformatics (Splice Sites, Gene Boundaries,. . .)

Learning and predicting on the human genome

Learn on 50 · 106 examples

Predict on ≈ 2 · 3 · 109 locations

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Applications II

IT-Security (Network traffic)

Google 15,000,000 http queries (5.7GB of traffic) per day

Learning and Prediction has to be done in real-time.

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Applications III

Text-Classification (Spam vs. Non-Spam)

Email Spam increases drastically

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Applications IV

Image Recognition

Face recognition: Examples are generated by sliding rectangles
over the image (different scale, rotation)
Training expensive, and real-time requirements on predictor.

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Approaching LSL Problems

LSL might create challenges just to load/process data!
Therefore avoid it if not necessary!

Obtain a reference solution via sub-sampling!

More data = better performance?

Approximative vs. exact algorithms.

Simplest effective methods first.

If LSL is needed focus changes drastically.

Large Scale Learning Linear SVM Kernel SVM Summary

Definition

Paradigm Shift

Suddenly, low-level details matter a lot!

Design decision become critical:

Data representation (float/byte matrices, sparse matrices,
hierarchical (trees), bit-representations)

Programming language (ruby, python, java, c++, assembly)

Problem formulation (how is the problem cast, are there
equivalent but faster re-formulations?)

Choice of algorithm (complexity,. . .)

In this lecture: How to speed up SVMs.

Large Scale Learning Linear SVM Kernel SVM Summary

Outline

1 Large Scale Learning

2 Linear SVM

3 Kernel SVM

4 Summary

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

Recall Support Vector Machines

Given training examples (xi , yi)
N
i=1 ∈ (X , {−1,+1})N

Linear Classifier f (x) = sign (w · x + b)

SVMs learn α ∈ RN on training examples in kernel feature
space Φ(x)

f (x) = sign

(
N∑

i=1

yiαik(x, xi) + b

)
,

where Kernel k(x, x′) = Φ(x) · Φ(x′)

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

SVM Primal

P(w, b, ξ) =
1

2
‖w‖2 + C

N∑
i=1

ξi

min
w,b,ξ

1
2 ‖w‖2 + C

∑N
i=1 ξi

wrt : w ∈ RD , b ∈ R, ξ ∈ RN

s.t. : −ξi ≤ 0, ∀i = 1 . . .N

1− yi (wTxi + b)− ξi ≤ 0, ∀i = 1 . . .N

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

Lagrangian

min
w,b,ξ

1
2 ‖w‖2 + C

∑N
i=1 ξi

wrt : w ∈ RD , b ∈ R, ξ ∈ RN

s.t. : −ξi ≤ 0, ∀i = 1 . . .N

1− yi (wTxi + b)− ξi ≤ 0, ∀i = 1 . . .N

L(w, b, ξ, α,λ) =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑

i=1

αiyi (wTxi + b)

+
N∑

i=1

αi −
N∑

i=1

(λi + αi)ξi

where α ≥ 0, λ ≥ 0

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

Derivatives of the Lagrangian

L(w, b, ξ, α,λ) =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑

i=1

αiyi (wTxi + b)

+
N∑

i=1

αi −
N∑

i=1

(λi + αi)ξi

where α ≥ 0, λ ≥ 0

∂wL = w −
N∑

i=1

αiyixi
!

= 0 ⇒ w =
N∑

i=1

αiyixi

∂bL = −
N∑

i=1

αiyi
!

= 0 ⇒
N∑

i=1

αiyi = 0.

∂ξL = C1−α− λ !
= 0

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

Derivatives of the Lagrangian

∂wL = w −
N∑

i=1

αiyixi
!

= 0 ⇒ w =
N∑

i=1

αiyixi

∂bL = −
N∑

i=1

αiyi
!

= 0 ⇒
N∑

i=1

αiyi = 0.

