Large Scale Learning and Optimization
(using Support Vector Machines)

S. Sonnenburg’, K. -R. Miiller*

*Technical University Berlin,
TFraunhofer FIRST.IDA, Berlin

Vorlesung SS 2008, 3. Juni

Fraunhofer Institut

Rechnerarchitektur
und Softwaretechnik

Outline

@ Large Scale Learning
© Linear SVM

© Kernel SVM

Q@ Summary

Large Scale Learning

Outline

@ Large Scale Learning

Large Scale Learning
©000000

Definition

Large Scale Problems

What makes a Problem Large Scale?

o Large number of data points
o Extremely high dimensionality
o High effort algorithms O(N3)

@ Large memory requirements

= Anything that reaches current computers limits:
computational, memory, transfer costs

One may define a large scale problem to be a problem which to
solve reaches current computers limits be it computational, memory
or transfer costs wise. For machine learning this translates to high
effort algorithms (e.g.O(N3)), large number of data points or high
dimensionality.

Large Scale Learning
0@00000

Definition

Applications |

Bioinformatics (Splice Sites, Gene Boundaries,. . .)

— €XOon — intron 1€XON[intron 1€X0ON - intron 1€XON - intron T— exon
ONA - I s o+

ATG GT AG GT AG GT AG GT AG
TTG,TAA

TGA

UUG,UAA
AUG GU AG GU AG GU AG GU AG UGA
pre-mRNA cap | R s R s s O >

transcription

splicing
mRNA co» P -
AUG
translation Ugi,UAA
U
protein N I

Learning and predicting on the human genome
@ Learn on 50 - 10% examples

@ Predict on ~ 2 -3-10° locations

Large Scale Learning

00@0000

Definition

Applications Il

IT-Security (Network traffic)

%4 @ DS BHONE HEw NEANY \ER

B REKRD B O RORKY REOD BE KESN LIE

WE Dk BTSN E HE
REKIY BIE O n@EKY R

WURY HE DR BHCNE HE4 THUN MR

e BHON® HEW MEANE WM

BN O REERY RESD BE NEUN LFE WUKY HE Dt B

WURY HE DS BHENE M6 NEADY \ER

O XE EOE RENNL BPE O rUEKYT REOD BE NEUN LIE UKL

N Em TTEASE MR

UKy 8 D BHENE HEM

HEHIY BIY O cEREY REO) HE NESN LHE WUKY HE D BE

>
T
©
—
(]
o
—~~
D
iy
Ly
4]
—
+
Y
o
om
&)
™~
LO
~
(%2}
[
=
(]
]
o
o
+
)
<
o
o
<
o
o
<
Lo
i
Q£
20
o
o
O
o

o
E
s}
—L

(3}

(O]

=
£

(]

c

[e]
©

(]
0

[e]
o

(%2}

(3}
<

c
.0
s}
=
o

(O]

S
[l
o

c

[0}

0
£

e

—

(9}

[}
-l

o

Large Scale Learning
[e1e]eY Tolele}

Definition

Applications |l

Text-Classification (Spam vs. Non-Spam)

Email August 2007 to April 2008 Spam as a percentage of e-mail
Messages/Day
1200000 005
85-90 =
1000000 80-85
WSPAM 70
@VALID
OVIRUSES|
0
Jan-08 Feb-08 Mar-08 Apr-08
auga7 Sep-07 Ock07 Newo7 Dec0? 2001 2004 2005 2006 2007

@ Email Spam increases drastically

Large Scale Learning
0000®00

Definition

Applications IV

Image Recognition

o Face recognition: Examples are generated by sliding rectangles
over the image (different scale, rotation)
o Training expensive, and real-time requirements on predictor.

Large Scale Learning
00000®0

Definition

Approaching LSL Problems

LSL might create challenges just to load/process data!
Therefore avoid it if not necessary!

Obtain a reference solution via sub-sampling!
More data = better performance?

o
o
@ Approximative vs. exact algorithms.
o

Simplest effective methods first.

If LSL is needed focus changes drastically.

Large Scale Learning
00000Oe

Definition

Paradigm Shift

Suddenly, low-level details matter a lot!
Design decision become critical:
o Data representation (float/byte matrices, sparse matrices,
hierarchical (trees), bit-representations)
@ Programming language (ruby, python, java, c+-+, assembly)

@ Problem formulation (how is the problem cast, are there
equivalent but faster re-formulations?)

o Choice of algorithm (complexity,. ..)

