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Background

Bioinformatics - Benefits

o Molecular medicine
o More drug targets
o Personalised medicine
o Preventative medicine
o Gene therapy
o Microbial genome applications
o Waste cleanup
Climate change
Alternative energy sources
Biotechnology
Antibiotic resistance
Forensic analysis of microbes
Evolutionary studies
o Agriculture
o Insect resistance
o Improve nutritional quality
o Grow crops in poorer soils and that are drought resistant

®© 6 6 o o
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Background

Bioinformatics - Applications

o In Cell
o which genes are on / off ?
o in which tissue ?
o under which conditions ?
e Sequence Analysis on DNA/RNA < in this Lecture
locate sequences (genes, start, stop, splice sites,...)
o detect properties
o how do individuals of same species differ (SNP's)
o
o

conservation
functional elements
@ on Proteins
determine structure
determine function
find protein of similar functions
find binding sites (protein-protein, protein-dna)

© 6 o o
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Background

Bioinformatics - The Genome
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Background

Bioinformatics - From DNA to Protein

— exon —vintron 1€XON - intron 1€XON intron 1€XON - intron T— exon
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transcription TGA
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splicing
mRNA eSS —
AUG
translation UUG,UAA
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protein N I ¢
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Finding Genes

Finding Genes - |

o What is a Gene ?

o A segment on DNA that codes for a certain property (protein).

o Proteins control everything, Enzymes (catalyze; involved in
metabolism, DNA replication/repair, RNA synthesis). .., Cell
signaling (Insulin), ligand binding (Haemoglobin),. ..

DNA genic Intergenic

pre - mRNA Exon _Intron Exon Intron Exon

major RNA 5 y1R N /"N 3'UTR

protein
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Finding Genes

Finding Genes - Il

@ Sites to detect
o Gene has a transcription start, transcription end - only part
from ATG... TAA,... is transcribed = pre-mRNA
o Only exons code for protein, inserted introns are cut out in
splicing = mRNA
o Gene has a translation start and translation end - that part
is translated to = Protein

genic Intergenic

pre - mRNA Exon Intron Exon Intron Exon

major RNA g yTR PN /" 3UTR

protein
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Finding Genes

Finding Genes - Il

@ Requirements
o human genome (all DNA) has 3 billion base pairs - huge!!
o method needs to be fast + fit in memory

o 2-step approach:

@ Detect Signals (focus on splice site and transcription start site
prediction) - = SVM on sliding windows

o define kernels on strings
o (spectrum kernel, weighted degree kernel)

Q Learn Structure/Gene Segmentation (complex task)
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Finding Genes

1st pass - Proceedure for splice sites

a AG TT nucleotide INPUT

sequence

i ( OUTPUT i

recognition

SVM §<
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Finding Genes

Preparing data

@ Collecting data for training and evaluation is a complex,
non-trivial task (half the work)

@ two kinds, one for 1st pass (2-class classification
positive/negative data); one for 2nd pass (correct
segmentations)

o we assume data is given (others have done it for us :-)

2-class problem: solve with SVMs Classifier

f(x) = sign (Z yiaik(x, x;) + b)

i=1

= How to design the kernel ?
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String Kernels

Data Classes

o Position Independent (e.g. Which Tissue? Promoter Region)

AAACERARRCGTAACTAATCTTTTAGAGAGAACGTTTCAACCATTTTGAG
AAGATTAACTCATCACAGATTTCATTACATACAGATATAATTCARARATT
CACTCCCCAAATCAACGATATTTAAAAATCACTAACACATCCGTCTGTGC

o Task: separate DNA strings, '-' class random ACGT, '+’ class
contains 'AAAAA’ motif

o Position Dependent (e.g. Splice Site Classification)
AAACAAATAAGTAACTAATC AACGTTTCAACCATTTTGAG
AAGATTAAAAAAAAACAAA ACAGATATAATAATCTAATT
CACTCCCCAAATCAACGATA CTAACACATCCGTCTGTGCC

o Task: separate DNA strings, '-' class random ACGT, '+’ class
'AA’" in the middle

o Mixture Position Dependent/Independent (e.g. Promoter)
AAACAAATAAGTAACTAATCTT WCGTTTCAACCATTTTGAG

AAGATTAAAAAAAAACAAATTTC AGATATAATAATCTAATT
CACTCCCCAAATCAACGATAmll-lmcACTAACACATCCGTCTGTGC

o Task: separate DNA strings, -’ class random 'ACGT’, "+’
class 'AAA’ in the middle shifted 15
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String Kernels

Spectrum Kernel

To make use of position independent motifs:

o Idea: like bag of words kernel (text classification) but for
Bioinformatics (words are now strings of length k (k-mers))
e count k-mers in sequence A and sequence B.
o Spectrum Kernel is sum of product of counts (for same k-mer)

Example k = 3:
x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
' TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

