
Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Machine Learning for Intrusion Detection

Prof. Dr. Klaus-Robert Müller,
Pavel Laskov, Ph.D. and Konrad Rieck

Vorlesung “Maschinelles Lernen – Theorie und Anwendung”
Technische Universität Berlin

May 6, 2008

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Outline

1 Intrusion Detection
Security in a Nutshell
Intrusion Detection Systems

2 Features for Intrusion Detection
Flat Feature Vectors
Structured Data: Sequences & Trees

3 Learning for Intrusion Detection
Anomaly Detection with Hyperspheres
Methods: Center of Mass & One-Class SVM

4 Results and Perspectives

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Security – Who cares?

The Internet as a risk factor

Omnipresence of security threats and attacks

Severe economic damage due to Internet crime

Emergence of new criminal “industries”

For example: A careless user may fall victim to . . .

Credit card, password and identity theft

Remote control of his system, e.g. for sending Spam

Involvement in crime as a “stepping stone”

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Computer Security

Protection of resources on computer systems

Principle goals of security
1 Confidentiality of resources
2 Integrity of resources
3 Availability of resources

For example: You write a love-letter to your friend

Only the recipient should read the letter → Confidentiality

Your message should not be tampered → Integrity

The target mailbox should not be blocked → Availibility

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Security Measures

Active security: Prevention and protection

Encryption of communication (Confidentiality)

User and message authentication (Integrity)

Redundancy and distribution of data (Availibility)

Reactive Security: Detection and response

Anti-virus scanners and malware removal tools

Intrusion detection and response systems

Incident management and computer forensics

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Intrusion Detection Systems (IDS)

Attack
Attempt to comprise the confidentiality, integrity or availibility

Intrusion detection system (IDS)

System monitoring a stream of events for attacks

Differentiation of IDS by . . .

Event source (e.g. host, network, application)

Analysis type (e.g. rules, heuristics, learning)

Response (e.g. blocking, sandboxing)

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Intrusion Detection in Detail

Data generation

Intrusion Detection

Feature extraction

Detection algorithm

1 Data generation
Monitoring a stream of events,
e.g. network packets

2 Feature extraction
Extraction of features from events,
e.g. strings of network packets

3 Detection algorithm
Classification or anomaly
detection on extracted features

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Classic Intrusion Detection

Identification of attacks using signatures (detection rules)

Life-cycle of an attack signature

Security expert analysis new attack and develops signature

Intrusion detection systems are updated with new signature

Signature identifies attack in the wild

ETH | IP | TCP GET /scripts/..%c1%9c../system32/cmd.exe

PayloadHeader

Event, e.g. packet

..%252f..

..%c1%af..

..%%35%63..

..%c1%1c..

..%c1%9c.. ..%255c..

..%%35c..
..%c0%9v..

Variants

Signature

TCP ..%c1%9c.. Nimda worm

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Drawbacks of Signatures

Classic intrusion detection may fail in the future:

Human analyses expensive and time-consuming

Further delay to distribution of new signatures

Unable to scale with increasing amount of attacks

Ineffective against attack variants and polymorphism

ETH | IP | TCP GET /scripts/..%c1%9c../system32/cmd.exe

PayloadHeader
Packet

..%252f..

..%c1%af..

..%%35%63..

..%c1%1c..

..%c1%9c.. ..%255c..

..%%35c..
..%c0%9v..

Variants

Signature

TCP ..%c1%9c.. Nimda worm

→ Need for automatic and adaptive detection technology

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesSecurity in a Nutshell Intrusion Detection Systems

Machine Learning for IDS

Extend intrusion detection with machine learning

1 Extraction of features suitable for learning
2 Application of robust learning methods

⇒ High cost of labels (up to several hours per incident)

Capability to learn on unlabeled or one-class data

Compensation of attacks in training data

⇒ Huge amount of data (e.g. 1 GBit/s on a network link)

Efficient feature extraction

Efficient learning algorithms

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Features for Intrusion Detection

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Feature Extraction

GET!/index.html

Event x

GET
ET!

T!/
!/i

/in
...

Sequences

GET
html

index

Trees

...

Flat

15

4.2

Length

Entropy

Features !(x)

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Flat Feature Vectors

Embedding of events using set of numerical features

Feature map

A function φ : X → Rn mapping events X to Rn given by

x 7→

φ1(x)
...

φn(x)

 feature 1
...

feature n

Incorporation of categorical features via function ψ

ψ : C → R|C |, ψ(c) = (0, . . . ,1, . . . ,0)︸ ︷︷ ︸
1 at position j

if c = j -th category

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Flat Feature Vectors

Data-dependent normalization of each feature φi (x) using mean
µi and variance σi of feature.

φ̂i (x) =
|φi (x)− µi |

σi

Example: KDDCup 1999 data set (obsolete!)

Source Features Type

Connection properties duration, service,

src bytes, dest bytes

int, bool,

string

Content features logged in, root shell,

num shells

int, bool

Window features host count, srv count,

error rate

int, float

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Sequential Features

Embedding of sequential events, e.g. network packets

Event x is sequence of symbols from alphabet A
Characterize x using a language L ⊆ A∗

Feature space spanned by frequencies of words w ∈ L

Feature map

A function φ : A∗ → R|L | mapping sequences to R|L | given by

x 7→ (#w(x))w∈L

where #w(x) returns the frequency of w in sequence x.