In this lecture: How to speed up SVMs.

Linear SVM

Outline

© Linear SVM

Linear SVM
®0000000

Classic approach

Recall Support Vector Machines

Given training examples (x;, y;)N, € (X, {-1,+1})N

o Linear Classifier f(x) = sign (w - x + b)
o SVMs learn o € RV on training examples in kernel feature

space P(x) N
f(x) = sign <Z yiaik(x, x;) + b) ,
i=1

where Kernel k(x,x’) = ®(x) - ®(x’)

Linear SVM
0®000000

Classic approach

SVM Primal

N
1
P(W7 b,f) = 5 ||W||2+ C E &i
i=1

. 2 N
thTg SlIwll*+ CYity &

wrt weRP beR € RN
s.t.: £ <0,Vi=1...N

1—yi(w'x;+b) =& <0,Vi=1...N

Linear SVM
©00®00000

Classic approach

Lagrangian

- 10,12 N
min Wl + C3ii &
wrt weRP heR £ RN
s.t.: £ <0,Vi=1...N

1—yi(whx;+b)—& <0,Vi=1...N

N N
1
Lw,b & @A) = 3 IWIP+CY &= > amlw'xi+b)
i=1 i=1

N N
+D i =Y (i o)
i=1 i=1

where a >0, A >0

Linear SVM
000®0000

Classic approach

Derivatives of the Lagrangian

N N
1
Liw,b,& a,A) = 5 Iwli® + C> & = aiyi(w'x; + b)
=1 i1
N N

+ Z o — Z()\i + ;)&

i=1 i=1
where « >0, A >0

N N
|
8WL = w— E QjyiXj = 0 =>w= E QjYiXi
i=1 i=1

N N
8[,[_ = —Zoz,—y,-éo :>Za,-y,-:0.
i=1 i=1

Bl = Cl—a—A=0

Linear SVM
0000000

Classic approach

Derivatives of the Lagrangian

N N
|
(9“,/_ = w— E QjyiXj = 0 =>w= E Q;yiXij
i=1 i=1

N N
8bl_ = —Za,’y,'éo :>Za,-y;:O.
i=1 i=1

Ol = Cl—a—A=0
Duetoa>0, A>0:
0<a< (1

o<a<
A=Cl-«

Linear SVM
00000800

Classic approach

Re-substitute into Lagrangian

D(a) = fZZa,y,x aJnyJ+CZ§,

i=1 j=1
N
_Zaiyi Zajij,TXj—Fb
= N—
Za, Z —Oéi‘l‘ai)gi
i=1
= *Zzaamij Xj — ZZ“O‘JWJX XJ+ZQ'
i=1 j=1 i=1j=1
N N N

= Z o — % Z Z a,-ajy,-ij,-TxJ-

i=1 i=1 j=1

Classic approach

SVM Dual

Linear SVM
000000e0

max 301y o — 3 20y O ciayyiyxt X

wrt : acRN

st 0<a;<CVi=1...N
S aiyi =0

Linear SVM
©0000000e

Classic approach

Solve using off-the-shelf Optimizers

@ Use some general purpose solver to solve the problem (mosek,
cplex, quadprog,...)
@ Memory requirements
o Requires to store whole kernel matrix O(N?) = 30000
examples ~ 7GB
o Computation time at least O(N? - D) just for kernel elements
(linear kernel).
o Computational Complexity
o Lower bound O(N?), to check optimality needs output for all
examples f(x;) = ZJN;I ajyiK(xj,xi), Vi=1...N
o Worst case O(N?3)

Linear SVM
®000

Active Set Methods

Chunking and Sequential Minimal Optimization

General idea: Split large problem into smaller sub-problems.
(Called active set methods in optimization theory.)

@ Chunking select q variables o, ..., aj,

@ SMO is special case with g = 2, sub-problem can be solved
analytically, but clever and efficient subset selection strategy
needed.

Training algorithm (chunking):

while optimality conditions are violated do
select g variables for the working set.
solve reduced problem on the working set.
end while

Chunking is implemented in SVMlight, SMO in Libsvm

Linear SVM
000

Active Set Methods

|dentifying inefficiencies A

At each iteration, the vector f, fi = 3" ayi k(x;, %), j=1...N
is needed for checking termination criteria and selecting new
working set = Effort O(D - N?)