∂ξL = C1−α− λ !
= 0

Due to α ≥ 0, λ ≥ 0 :

0 ≤ α ≤ C1

0 ≤ λ ≤ C1

λ = C1−α

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

Re-substitute into Lagrangian

D(α) =
1

2

N∑
i=1

N∑
j=1

αiyix
T
i αjyjxj + C

N∑
i=1

ξi

−
N∑

i=1

αiyi

 N∑
j=1

αjyjx
T
i xj + b


+

N∑
i=1

αi −
N∑

i=1

(C − αi + αi)ξi

=
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj −

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj +

N∑
i=1

αi

=
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

SVM Dual

max
α

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjyiyjx

T
i xj

wrt : α ∈ RN

s.t. : 0 ≤ αi ≤ C , ∀i = 1 . . .N∑N
i=1 αiyi = 0

Large Scale Learning Linear SVM Kernel SVM Summary

Classic approach

Solve using off-the-shelf Optimizers

Use some general purpose solver to solve the problem (mosek,
cplex, quadprog,. . .)

Memory requirements

Requires to store whole kernel matrix O(N2) ⇒ 30000
examples ≈ 7GB
Computation time at least O(N2 · D) just for kernel elements
(linear kernel).

Computational Complexity

Lower bound O(N2), to check optimality needs output for all

examples f (xi) =
∑Ns

j=1 αjyjK (xj , xi), ∀i = 1 . . .N

Worst case O(N3)

Large Scale Learning Linear SVM Kernel SVM Summary

Active Set Methods

Chunking and Sequential Minimal Optimization

General idea: Split large problem into smaller sub-problems.
(Called active set methods in optimization theory.)

Chunking select q variables αi1 , . . . , αiq

SMO is special case with q = 2, sub-problem can be solved
analytically, but clever and efficient subset selection strategy
needed.

Training algorithm (chunking):

while optimality conditions are violated do
select q variables for the working set.
solve reduced problem on the working set.

end while

Chunking is implemented in SVMlight, SMO in Libsvm

Large Scale Learning Linear SVM Kernel SVM Summary

Active Set Methods

Identifying inefficiencies A

At each iteration, the vector f, fj =
∑N

i=1 αiyi k(xi , xj), j = 1 . . .N
is needed for checking termination criteria and selecting new
working set ⇒ Effort O(D · N2)

Speedup A:

1 Avoid to recompute f from scratch

2 Start with f = 0

3 Compute “linear updates” on f on the working set W

fj ← f old
j +

∑
i∈W

(αi − αold
i)yi k(xi , xj)

Effort O(D · N · q)

Large Scale Learning Linear SVM Kernel SVM Summary

Active Set Methods

Identifying inefficiencies B

Speedup B: Update rule: fj ← f old
j +

∑
i∈W (αi − αold

i)yi k(xi , xj)

1 Exploit k(xi , xj) = Φ(xi) · Φ(xj) and obtain

fj ← f old
j +

∑
i∈W

(αi − αold
i)yiΦ(xi) · Φ(xj)

2 Use w =
∑N

i=1 αiyiΦ(xi) to get

fj ← f old
j + wW · Φ(xj)

(wW normal on working set)

Observations

q := |W | is very small in practice ⇒ precomputing w is cheap

computing dot products still dominates computing time

Overall effort O(N · D + q · D)

Large Scale Learning Linear SVM Kernel SVM Summary

Active Set Methods

Dual Formulation for Linear SVMs is inefficient

Number of variables dim(α) = N depends on N

Recall the Primal Formulation

min
w,b,ξ

1
2 ‖w‖2 + C

∑N
i=1 ξi

wrt : w ∈ RD , b ∈ R, ξ ∈ RN

s.t. : −ξi ≤ 0, ∀i = 1 . . .N

1− yi (wTxi + b)− ξi ≤ 0, ∀i = 1 . . .N

Number of variables in Primal is dim(w) = D + N + 1
⇒ Primal even worse?

