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Background

Bioinformatics - Benefits

Molecular medicine
More drug targets
Personalised medicine
Preventative medicine
Gene therapy

Microbial genome applications
Waste cleanup
Climate change
Alternative energy sources
Biotechnology
Antibiotic resistance
Forensic analysis of microbes
Evolutionary studies

Agriculture
Insect resistance
Improve nutritional quality
Grow crops in poorer soils and that are drought resistant
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Background

Bioinformatics - Applications

In Cell

which genes are on / off ?
in which tissue ?
under which conditions ?

Sequence Analysis on DNA/RNA ⇐ in this Lecture
locate sequences (genes, start, stop, splice sites,. . . )
detect properties
how do individuals of same species differ (SNP’s)
conservation
functional elements

on Proteins

determine structure
determine function
find protein of similar functions
find binding sites (protein-protein, protein-dna)
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Background

Bioinformatics - The Genome
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Background

Bioinformatics - From DNA to Protein
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Finding Genes

Finding Genes - I

What is a Gene ?
A segment on DNA that codes for a certain property (protein).
Proteins control everything, Enzymes (catalyze; involved in
metabolism, DNA replication/repair, RNA synthesis). . ., Cell
signaling (Insulin), ligand binding (Haemoglobin),. . .

DNA

pre - mRNA

major RNA

protein

5' UTR 

Exon

Intergenic

3' UTR

Intron

genic

Exon ExonIntron
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Finding Genes

Finding Genes - II

Sites to detect
Gene has a transcription start, transcription end - only part
from ATG. . .TAA,. . . is transcribed ⇒ pre-mRNA
Only exons code for protein, inserted introns are cut out in
splicing ⇒ mRNA
Gene has a translation start and translation end - that part
is translated to ⇒ Protein

DNA

pre - mRNA

major RNA

protein

5' UTR 

Exon

Intergenic

3' UTR

Intron

genic

Exon ExonIntron
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Finding Genes

Finding Genes - III

Requirements

human genome (all DNA) has 3 billion base pairs - huge!!
method needs to be fast + fit in memory

2-step approach:
1 Detect Signals (focus on splice site and transcription start site

prediction) - ⇒ SVM on sliding windows

define kernels on strings
(spectrum kernel, weighted degree kernel)

2 Learn Structure/Gene Segmentation (complex task)
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Finding Genes

1st pass - Proceedure for splice sites
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Finding Genes

Preparing data

Collecting data for training and evaluation is a complex,
non-trivial task (half the work)

two kinds, one for 1st pass (2-class classification
positive/negative data); one for 2nd pass (correct
segmentations)

we assume data is given (others have done it for us :-)

2-class problem: solve with SVMs Classifier

f (x) = sign

(
N∑

i=1

yiαik(x, xi) + b

)

⇒ How to design the kernel ?
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String Kernels

Data Classes

Position Independent (e.g. Which Tissue? Promoter Region)

Task: separate DNA strings, ’-’ class random ACGT, ’+’ class
contains ’AAAAA’ motif

Position Dependent (e.g. Splice Site Classification)

Task: separate DNA strings, ’-’ class random ACGT, ’+’ class
’AA’ in the middle

Mixture Position Dependent/Independent (e.g. Promoter)

Task: separate DNA strings, ’-’ class random ’ACGT’, ’+’
class ’AAA’ in the middle shifted ±15
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String Kernels

Spectrum Kernel

To make use of position independent motifs:

Idea: like bag of words kernel (text classification) but for
Bioinformatics (words are now strings of length k (k-mers))

count k-mers in sequence A and sequence B.
Spectrum Kernel is sum of product of counts (for same k-mer)

Example k = 3:

3-mer AAA AAC . . . CCA CCC . . . TTT
# in x 2 4 . . . 1 0 . . . 3

# in x′ 3 1 . . . 0 0 . . . 1

k(x, x′) = 2 · 3 + 4 · 1 + . . . 1 · 0 + 0 · 0 . . . 3 · 1
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String Kernels