Speedup A:

@ Avoid to recompute f from scratch
Q Start with f =0

© Compute “linear updates” on f on the working set W

fj — 6-""’ + Z(a; — af"d)yi k(Xi,Xj)
iew

Effort O(D - N - q)

Linear SVM
coeo

Active Set Methods

|dentifying inefficiencies B

Speedup B: Update rule: fj — £ + 37, (a;i — af)yik(xi, ;)
@ Exploit k(xj,x;) = ®(x;) - P(x;) and obtain

- — fOId + Z OId ¢(X,‘) : (D(Xj)
iew

Q Usew = vazl a;yi®(x;) to get

fi — £+ w" - o(x))

(w" normal on working set)
Observations
e g := |W] is very small in practice = precomputing w is cheap

@ computing dot products still dominates computing time
@ Overall effort O(N- D+ q- D)

Linear SVM
ocooe

Active Set Methods

Dual Formulation for Linear SVMs is inefficient

Number of variables dim(a) = N depends on N

Recall the Primal Formulation

. 2 N
M’;nt')ng SlIwl*+ CYil &

wrt weRP beR £ RN
s.t.: £ <0,Vi=1...N

1—yi(w'x;+b)—& <0, Vi=1...N

Number of variables in Primal is dim(w) =D + N +1
= Primal even worse?

Linear SVM
®0000000

Primal Methods

Working in the Primal

e Standard SVM Primal

e Convert into (equivalent) unconstrained Primal
Lwl? 4 €3 (maxl0.1— y(w-x+ b))
2 i=1
1 N
SlIwl® + CY Ly f(x)
i=1

@ Hinge Loss L(y;, f(x;)) = max{0,1 — y;(f(x;)}

Number of variables is now D + 1 Can be solved using
e.g. gradient descent and newton for differentiable losses

Linear SVM
0®000000

Primal Methods

Differentiable approximations to the Hinge Loss

1
inge @ Hinge Loss
o8 :f(j;g{ii“c L(y,t) = max{0,1 — yt}
0ol @ Squared Loss
[L(y,t) = max{0,1 — yt}?
4 @ Logistic Loss
0.2} 1 L(y,t) = log(1 + ™)
GO 0‘.5):/L‘ 1.5 2
0 ifyt>1+h
Hubers Loss L(y,t) = % if [L—yt|<h

1—yt if yt<1l—nh

Linear SVM
00®00000

Primal Methods

Descent Method for Unconstrained Problems

Let us consider an unconstrained convex problem: min f(x)

Initialization: set x € domf.
repeat

@ Determine a descent direction 4.
@ Line-search: find a step size
t = argmingq f(x + t'6).
© Update x := x + t4.
until stopping condition is satisfied.

o It generates x(1) x(?) . such that f(x(K)) > f(x(k+1)).

o For f differentiable, a vector 6 is a descent direction if
VF(x)"6 <0

e.g., gradient descent methods use § = —V£(x).

Linear SVM
000®0000

Primal Methods

Stochastic Gradient Descent

@ SGD is a Online Method - works well for huge N

@ Objective function as sum over training examples

N

1

SO IWIP N C Ly, F(x)
i=1 £:(w)

@ Update Rule: At each iteration t choose a random
n
W—w— ?VE,'(W)

@ 1 learning rate, critical parameter, n = C - N works OK in
practice, for tuning cf. Bottou 2007

e lteration cost O(D)

= Good approximations after a few passes through the data.

Linear SVM
0000e®000

Primal Methods

Newton Methods for Unconstrained Problems

Let us consider equality constrained convex problem min f(x)

@ Using the KKT optimality conditions, x € domf is optimal iff there
exist v such that

Vf(x)=0.

1
@ For a convex quadratic function f(x) = ~x"Hx + ¢ x the KKT
conditions lead to an efficiently solvable set of linear equations:

Hx+c=0.

@ Newton method is applicable for a general twice differentiable
function f(x): it iteratively approximates f(x) by a quadratic
function

f(x) = %(x —X)V2F(xX)(x — X') + VF(X) " (x — x') + f(X)

and solves the KKT conditions for the approximation f(x).

Linear SVM
00000e00

Primal Methods

Cutting Plane

Unconstrained convex minimization problem

w* = argmin F(w) := <1Hw||2 +C- R(w))
weRn 2

Difficulty stems from the risk term R(w).

Idea

Approximate R(w) by a simpler term R(w) constructed as
point-wise maximum of linear function.