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Working in the Primal

Standard SVM Primal

Convert into (equivalent) unconstrained Primal

1

2
‖w‖2 + C

N∑
i=1

(max{0, 1− yi (w · xi + b)})

1

2
‖w‖2 + C

N∑
i=1

L(yi , f (xi))

Hinge Loss L(yi , f (xi)) = max{0, 1− yi (f (xi)}
Number of variables is now D + 1 Can be solved using
e.g. gradient descent and newton for differentiable losses

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Differentiable approximations to the Hinge Loss

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

yt

lo
ss

Hinge
Huber
Quadratic
Logistic

Hinge Loss
L(y , t) = max{0, 1− yt}
Squared Loss
L(y , t) = max{0, 1− yt}2

Logistic Loss
L(y , t) = log(1 + e−yt)

Hubers Loss L(y , t) =


0 if yt > 1 + h
(1+h−yt)2

4h if |1− yt| ≤ h

1− yt if yt < 1− h

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Descent Method for Unconstrained Problems

Let us consider an unconstrained convex problem: min f (x)

Initialization: set x ∈ domf .
repeat

1 Determine a descent direction δ.
2 Line-search: find a step size

t = argmint′>0 f (x + t ′δ).
3 Update x := x + tδ.

until stopping condition is satisfied.

It generates x(1), x(2), . . . such that f (x(k)) > f (x(k+1)).

For f differentiable, a vector δ is a descent direction if

∇f (x)Tδ < 0

e.g., gradient descent methods use δ = −∇f (x).

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Stochastic Gradient Descent

SGD is a Online Method - works well for huge N

Objective function as sum over training examples

1

N

N∑
i=1

‖w‖2 + N · C · L(y , f (x))︸ ︷︷ ︸
`i (w)

Update Rule: At each iteration t choose a random i

w← w − η

t
∇`i (w)

η learning rate, critical parameter, η = C · N works OK in
practice, for tuning cf. Bottou 2007

Iteration cost O(D)

⇒ Good approximations after a few passes through the data.

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Newton Methods for Unconstrained Problems

Let us consider equality constrained convex problem min f (x)

Using the KKT optimality conditions, x ∈ domf is optimal iff there
exist ν such that

∇f (x) = 0 .

For a convex quadratic function f (x) =
1

2
xT Hx + cT x the KKT

conditions lead to an efficiently solvable set of linear equations:

Hx + c = 0 .

Newton method is applicable for a general twice differentiable
function f (x): it iteratively approximates f (x) by a quadratic
function

f̂ (x) =
1

2
(x− x′)∇2f (x′)(x− x′) +∇f (x′)T (x− x′) + f (x′)

and solves the KKT conditions for the approximation f̂ (x).

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Cutting Plane

Unconstrained convex minimization problem

w∗ = argmin
w∈<n

F (w) :=

(
1

2
‖w‖2 + C · R(w)

)

Difficulty stems from the risk term R(w).

Idea

Approximate R(w) by a simpler term R̂(w) constructed as
point-wise maximum of linear function.

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Cutting plane approximation

R(w) ≥ R̂(w) where R̂(w) = max
i=1,...,t

(〈w, ai 〉+ bi

)
{(a1, b1), . . . , (am, bm)} are cutting planes at points {w1, . . . ,wt}.

〈w, a2〉 + b2

R(w)

〈w, a1〉 + b1

w2 w1

R̂(w)

Large Scale Learning Linear SVM Kernel SVM Summary

Primal Methods

Running times (from Large Scale Learning Challenge)

http://largescale.first.fraunhofer.de

Newton quite fast for low dimensional data.

Stochastic Gradient Descent for high-dimensional data.

http://largescale.first.fraunhofer.de

Large Scale Learning Linear SVM Kernel SVM Summary

Outline

1 Large Scale Learning

2 Linear SVM

3 Kernel SVM

4 Summary

Large Scale Learning Linear SVM Kernel SVM Summary

LSL and Kernel SVMs

Most common: dual based chunking methods (svm-light,
libsvm)

Other approach in dual e.g. Low rank decomposition, aim find
K̂ that is close to K , e.g.∥∥∥K̂ − K

∥∥∥2 ≤ ε

What about non-vectorial based string kernel SVMs?