Weighted Degree Kernel

To make use of position dependent motifs:

k(x, x′) =
d∑

k=1

βk

L−k∑
l=1

I(uk,l(x) = uk,l(x′))

L length of the sequence x

d maximal “match length” taken into account

uk,l(x) subsequence of length k at position l of sequence x

Example degree d = 3 :

k(x, x′) = β1 · 21 + β2 · 8 + β3 · 4
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String Kernels

Weighted Degree Kernel

for weighting we use βk = 2 d−k+1
d(d+1) .

effort is O(L · d)

Speedup Idea: Reduce effort to O(L) by finding matching
“blocks”

Exercise: Show that WD kernel and its “block” formulation are
equivalent
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String Kernels

Weighted Degree Kernel with shifts

To make use of partially position-dependent motifs:

If sequence is slightly mutated (Insertion,Deletion) WD kernel
fails.

Extension: Allow for some positional variance (shifts S(l))

k(xi , xj) =
d∑

k=1

βk

L−k+1∑
l=1

γl

S(l)∑
s=0

s+l≤L

δs µk,l ,s,xi ,xj
,

µk,l,s,xi ,xj=I(uk,l+s(xi )=uk,l(xj))+I(uk,l(xi )=uk,l+s(xj)),

k(x1,x2) = w6,3                      +                  w6,-3   + w3,4
x1

x2
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String Kernels

The Final Signal and Content Sensors

Exon vs. Intron - Spectrum Kernel

splice sites - Weighted Degree Kernel

transcription start, transcription stop - Weighted Degree
Kernel with shifts

Perform Model Selection:

window length

k-mer length (spectrum kernel), degree,shift (WD-kernel)

SVM regularization parameter C

. . .

takes a long time (cluster)

We now have Signal and content sensors
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String Kernels

Example

TSS

TIS

Acceptor

Donor

Stop

PolyA

Cleavage

TSS

TIS

Acceptor

Donor

Stop

PolyA

Cleavage
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Drawbacks of Kernel Methods

What did we learn ?

SVM decision function in kernel feature space:

f (x) =
N∑

i=1

yiαiΦ(x) · Φ(xi )︸ ︷︷ ︸
=k(x,xi )

+ b (1)

learned parameters α by solving quadratic optimization
problem

Problem: Decision function (2) is hard to interpret
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Drawbacks of Kernel Methods

Understanding the SVM Decision

Splice Sites
1 Which positions in the sequence are important for

discrimination?
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3 Which motifs at which position are important?
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Multiple Kernel Learning

Approach: Optimize Combination of Kernels

Define Kernel as Convex Combination of Subkernels:

k(x, y) =
L∑

l=1

βl kl(x, y)

e.g. Weighted Degree Kernel

k(x, x′) =
L∑

l=1

βl

d∑
k=1

I(uk,l(x) = uk,l(x′))

optimize weights β such that margin is maximized

⇒ determine (β,α, b) simultaneously

⇒ Multiple Kernel Learning (Bach, Lanckriet and
Jordan 2004)
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Multiple Kernel Learning

Multiple Kernel Learning (MKL)

Possible solution We can add the two kernels, that is

k(x, x′) := ksequence(x, x′) + kstructure(x, x′).

Better solution We can mix the two kernels,

k(x, x′) := (1− t)ksequence(x, x′) + tkstructure(x, x′),

where t should be estimated from the training data.

In general: use the data to find best convex combination.

k(x, x′) =
K∑

p=1

βpkp(x, x′).