Linear SVM
00000080

Primal Methods

Cutting plane approximation

R(w) > R(w) where R(w) = Amax ((w,a;) + b;)

{(a1, b1),-..,(am, bm)} are cutting planes at points {wy,...,w;}.

Linear SVM
0000000e

Primal Methods

Running times (from Large Scale Learning Challenge)

http://largescale.first.fraunhofer.de

o=0 ewton SYM
e=e Interior point SVM
e=s Sequential coordinate dual SVM L2
Sequential coordinate dual SVM
0.50 AVE
Sequential coordinate dual SVM - Python
Stochastic SVM
0.45F alpha 1
=0 appha 3
@=e Averaging of Selective Naive Bayes Classifiers
0.40[- []
0.35F
0 0.30f
<
o
<]
© 0.25f
0.20f
0.15f
0.10F e
0.05 I i L i
T 0 1 2 3 4
1 10 10 10 10 10
CPU Time (s)

@ Newton quite fast for low dimensional data.

@ Stochastic Gradient Descent for high-dimensional data.

http://largescale.first.fraunhofer.de

Kernel SVM

Outline

© Kernel SVM

Kernel SVM

LSL and Kernel SVMs

@ Most common: dual based chunking methods (svm-light,
libsvm)

@ Other approach in dual e.g. Low rank decomposition, aim find
K that is close to K, e.g.

N 2
K <

o What about non-vectorial based string kernel SVMs?

Kernel SVM
®000

LSL with String Kernel SVMs

Large Scale Learning with Strings

o Text Classification (Spam, Web-Spam, Categorization)
o Task: Given N documents, with class label +1, predict text
type.
o Security (Network Traffic, Viruses, Trojans)
o Task: Given N executables, with class label 41, predict
whether executable is a virus.
o Biology (Promoter, Splice Site Prediction)

o Task: Given N sequences around Promoter/Splice Site (label
+1) and fake examples (label —1), predict whether there is a
Promoter/Splice Site in the middle

= Approach: String kernel + Support Vector Machine
= Large N is needed to achieve high accuracy (i.e. N = 107)

Kernel SVM
oeo00

LSL with String Kernel SVMs

Formally

o Given:
o N training examples (x;,y;) € (X, £1),i=1...N
o string kernel K(x,x’) = ®(x) - ¢(x')
o Examples:
e words-in-a-bag-kernel
o k-mer based kernels (Spectrum, Weighted Degree)
o Task:

o Train Kernelmachine on Large Scale Datasets, e.g. N = 107
o Apply Kernelmachine on Large Scale Datasets, e.g. N = 10°

Kernel SVM
ocoeo

LSL with String Kernel SVMs

String Kernels

@ Spectrum Kernel (with mismatches, gaps)

AN /

K(x,x') = Pgp(x) - D5p(x’)
T AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
x’ TACCTAATTATGAAATTAAATTTCHGTGTGCTGATGGAAACGGAGAAGTC

o Weighted Degree Kernel (with shift)
k(s1,82) = w7 +Ww1 + W2+ W2 + W3
$1—>—AGT

GGACATCAGTAGACAG —>

S2—>— TTAT CAAAGACATCAGTAGAC TT—>

For string kernels X' discrete space and ®(x) sparse

Kernel SVM
oooe

LSL with String Kernel SVMs

Kernel Machine

Kernel Machine Classifier:

N
f(x) = sign (Z ajy;i k(xi, x) + b)

i=1
To compute output on all M examples:

N
Vi=1,...,M: Za;y;k(x;,xj) +b
i=1
Computational effort:
@ Single O(NT) (T time to compute the kernel)
e All O(NMT)

= Costly!
= Used in training and testing - worth tuning.
= How to further speed up if T = dim(X) already linear?

Linadd

Kernel SVM
®0000000

Linadd Speedup Idea

Key Idea: Store w and compute w - ®(x) efficiently

N
Z a;iyi k(xi, x;) Z @jyi®(x;) - ®(x;) = w - &(x;)
i=1
—,_/
w

When is that possible ?