Large Scale Learning Linear SVM Kernel SVM Summary

LSL with String Kernel SVMs

Large Scale Learning with Strings

Text Classification (Spam, Web-Spam, Categorization)

Task: Given N documents, with class label ±1, predict text
type.

Security (Network Traffic, Viruses, Trojans)

Task: Given N executables, with class label ±1, predict
whether executable is a virus.

Biology (Promoter, Splice Site Prediction)

Task: Given N sequences around Promoter/Splice Site (label
+1) and fake examples (label −1), predict whether there is a
Promoter/Splice Site in the middle

⇒ Approach: String kernel + Support Vector Machine
⇒ Large N is needed to achieve high accuracy (i.e. N = 107)

Large Scale Learning Linear SVM Kernel SVM Summary

LSL with String Kernel SVMs

Formally

Given:

N training examples (xi , yi) ∈ (X ,±1), i = 1 . . .N
string kernel K (x, x′) = Φ(x) · Φ(x′)

Examples:

words-in-a-bag-kernel
k-mer based kernels (Spectrum, Weighted Degree)

Task:

Train Kernelmachine on Large Scale Datasets, e.g. N = 107

Apply Kernelmachine on Large Scale Datasets, e.g. N = 109

Large Scale Learning Linear SVM Kernel SVM Summary

LSL with String Kernel SVMs

String Kernels

Spectrum Kernel (with mismatches, gaps)

K (x, x′) = Φsp(x) · Φsp(x′)

Weighted Degree Kernel (with shift)A G T C A G A T A G A G G A C A T C A G T A G A C A G A T T A A A| | | | | | | | | | | | | |T T A T A G A T A G A C A A A G A C A T C A G T A G A C T T A T T
k (s 1 , s 2) = w 7 + w 1 + w 2 + w 2 + w 3s 1s 2

For string kernels X discrete space and Φ(x) sparse

Large Scale Learning Linear SVM Kernel SVM Summary

LSL with String Kernel SVMs

Kernel Machine

Kernel Machine Classifier:

f (x) = sign

(
N∑

i=1

αiyi k(xi , x) + b

)
To compute output on all M examples:

∀j = 1, . . . ,M :
N∑

i=1

αiyi k(xi , xj) + b

Computational effort:

Single O(NT) (T time to compute the kernel)

All O(NMT)

⇒ Costly!
⇒ Used in training and testing - worth tuning.
⇒ How to further speed up if T = dim(X) already linear?

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Linadd Speedup Idea

Key Idea: Store w and compute w · Φ(x) efficiently

N∑
i=1

αiyi k(xi , xj) =
N∑

i=1

αiyiΦ(xi)︸ ︷︷ ︸
w

·Φ(xj) = w · Φ(xj)

When is that possible ?

1 w has low dimensionality and sparse (e.g. 48 for Feature map
of Spectrum Kernel of order 8 DNA)

2 w is extremely sparse although high dimensional (e.g. 1014 for
Weighted Degree Kernel of order 20 on DNA sequences of
length 100)

Effort: O(MT ′) ⇒ Potential speedup of factor N

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Technical Remark

Treating w

w must be accessible by some index u (i.e. u = 1 . . . 48 for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)

Needed Operations

Clear: w = 0
Add: wu ← wu + v (only needed |W | times per iteration)
Lookup: obtain wu (must be highly efficient)

Storage

Explicit Map (store dense w); Lookup in O(1)
Sorted Array (word-in-bag-kernel: all words sorted with value
attached); Lookup in O(log(

∑
u I (wu 6= 0)))

Suffix Tries, Trees; Lookup in O(K)

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations

clear of w

add of all k-mers u from string x to w

lookup of all k-mers u from x′ in w

Explicit map Sorted arrays Tries Suffix trees

clear O(|Σ|d) O(1) O(1) O(1)
add O(lx) O(lx log lx) O(lxd) O(lx)
lookup O(lx′) O(lx + lx′) O(lx′d) O(lx′)

Conclusions

Explicit map ideal for small |Σ|
Sorted Arrays for larger alphabets

Suffix Arrays for large alphabets and order (overhead!)