Applications

Heterogeneous data

Improving interpretability
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Multiple Kernel Learning

Method for Interpreting SVMs

Weighted Degree kernel: linear comb. of L · D kernels

k(x, x′) =
D∑

d=1

L−d+1∑
l=1

γl ,d I(ul ,d(x) = ul ,d(x′))

Example: Classifying splice sites
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See Rätsch & Sonnenburg 2006 for more details.
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Projecting to input space

Using SVM w from feature Space

Recall SVM decision function in kernel feature space:

f (x) =
N∑

i=1

yiαiΦ(x) · Φ(xi )︸ ︷︷ ︸
=k(x,xi )

+ b (2)

Could explicitly compute w =
∑N

i=1 αiΦ(xi )

Problem: Φ and thus w too big

Solution:
Reduce dimensionality by considering a small WD kernel
degree, (like 1, . . . , 8)
Still consider high degree for learning, only project on lower
degree for interpretation
Idea: long, overlapping k-mers contribute to small ones

We get so called Positional Oligomer Importance
Matrices
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Projecting to input space

POIMs for Splicing

Color-coded importance scores of substrings near splice sites. Long
substrings are important upstream of the donor and downstream of
the acceptor site (Rätsch et.al 2007)
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Structure Learning - Introduction

Structured Output Spaces

Learning Task
For a set of labeled data, we predict the label.

Difference from multiclass
The set of possible labels Y may be very large or
hierarchical.

Joint kernel on X and Y
We define a joint feature map on X × Y, denoted
by Φ(x, y). Then the corresponding kernel function is

k((x, y), (x′, y ′)) := 〈Φ(x, y),Φ(x′, y ′)〉.

For multiclass
For normal multiclass classification, the joint feature
map decomposes and the kernels on Y is the identity,
that is

k((x, y), (x′, y ′)) := [[y = y ′]]k(x, x′).
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Structure Learning - Introduction

Joint Feature Map

Interdependent Outputs
For example a hierarchy of classes like part of speech
tagging.

Label Sequence Learning
Given an input sequence predict a label sequence
annotating the input
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Structure Learning - Introduction

Context Free Grammar Parsing

Recursive Structure

From Klein & Taskar, ACL’05 Tutorial
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Structure Learning - Introduction

Bilingual Word Alignment

Combinatorial Structure

From Klein & Taskar, ACL’05 Tutorial
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Structure Learning - Introduction

Handwritten Letter Sequences

Sequential Structure

From Klein & Taskar, ACL’05 Tutorial
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Structure Learning - Introduction

Label Sequence Learning

Given: observation sequence

Problem: predict corresponding state sequence

Often: several subsequent positions have the same state
⇒ state sequence defines a “segmentation”

Learn Segmentation for Gene Finding

DNA

pre - mRNA

major RNA

protein

5' UTR 

Exon

Intergenic

3' UTR

Intron

genic

Exon ExonIntron
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Structure Learning via Generative Models

Generative Models

Hidden Markov Models (Rabiner, 1989)

State sequence treated as Markov chain
No direct dependencies between observations
Example: first-order HMM (simplified)

p(x, y) =
∏

i

p(xi |yi )p(yi |yi−1)

Y1 Y2
. . . Yn

XnX2X1
. . .

Efficient dynamic programming (DP) algorithms
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Structure Learning via Generative Models

Decoding via Dynamic Programming

log p(x, y) =
∑

i

(log p(xi |yi ) + log p(yi |yi−1))

=
∑

i

g(yi−1, yi , xi )

with g(yi−1, yi , xi ) = log p(xi |yi ) + log p(yi |yi−1).
Problem: Given sequence x, find sequence y such that log p(x, y)
is maximized, i.e. y∗ = argmaxy∈Yn log p(x, y)
Dynamic Programming Approach:

V (i , y) :=

{
max
y ′∈Y

(V (i − 1, y ′) + g(y ′, y , xi )) i > 1

0 otherwise
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Structure Learning via Generative Models

Generative Models

Generalized Hidden Markov Models
= Hidden Semi-Markov Models

Only one state variable per segment
Allow non-independence of positions within segment
Example: first-order Hidden Semi-Markov Model

p(x , y) =
∏

j

p((xi(j−1)+1, . . . , xi(j))︸ ︷︷ ︸
xj

|yj)p(yj |yj−1)

Y1 Y2

. . .

Yn

X1, X2, X3 X4, X5

. . .