@ w has low dimensionality and sparse (e.g. 42 for Feature map
of Spectrum Kernel of order 8 DNA)

@ w is extremely sparse although high dimensional (e.g. 10'* for
Weighted Degree Kernel of order 20 on DNA sequences of
length 100)

Effort: O(MT') = Potential speedup of factor N

Kernel SVM
0®000000
Linadd

Technical Remark

Treating w

@ w must be accessible by some index u (i.e. u=1...4% for
8-mers of Spectrum Kernel on DNA or word index for
word-in-a-bag kernel)

@ Needed Operations

o Clear: w=0

o Add: w, «— w,+vVv (only needed |W/| times per iteration)
o Lookup: obtain w, (must be highly efficient)
@ Storage

o Explicit Map (store dense w); Lookup in O(1)
o Sorted Array (word-in-bag-kernel: all words sorted with value

attached); Lookup in O(log(>_, I(w, # 0)))
o Suffix Tries, Trees; Lookup in O(K)

Kernel SVM
00®00000

Linadd

Datastructures - Summary of Computational Costs

Comparison of worst-case run-times for operations
@ clear of w
@ add of all k-mers u from string x to w

@ lookup of all k-mers u from x" in w

Explicit map Sorted arrays Tries Suffix trees

clear o(Z]9) 0(1) 0(1) 0(1)
add O(k) O(l log k) O(kd) O(k)
lookup O(h) O(k + I) O(ld) O(l)

Conclusions
o Explicit map ideal for small |X|
@ Sorted Arrays for larger alphabets

o Suffix Arrays for large alphabets and order (overhead!)

Kernel SVM
00080000
Linadd

Support Vector Machine

Linadd directly applicable when applying the classifier.

N
f(x) = sign (Z ajy;i k(xi, x) + b)

i=1
Problems
o w may still be huge = fix by not constructing whole w but
only blocks and computing batches
What about training?

o general purpose QP-solvers, Chunking, SMO

o optimize kernel (i.e. find O(L) formulation, where
L = dim(X))

o Kernel Caching infeasable
(for N = 10° only 125 kernel rows fit in 1GiB memory)

= Use linadd again: Faster + needs no kernel caching

Linadd

Kernel SVM
0000000

Derivation |

Analyzing Chunking SVMs (GPDT, SVM/e"t;)

Training algorithm (chunking):
while optimality conditions are violated do
select g variables for the working set.
solve reduced problem on the working set.
end while

@ At each iteration, the vector f, f; = SN aiyi k(xi, Xj),
j=1...N is needed for checking termination criteria and
selecting new working set (based on a and gradient w.r.t. «).

@ Avoiding to recompute f, most time is spend computing
“linear updates” on f on the working set W

.H fold+ Z(a’ o/d y: k(X,,XJ)
iew

Linadd

Kernel SVM
0000000

Derivation I

Use linadd to compute updates.

Update rule: f; «— £+ 37,y (ai —)y k(xi, x;)
Exploiting k(x;,x;) = ®(x;) - ®(x;) and w = Zi:l a;y;i®(x;):

fi— £+ (i — af?)yd(x;) - d(x;) = £29 + w' - d(x))

ieWw
(w" normal on working set)
Observations
e q:=|W]| is very small in practice = can effort more complex

w and clear,add operation

@ lookups dominate computing time

Kernel SVM
000000e0

Linadd

Algorithm

Recall we need to compute updates on f (effort c;| W|LN):
f"ld + Z — @)y k(x;,x;) forall j=1...N

Modified SVM/’ght usmg “LinAdd" algorithm (effort colLN, ¢
Lookup cost)
fi=0,a=0fr;j=1,...,N
fort=1,2,...do
Check optimality conditions and stop if optimal, select
working set W based on f and «, store a®? = «
solve reduced problem W and update «
clear w
W — w + (o — a9)y;d(x;) for all i € W
update f; = f; + w- ®(x;) forall j=1,..., N
end for
Speedup of factor 2, |W|

Kernel SVM
©0000000e

Linadd

Datasets

o Web Spam

o Negative data: Use Webb Spam corpus
http://spamarchive.org/gt/ (350,000 pages)

o Positive data: Download 250,000 pages randomly from the
web (e.g. cnn.com, microsoft.com, slashdot.org and
heise.de)

o Use spectrum kernel k = 4 using sorted arrays on 100,000
examples train and test (average string length 30Kb, 4 GB in
total, 64bit variables = 30GB)

http://spamarchive.org/gt/

Kernel SVM

Web-Spam

Web Spam results

Classification Accuracy and Training Time

N || 100 500 5,000 10,000 20,000 50,000 70,000 100,000

Spec 2 97 1977 6039 19063 94012 193327 -
LinSpec 3 255 4030 0128 11948 44706 83802 107661
Accuracy ||89.59 92.12 9636 97.03 9746 97.83 97.98 98.18
auROC ||94.37 97.82 99.11 99.32 99.43 99.59 99.61 99.64