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Support Vector Machine

Linadd directly applicable when applying the classifier.

f (x) = sign

(
N∑

i=1

αiyi k(xi , x) + b

)
Problems

w may still be huge ⇒ fix by not constructing whole w but
only blocks and computing batches

What about training?

general purpose QP-solvers, Chunking, SMO

optimize kernel (i.e. find O(L) formulation, where
L = dim(X))

Kernel Caching infeasable
(for N = 106 only 125 kernel rows fit in 1GiB memory)

⇒ Use linadd again: Faster + needs no kernel caching

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Derivation I

Analyzing Chunking SVMs (GPDT, SVMlight:)

Training algorithm (chunking):

while optimality conditions are violated do
select q variables for the working set.
solve reduced problem on the working set.

end while

At each iteration, the vector f, fj =
∑N

i=1 αiyi k(xi , xj),
j = 1 . . .N is needed for checking termination criteria and
selecting new working set (based on α and gradient w.r.t. α).

Avoiding to recompute f, most time is spend computing
“linear updates” on f on the working set W

fj ← f old
j +

∑
i∈W

(αi − αold
i)yi k(xi , xj)

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Derivation II

Use linadd to compute updates.

Update rule: fj ← f old
j +

∑
i∈W (αi − αold

i)yi k(xi , xj)

Exploiting k(xi , xj) = Φ(xi) · Φ(xj) and w =
∑N

i=1 αiyiΦ(xi):

fj ← f old
j +

∑
i∈W

(αi − αold
i)yiΦ(xi) · Φ(xj) = f old

j + wW · Φ(xj)

(wW normal on working set)

Observations

q := |W | is very small in practice ⇒ can effort more complex
w and clear,add operation

lookups dominate computing time

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Algorithm

Recall we need to compute updates on f (effort c1|W |LN):

fj ← f old
j +

∑
i∈W

(αi − αold
i)yi k(xi , xj) for all j = 1 . . .N

Modified SVMlight using “LinAdd” algorithm (effort c2`LN, `
Lookup cost)

fj = 0, αj = 0 for j = 1, . . . ,N
for t = 1, 2, . . . do

Check optimality conditions and stop if optimal, select
working set W based on f and α, store αold = α
solve reduced problem W and update α
clear w
w← w + (αi − αold

i)yiΦ(xi) for all i ∈W
update fj = fj + w · Φ(xj) for all j = 1, . . . ,N

end for

Speedup of factor c1
c2`
|W |

Large Scale Learning Linear SVM Kernel SVM Summary

Linadd

Datasets

Web Spam

Negative data: Use Webb Spam corpus
http://spamarchive.org/gt/ (350,000 pages)
Positive data: Download 250,000 pages randomly from the
web (e.g. cnn.com, microsoft.com, slashdot.org and
heise.de)
Use spectrum kernel k = 4 using sorted arrays on 100,000
examples train and test (average string length 30Kb, 4 GB in
total, 64bit variables ⇒ 30GB)

http://spamarchive.org/gt/

Large Scale Learning Linear SVM Kernel SVM Summary

Web-Spam

Web Spam results

Classification Accuracy and Training Time

N 100 500 5,000 10,000 20,000 50,000 70,000 100,000
Spec 2 97 1977 6039 19063 94012 193327 -

LinSpec 3 255 4030 9128 11948 44706 83802 107661

Accuracy 89.59 92.12 96.36 97.03 97.46 97.83 97.98 98.18
auROC 94.37 97.82 99.11 99.32 99.43 99.59 99.61 99.64

Speed and classification accuracy comparison of the spectrum
kernel without (Spec) and with linadd (LinSpec)