Xn−1, Xn (use with care)

Use generalization of DP algorithms of HMMs
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Structure Learning via Generative Models

Decoding via Dynamic Programming

log p(x, y) =
∏
j

p((xi(j), . . . , xi(j+1)−1)|yj)p(yj |yj−1)

=
∑

j

g(yi−1, yi , (xi(j−1)+1, . . . , xi(j))︸ ︷︷ ︸
xj

)

with g(yj−1, yj , xj) = log p(xj |yj) + log p(yj |yj−1).
Problem: Given sequence x, find sequence y such that log p(x, y)
is maximized, i.e. y∗ = argmaxy∈Y∗ log p(x, y)
Dynamic Programming Approach: V (i , y) :={

max
y ′∈Y,d=1,...,i−1

(V (i − d , y ′) + g(y ′, y , xi−d+1,...,i )) i > 1

0 otherwise
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Structure Learning via Discriminative Methods

Discriminative Models

Conditional Random Fields (Lafferty et.al 2001)

conditional prob. p(y |x) instead of joint prob. p(x , y)

p(y |x ,w) =
1

Z (x ,w)
exp(〈w,Φ(x , y)〉)

Y1 Y2
. . . Yn

X = X1, X2, . . . , Xn

can handle non-independent input features

Semi-Markov Conditional Random Fields

introduce segment feature functions
dynamic programming algorithms exist
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Structure Learning via Discriminative Methods

Max-Margin Structured Output Learning

Learn function f (y|x) scoring segmentations y for x

Maximize f (y|x) w.r.t. y for prediction:

argmax
y∈Y∗

f (y|x)

Given N sequence pairs (x1, y1), . . . , (xN , yN) for training

Determine f such that there is a large margin between true
and wrong segmentations

min
f

C
N∑

n=1

ξn + P[f ]

w.r.t. f (yn|xn)− f (y|xn) ≥ 1− ξn
for all yn 6= y ∈ Y∗, n = 1, . . . ,N

Exponentially many constraints!
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Structure Learning via Discriminative Methods

Joint Feature Map

Recall the kernel trick
For each kernel, there exists a corresponding feature
mapping Φ(x) on the inputs such that
k(x, x′) = 〈Φ(x),Φ(x′)〉.

Joint kernel on X and Y
We define a joint feature map on X × Y, denoted
by Φ(x, y). Then the corresponding kernel function is

k((x, y), (x′, y ′)) := 〈Φ(x, y),Φ(x′, y ′)〉.

For multiclass
For normal multiclass classification, the joint feature
map decomposes and the kernels on Y is the identity,
that is

k((x, y), (x′, y ′)) := [[y = y ′]]k(x, x′).
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Structure Learning with Kernels

SO Learning with kernels

Assume f (y|x) = 〈w,Φ(x, y)〉, where w,Φ(x, y) ∈ F
Use `2 regularizer: P[f ] = ‖w‖2

min
w∈F ,ξ∈RN

C
N∑

n=1

ξn + ‖w‖2

w.r.t. 〈w,Φ(x, yn)− Φ(x, y)〉 ≥ 1− ξn
for all yn 6= y ∈ Y∗, n = 1, . . . ,N

Linear classifier that separates true from wrong labelling

Dual: Define Φn,y := Φ(xn, yn)− Φ(xn, y)

max
α

∑
n,y

αn,y −
∑
n,y

∑
n′,y′

αn,yαn′,y′〈Φn,y,Φn′,y′〉

w.r.t. αn,y ≥ 0,
∑

y

αn,y ≤ C for all n and y
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Structure Learning with Kernels

Kernels

Recall: Φn,y := Φ(xn, yn)− Φ(xn, y)

Then

〈Φn,y,Φn′,y′〉 = 〈Φ(xn, yn)− Φ(xn, y),Φ(xn′ , yn′)− Φ(xn′ , y
′)

= k((xn, yn), (xn′ , yn′))− k((xn, yn), (xn′ , y
′))−

−k((xn, y), (xn′ , yn′)) + k((xn, y), (xn′ , y)),

where

k((xn, y), (xn′ , y
′)) := 〈Φ(xn, y),Φ(xn′ , y

′)〉

Kernel learning (almost) as usual
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Structure Learning with Kernels