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Sequential Features

Language L = An (N-grams)
⇒ Independent of attack and protocol characteristics

Example: 4-grams extracted from HTTP traffic

0
0.005

0.01

0

0.05

0

0.005

0.01

0.015

A
c
c
e

0
0.005

0.01

0

0.05

0

0.005

0.01

0.015

%%35
GET!

GET!

Acce

%%35

...

Attacks in lower front:
presence of attack term
“%%35” and absence of
“Accept” keyword

Linear structures caused by
HTTP pipelining

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Tree Features

Embedding of tree events, e.g. parsed network packets

Event x is parse tree of grammar G

Characterize parse tree x using contained subtrees

Binary feature space spanned by subtrees t ∈ T

Feature map

A function φ : T → R|T | mapping trees to R|T | given by

x 7→ (It (x))t∈T

where It (x) indicates if t is a subtree of parse tree x.

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

Tree Features

Example: Extraction of parse trees for the HTTP protocol

RQ

ME URI HDRS

GET PATH

/index.asp

PARAM . . .

KEYP VALP

q= 42

HDR . . .

KEYH VALH

Agent: Firefox

Fig. 1. Exemplary parse tree for the stateless HTTP network protocol.

2.1 Stateless Protocols

Stateless network protocols process data independently of previous transmis-
sions, such as the hyper text transfer protocol (HTTP) [4]. Internal states are
not stored and relevant information about the actual transmission needs to be
encoded in each network request. A HTTP request, for instance, must contain
the respective transmission method which defines how user-supplied data (e.g.,
URI parameters) is provided to the server, see also Figure 1.

Moreover, stateless protocols possess a variety of different grammatical sym-
bols (e.g., various HTTP headers). That is, trees, derived from a stateless proto-
col, hardly share identical labels. Thus, the specificity of nodes in a tree increases
in terms of their depth and observing equally labeled leaf nodes is rather unlikely.

2.2 Stateful Protocols

In contrast to stateless protocols, stateful protocols do maintain the actual state
of a communication, such that network requests are processed in the context
of previous transmissions. An example is the file transfer protocol (FTP) [18],
where a single FTP session may comprise storage and retrieval of multiple files.

Stateful protocols transmit network requests sequentially. Translated into
parse trees, transmissions generate identically labeled nodes in higher levels, see
Figure 2. Similar to stateless protocols, individual requests of stateful commu-
nications decompose into an operational part and a set of arguments containing
user-supplied data. However, there is only a marginal information gain contained
in the top levels of stateful protocol trees since the majority of nodes exhibit iden-
tical labelings. The relevant information in stateful transmissions is carried in
leaves and lower parts of the trees.

3 Kernels for Parse Trees

Let G be a grammar and X = (V, E, x0) a parse tree rooted at x0 ∈ V , where V
is the set of nodes and E the set of edges. We denote by ẋ = {x′ : (x, x′) ∈ E}

φ(x) = (0,0,1,0,0,0,0,0,0 . . .)︸ ︷︷ ︸
O(2n) dimensions

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesFlat Features Structured Data

From Features to Kernels

Incorporation of event data into learning methods via kernels

Kernel functions for vectorial data

Kernel functions for structured data (→ previous lecture)

Examples:

Linear kernel
k (x, y) = 〈φ(x), φ(y)〉

Gaussian kernel

k (x, y) = exp
(
−||φ(x)− φ(y)||2

γ

)
Efficient implementation using specialized data structures

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

Learning for Intrusion Detection

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

Learning Intrusion Detection?

Setup for learning

No knowledge about future attacks → One-class learning
Train detector on normal data only
Assumption: attacks deviate from normal data

Labeling real data expensive → Unsupervised learning
Train on unlabeled “normal” data
Assumption: low ratio of attacks in data

Efficient computation → Simple decision surfaces
Kernels for non-linear mappings to feature space

⇒ Unsupervised Anomaly Detection

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

Unsupervised Anomaly Detection

Anomaly detection

“normal” “anomalous”

GET /scripts/..%c1%9c../system32/cmd.exe

ETH | IP | TCP GET /scripts/..%c1%9c../system32/cmd.exe

PayloadHeader

GET /scripts/..%c0%9v../system32/cmd.exe

GET /scripts/..%%35c../system32/cmd.exe

Event, e.g. packet

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

Hyperspheres for Anomaly Detection

Concept: Model data using hypersphere in feature space

Deviation of normality = Distance from center of hypersphere

(a) Center of Mass (b) One-Class SVM

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

(a) Center of Mass

Model normality of data using center of mass

For data {x1, . . . xn} center of mass µ̄

µ̄ =
1
n

n∑
i=1

φ(xi)

Anomaly score a(z) of new point z

a(z) = ||φ(z)− µ̄||2

= k (z, z)− 2
n

n∑
i=1

k (z, xi) +
1
n2

∑
i ,j=1

k (xi , xj)