Speed and classification accuracy comparison of the spectrum
kernel without (Spec) and with 1inadd (LinSpec)

Kernel SVM

Splice Site Recognition

Datasets

@ Splice Site Recognition
o Negative Data: 14,868,555 DNA sequences of fixed length 141
base pairs
o Positive Data: 159,771 Acceptor Splice Site Sequences
o Use WD kernel k = 20 (using Tries) and spectrum kernel
k = 8 (using explicit maps) on 10,000, 000 train and
5,028,326 examples

Kernel SVM

Splice Site Recognition

Linadd for WD kernel

For linear combination of kernels:
Yiewlaj — af)y;k(xi, x;) (O(Ld|W(N))
AAACTAATTATGAAATTAAATTTCAGAGTGCTGATGGAAACGGAGAAGAA

@ use one tree of depth d per position in sequence

o for Lookup use traverse one tree of depth d per position in

sequence
Example d =3:
AAG /\ A/\G
U C N /e s
S f“‘iﬂg’% (1
é’ig 1 ’lJ, 1 11 iﬁgL_d

output for N sequences of Iength Lin O(Ld N)
(d depth of tree £ degree of WD kernel)

Kernel SVM

Splice Site Recognition

Spectrum Kernel on Splice Data

T

100000F { —— Spec-Precompute E : Do : : : =
—&6— Spec-orig et : vt : : :

— © — Spec-linadd 1CPU

—=#A— Spec-linadd 4CPU F . Do : : :

—0O- - Spec-linadd 8CPU Y

10000

1000

100

SVM training time in seconds (logarithmic)

16
Yo SR ; . :
==’ I I I
1000 10000 100000 1000000

Number of training examples (logarithmic)

Splice Site Recognition

Kernel SVM

Weighted Degree Kernel on Splice Data

-= 10000

SVM training time in seconds (logarithmic)

1000+

100

—
o

T

T T T
—— WD-Precompute |

- © - WD 1CPU
—=A— WD 4CPU
—o-- WD 8CPU

- © — WD-Linadd 1CPU : e Ry 3
—A— WD-Linadd 4CPU s
—0- - WD-Linadd 8CPU| : R

L I I

10000 100000 1000000
Number of training examples (logarithmic)

10000000

Kernel SVM

Splice Site Recognition

More data helps

N [| auROC | auPRC || N [| auROC [auPRC |

500 75.55 3.94 200,000 96.57 53.04
1,000 | 79.86 | 6.22 500,000 | 96.93 | 59.09
5,000 | 90.49 | 15.07 || 1,000,000 || 97.19 | 63.51
10,000 | 92.83 | 2525 || 2,000,000 | 97.36 | 67.04
30,000 | 94.77 | 34.76 || 5,000,000 | 97.54 | 70.47
50,000 | 9552 | 41.06 || 10,000,000 | 97.67 | 72.46

100,000 | 96.14 | 47.61 || 10,000,000 || 96.03* | 44.64"

Summary

Outline

Q@ Summary

Summary

Summary Large Scale Learning |

linadd for (string) kernel SVMs
o General speedup trick (clear, add, lookup operations) for
string kernels

@ Shared memory parallelization, able to train on 10 million
human splice sites

@ Gives reasonable speedups and can be further parallelized
@ State-of-the-art accuracy

Implementations
@ linadd

@ stochastic gradient descent, cutting plane based SVMs
o current fastest SVM solver (OCAS)

Implemented in SHOGUN http://www.shogun-toolbox.org

http://www.shogun-toolbox.org

Summary Large Scale Learning Il

Choose your weapons.

LSL is machine learning at its (practical) limits.
Design decisions are critical and should be made with care.

Further reading and sources to prepare this lecture.

Chapelle, Training a support vector machine in the primal
Sonnenburg et.al., Large scale learning with string kernels
Bottou, Stochastic Gradient Learning in Neural Networks
Joachims, Making Large-Scale SVM Learning Practical
Joachims, Training Linear SVMs in Linear Time

Teo et.al., Bundle Methods for regularized Risk Minimization
(BMRM)

Lin et.al., Trust Region Newton Method for Large-Scale Logistic
Regression

Chang et.al., LIBSVM a library for support vector machines

Summary

	Large Scale Learning
	Definition

	Linear SVM
	Classic approach
	Active Set Methods
	Primal Methods

	Kernel SVM
	
	
	
	

	Summary