Special Case: only two “structures”

Assume f (y|x) = 〈w,Φ(x, y)〉, where w,Φ(x, y) ∈ F

min
w∈F ,ξ∈RN

C
N∑

n=1

ξn + ‖w‖2

w.r.t. 〈w,Φ(x, yn)− Φ(x, 1− yn)〉 ≥ 1− ξn
for all n = 1, . . . ,N

Dual: Define Φn := Φ(xn, yn)− Φ(xn, 1− yn)

max
α

∑
n

αn −
∑
n

∑
n′

αnαn′〈Φn,Φn′〉

w.r.t. αn ≥ 0, αn ≤ C for all n

Equivalent to standard 2-class SVM
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Algorithm

Optimization

Optimization problem too big (dual as well)

min
w∈F ,ξ

C
N∑

n=1

ξn + ‖w‖2

w.r.t. 〈w,Φ(x, yn)− Φ(x, y)〉 ≥ 1− ξn
for all yn 6= y ∈ Y∗, n = 1, . . . ,N

One constraint per example and wrong labeling

Iterative solution

Begin with small set of wrong labellings
Solve reduced optimization problem
Find labellings that violate constraints
Add constraints, resolve

Guaranteed Convergence
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Algorithm

How to find violated constraints?

Constraint

〈w,Φ(x, yn)− Φ(x, y)〉 ≥ 1− ξn

Find labeling y that maximizes

〈w,Φ(x, y)〉

Use Dynamic Programming Decoding

y = argmax
y∈Y∗

〈w,Φ(x, y)〉

(DP only works if Φ has certain decomposition structure)

If y = yn, then compute second best labeling as well

If constraint is violated, then add to optimization problem
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Algorithm

Dynamic Programming

number of possible paths of length T for a (fully connected)
model with n states is nT

infeasible already for small T

Solution: Use dynamic programming (Viterbi decoding)

runtime complexity before: O(nT ) ⇒ NOW: O(n2 · T )
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Algorithm

Algorithm

1 Y1
n = ∅, for n = 1, . . . ,N

2 Solve

(wt , ξt) = argmin
w∈F ,ξ

C
N∑

n=1

ξn + ‖w‖2

w.r.t. 〈w,Φ(x, yn)− Φ(x, y)〉 ≥ 1− ξn
for all yn 6= y ∈ Yt

n, n = 1, . . . ,N

3 Find violated constraints (n = 1, . . . ,N)

yt
n = argmax

yn 6=y∈Y∗
〈wt ,Φ(x, y)〉

If 〈wt ,Φ(x, yn)− Φ(x, yt
n)〉 < 1− ξtn, set Yt+1

n = Yt
n ∪ {yt

n}
4 If violated constraint exists then go to 2

5 Otherwise terminate ⇒ Optimal solution
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Loss

Loss functions

So far 0-1-loss with slacks: If y 6= y, then prediction is wrong,
but it does not matter how wrong

Introduce loss function on labellings `(y, y′), e.g.

How many segments are wrong or missing
How different are the segments, etc
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Loss

Loss functions

So far 0-1-loss with slacks: If y 6= y, then prediction is wrong,
but it does not matter how wrong
Introduce loss function on labellings `(y, y′), e.g.

How many segments are wrong or missing
How different are the segments, etc

Extend optimization problem (Margin rescaling):

min
w∈F ,ξ

C
N∑

n=1

ξn + ‖w‖2

w.r.t. 〈w,Φ(x, yn)− Φ(x, y)〉 ≥ `(y, y′)− ξn
for all yn 6= y ∈ Y∗, n = 1, . . . ,N

Finding violated constraints (n = 1, . . . ,N)

yt
n = argmax

yn 6=y∈Y∗
〈wt ,Φ(x, y)〉+ `(y, yn)
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Loss

Loss functions

So far 0-1-loss with slacks: If y 6= y, then prediction is wrong,
but it does not matter how wrong

Introduce loss function on labellings `(y, y′), e.g.