Large Scale Learning Linear SVM Kernel SVM Summary

Splice Site Recognition

Datasets

Splice Site Recognition

Negative Data: 14,868,555 DNA sequences of fixed length 141
base pairs
Positive Data: 159,771 Acceptor Splice Site Sequences
Use WD kernel k = 20 (using Tries) and spectrum kernel
k = 8 (using explicit maps) on 10, 000, 000 train and
5,028,326 examples

Large Scale Learning Linear SVM Kernel SVM Summary

Splice Site Recognition

Linadd for WD kernel

For linear combination of kernels:∑
j∈W (αj − αold

j)yj k(xi , xj) (O(Ld |W |N))

use one tree of depth d per position in sequence

for Lookup use traverse one tree of depth d per position in
sequence

Example d = 3 :

output for N sequences of length L in O(Ld · N)

(d depth of tree
∧
= degree of WD kernel)

Large Scale Learning Linear SVM Kernel SVM Summary

Splice Site Recognition

Spectrum Kernel on Splice Data

1000 10000 100000 1000000

1

10

100

1000

10000

100000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)

Spec−Precompute

Spec−orig

Spec−linadd 1CPU

Spec−linadd 4CPU

Spec−linadd 8CPU

Large Scale Learning Linear SVM Kernel SVM Summary

Splice Site Recognition

Weighted Degree Kernel on Splice Data

1000 10000 100000 1000000 10000000

1

10

100

1000

10000

Number of training examples (logarithmic)

S
V

M
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)

WD−Precompute

WD 1CPU

WD 4CPU

WD 8CPU

WD−Linadd 1CPU

WD−Linadd 4CPU

WD−Linadd 8CPU

Large Scale Learning Linear SVM Kernel SVM Summary

Splice Site Recognition

More data helps

N auROC auPRC

500 75.55 3.94
1,000 79.86 6.22
5,000 90.49 15.07

10,000 92.83 25.25
30,000 94.77 34.76
50,000 95.52 41.06

100,000 96.14 47.61

N auROC auPRC

200,000 96.57 53.04
500,000 96.93 59.09

1,000,000 97.19 63.51
2,000,000 97.36 67.04
5,000,000 97.54 70.47

10,000,000 97.67 72.46

10,000,000 96.03∗ 44.64∗

Large Scale Learning Linear SVM Kernel SVM Summary

Outline

1 Large Scale Learning

2 Linear SVM

3 Kernel SVM

4 Summary

Large Scale Learning Linear SVM Kernel SVM Summary

Summary Large Scale Learning I

linadd for (string) kernel SVMs

General speedup trick (clear, add, lookup operations) for
string kernels

Shared memory parallelization, able to train on 10 million
human splice sites

Gives reasonable speedups and can be further parallelized

State-of-the-art accuracy

Implementations

linadd

stochastic gradient descent, cutting plane based SVMs

current fastest SVM solver (OCAS)

Implemented in SHOGUN http://www.shogun-toolbox.org

http://www.shogun-toolbox.org

Large Scale Learning Linear SVM Kernel SVM Summary

Summary Large Scale Learning II

Choose your weapons.

LSL is machine learning at its (practical) limits.

Design decisions are critical and should be made with care.

Further reading and sources to prepare this lecture.

Chapelle, Training a support vector machine in the primal

Sonnenburg et.al., Large scale learning with string kernels

Bottou, Stochastic Gradient Learning in Neural Networks

Joachims, Making Large-Scale SVM Learning Practical

Joachims, Training Linear SVMs in Linear Time

Teo et.al., Bundle Methods for regularized Risk Minimization
(BMRM)

Lin et.al., Trust Region Newton Method for Large-Scale Logistic
Regression

Chang et.al., LIBSVM a library for support vector machines

	Large Scale Learning
	Definition

	Linear SVM
	Classic approach
	Active Set Methods
	Primal Methods

	Kernel SVM
	
	
	
	

	Summary