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

(b) One-class SVM

Model data using hypersphere with minimum volume

Determine smallest hypersphere with center µ∗ and radius r

min
µ,r

r2

subject to ||φ(xi)− µ||2 ≤ r2

for i = 1, . . . ,n

“Soften” margin of hypersphere using slack variables ξi

min
µ,r,ξ

r2 + C
n∑

i=1

ξi

subject to ||φ(xi)− µ||2 ≤ r2 + ξi

ξi ≥ 0 for i = 1, . . . ,n

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

One-Class SVM in Dual

Dual optimization problem given by

max
α

n∑
i=1

αi k (xi , xi)−
n∑

i ,j=1

αiαj k (xi , xj)

subject to
n∑

i=1

αi = 1 and 0 ≤ αi ≤ C for i = 1, . . . ,n

Formulation of anomaly value a(z)

a(z) = ||φ(z)− µ∗||

= k (z, z)− 2
n∑

i=1

αi k (xi , z) +
n∑

i ,j=1

αiαj k (xi , xj).

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and PerspectivesAnomaly Detection Detection Methods

One-class SVM with Gaussian Kernel

Non-linear mapping of hypersphere using Gaussian Kernel

k (x, y) = exp
(
−||φ(x)− φ(y)||2

γ

)

(c) γ = 0.1 (d) γ = 0.01 (e) γ = 0.005

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Results and Perspectives

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Experiments with Network Intrusions

Real network traffic generated by IDA members

Attacks injected by security expert using Metasploit

Setup: N-grams with Center-of-Mass and One-Class SVM

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

false positive rate

tru
e

po
sit

ive
 ra

te

ROC for HTTP traffic

Center!of!Mass
One!class SVM
Snort IDS

0 0.002 0.004 0.00% 0.00& 0.01
0

0.2

0.4

0.%

0.&

1

fa*se positi2e rate

tru
e

po
sit

i2e
 ra

te

567 for 8TP traffic

7enter!of!=ass
6ne!c*ass S?=
Snort IAS

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

false positive rate

tru
e

po
sit

ive
 ra

te

ROC for SMTP traffic

Center!of!Mass
One!class SVM
Snort IDS

High detection accuracy (> 80%) with no false-positives

Anomaly detection outperforms classic IDS “Snort”

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Comparison of Structured Features

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC of HTTP traffic

Sequences: 3−grams
Sequences: Tokens
HTTP parse trees

Structured features

3-grams from HTTP requests

Tokens from HTTP requests

Parse trees from HTTP requests

Sequence features: High accuracy at low false-positive rates
⇒ extracted subsequences reflect typical attack patterns

Tree features: Moderate accuarcy due to false-positives
⇒ structural but benign anomalies in HTTP traffic

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Explaination of Detection

Explaination using contribution of features to anomaly score

Frequency differences of 4-grams

!!"!#

!!"!$

!

!"!$

!"!#

!"!%

!"!&

!"!'

&!()*+,

-)
.
/
0
.
1
2
3
45
6-
-.
).
1
2
.

76+5*48894*::*2;4*154<==>4:)*--6242?+@*)6,?1

%%35 35c. 5c.. c../

GET /scripts/..%%35c../system32/cmd.exe

Network attack (Nimda Worm)

%%35c c+dir+ccmd exescripts

Extracted attack signature using tokens

Frequency differences of 4-grams

!!"!#

!!"!$

!

!"!$

!"!#

!"!%

!"!&

!"!'

&!()*+,

-)
.
/
0
.
1
2
3
45
6-
-.
).
1
2
.

76+5*48894*::*2;4*154<==>4:)*--6242?+@*)6,?1

%%35 35c. 5c.. c../

GET /scripts/..%%35c../system32/cmd.exe

Network attack (Nimda Worm)

%%35c c+dir+ccmd exescripts

Extracted attack signature using tokensAttack pattern “%%35c” deviates from normal HTTP traffic

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

Conclusions and Outlook

Machine learning for intrusion detection

Extension of classic signature-based detection methods

Incorporation of flat, sequential and tree features

Unsupervised anomaly detection using hyperspheres
→ high detection accuary with few false-positives

Perspectives: Further application of learning to security

Real-time intrusion detection and response

Malware analysis – Learning behavior and communication

Protecting future communication (VoIP attacks & spam)

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

Intrusion Detection Feature Extraction Machine Learning Results and Perspectives

References

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. (2002).
A geometric framework for unsupervised anomaly detection: detecting
intrusions in unlabeled data.
In Applications of Data Mining in Computer Security. Kluwer.

Rieck, K. and Laskov, P. (2007).
Language models for detection of unknown attacks in network traffic.
Journal in Computer Virology, 2(4):243–256.

Shawe-Taylor, J. and Cristianini, N. (2004).
Kernel methods for pattern analysis.
Cambridge University Press.

Müller, Laskov and Rieck Machine Learning for Intrusion Detection

	Intrusion Detection
	Security in a Nutshell
	Intrusion Detection Systems

	Features for Intrusion Detection
	Flat Features
	Structured Data

	Learning for Intrusion Detection
	Anomaly Detection
	Detection Methods

	Results and Perspectives