How many segments are wrong or missing
How different are the segments, etc

Extend optimization problem (Slack rescaling):

min
w∈F ,ξ

C
N∑

n=1

ξn + ‖w‖2

w.r.t. 〈w,Φ(x, yn)− Φ(x, y)〉 ≥ 1− ξn/`(y, y′)

for all yn 6= y ∈ Y∗, n = 1, . . . ,N

Finding violated constraints more difficult
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Loss

Problems

Optimization may require many iterations

Number of variables increases linearly

When using kernels, solving optimization problems can
become infeasible

Evaluation of 〈w,Φ(x, y)〉 in Dynamic programming can be
very expensive

Optimization and decoding become too expensive

Approximation algorithms useful

Decompose problem

First part uses kernels, can be precomputed
Second part without kernels and only combines ingredients
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Loss

Gene Finding as Segmentation Task

Nodes correspond to sequence signals

Depend on recognition of signals on the DNA

Transitions correspond to segments

Depend on length or sequence properties of segment

Markovian on segment level, non-Markovian within segments

Allows efficient decoding and modeling of segment lengths
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Loss

Learning to Predict Segmentations

Learn function f (y|x) scoring segmentations y for x

f considers signal, content and length information

Maximize f (y|x) w.r.t. y for prediction: argmax
y

f (y|x)

Determine f such that there is a large margin between true
and wrong segmentations

min
f

N∑
n=1

ξn + P[f ]

w.r.t. f (yn|xn)− f (y|xn) ≥ 1− ξn
for all y 6= yn, n = 1, . . . ,N

Use approximation (Rätsch & Sonnenburg, NIPS’06)

Train signal and content detectors separately
Combine in large margin fashion
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Loss

Large Margin Combination (simplified)

Simplified Model: Score for splice form y = {(pj , qj)}Jj=1:

f (y) :=
J−1∑
j=1

SGT (f GT
j ) +

J∑
j=2

SAG (f AG
j )︸ ︷︷ ︸

Splice signals

+
J−1∑
j=1

SLI
(pj+1 − qj) +

J∑
j=1

SLE
(qj − pj)︸ ︷︷ ︸

Segment lengths

Tune free parameters (in functions SGT ,SAG , SLE
, SLI

) by solving
linear program using training set with known splice forms
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Loss

Example

TSS

TIS

Acceptor

Donor

Stop

PolyA

Cleavage
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Cleavage
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Loss

Results Summary

Splicing only (Rätsch et al., PLoS Comp. Biol., 2007)

Comparison with other methods
Analysis of a few disagreeing cases
Results available on http://www.wormbase.org

Full gene predictions

Relevant for the nGASP competition
Evaluation by organizers still pending

http://www.wormbase.org
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Results I (Splice forms only)

≈3,800 gene models derived from cDNAs and ESTs

60% for training and validation
40% for testing (exclude alt. spliced genes)

Out-of-sample accuracy (≈1100 gene models):

Splice form error rate

4.8% (coding)
13.1% (mixed)

Much lower error rates than
state-of-the-art

Exonhunter (Brejova et al.,
ISMB’05)
Snap (Korf, BMC
Bioinformatics 2004)
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Results II (Splice forms only)

Validation by RT-PCR & direct sequencing

Consider 20 disagreeing cases
Annotation was never correct
75% of our predictions were correct

0 500 1000 1500
T12C9.7

Annotation 

3’
38 137 234 325 116

46 47 931 48

EST 

3’
47 173 75 128 101 26

54 42 44 389 58

Prediction 

3’
38 137 289 173 75 128 101 137 116

46 47 54 42 44 389 58 48
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mGene - Summary

2-step approach
Content and Signal Sensors(transcription start,. . .)

Support Vector Machine with String Kernel
(spectrum,weighted degree,. . .)

Label Sequence (Segmentation) Learning

Joint feature maps for inputs and outputs
Related to (generalized) HMMs
Result in large optimization problems

Can be solved iteratively
But still too large for medium size problems

Decomposition of the Problem

Use efficient kernel-based two-class detectors
Integrate without kernels

Beats HMM based approaches in Gene finding :-)
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