3-mer | AAA | AAC | ... | CCA | CCC | ... | TTT
# in x 2 4| ... 1 0] ... 3
# in x’ 3 1) ... 0 0]... 1

k(x,xX)=2-3+4-1+...1-0+0-0...3-1
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String Kernels

Weighted Degree Kernel

To make use of position dependent motifs:
L—k
Zﬁk > Lups(x) = ug(x))
k=1 =1
o L length of the sequence x

o d maximal “match length” taken into account

@ uy /(x) subsequence of length k at position / of sequence x

Example degree d = 3:
« AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
#lmers LT Tl s l..
#2-mers .. ... [..... [oooont. [ I P [
#3—mers ..... [ T [
! TACCTAATTATGAAATTAAATTTC..HGCTGATGGAAACGGAGAAGTC

k(x,x') = 3121+ (32-8+ (33 - 4
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String Kernels

Weighted Degree Kernel

d—k+1
d(d+1)-

o for weighting we use By = 2
o effort is O(L - d)
o Speedup ldea: Reduce effort to O(L) by finding matching
“blocks”
k(s1,82) = w7 +w1 + w2+ w2 + w3

S1—>—AGT GGACATCAGTAGACAG A——>
|| |
S2—>— 7TA! CAAAGACATCAGTAGAC TT—>
Exercise: Show that WD kernel and its “block” formulation are
equivalent
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String Kernels

Weighted Degree Kernel with shifts

To make use of partially position-dependent motifs:
o If sequence is slightly mutated (Insertion,Deletion) WD kernel
fails.

o Extension: Allow for some positional variance (shifts S(/))

L—k+1 S(/

k(xi,x;) Z Br Z Vi Z Os bk, l,s,x;,%;
=1 1=

s—|—I<L
ke i x =L (U s (Xi) = Ui 1 (%7)) + (e, (%) = v 45 (%))

k(x1%) = We3 + W3 + Wiy
TCGGATTG——>
\\\

X1 CTACGTATT
Xo—>»—T AAGG CCTGAAGACGG——>
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String Kernels

The Final Signal and Content Sensors

@ Exon vs. Intron - Spectrum Kernel
o splice sites - Weighted Degree Kernel
@ transcription start, transcription stop - Weighted Degree
Kernel with shifts
Perform Model Selection:
window length
k-mer length (spectrum kernel), degree,shift (WD-kernel)

o
o
@ SVM regularization parameter C
°

(]

takes a long time (cluster)

We now have Signal and content sensors
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Example

Learning Signals
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Drawbacks of Kernel Methods

What did we learn ?

@ SVM decision function in kernel feature space:

N
F(x) =Y yiaid(x) - O(x;) + b (1)
=1 =k(x,x;)

o learned parameters « by solving quadratic optimization
problem

Problem: Decision function (2) is hard to interpret
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Drawbacks of Kernel Methods

Understanding the SVM Decision

Splice Sites
@ Which positions in the sequence are important for
discrimination?

©-56 =20 50 20 —10 Exon  +10  +20 430 420

@ What characterizes those positions?

G

10 Start  +10 42

© Which motifs at which position are important?
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Multiple Kernel Learning

Approach: Optimize Combination of Kernels

o Define Kernel as Convex Combination of Subkernels:
L
k(X7 y) = Z/BI k/(X, Y)
=1
e.g. Weighted Degree Kernel

L d
k(X)) =D B> T(uges(x) = upei(x))
@ optimize weights 3 such that margin is maximized
= determine (3, a, b) simultaneously

= Multiple Kernel Learning (Bach, Lanckriet and
Jordan 2004)
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Multiple Kernel Learning

Multiple Kernel Learning (MKL)

Possible solution We can add the two kernels, that is
k(x,X') := ksequence(X,X') + Kstructure(X, X').
Better solution We can mix the two kernels,
k(x,x") := (1 — t)ksequence(%, X) + tkstructure(X, X'),

where t should be estimated from the training data.
In general: use the data to find best convex combination.

K
k(x,x') = Zﬁpkp(x,x').
p=1

Applications
o Heterogeneous data
o Improving interpretability
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Multiple Kernel Learning

Method for Interpreting SVMs

o Weighted Degree kernel: linear comb. of L - D kernels

D L—-d+1

k(x,x") = Z Z Y1,al(ug,q(x) = upg(x))

d=1 [=1

o Example: Classifying splice sites

R |

-50 —40 -30 -—20 —10 Start +10 +20 +30 +40  +50

See Ratsch & Sonnenburg 2006 for more details.
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Projecting to input space

Using SVM w from feature Space

@ Recall SVM decision function in kernel feature space:

N
F(x) =Y yiai®(x) - O(x;) + b (2)
i=1 =k(x,x;)

o Could explicitly compute w = ZINZI a;P(x;)
o Problem: ¢ and thus w too big

o Solution:

o Reduce dimensionality by considering a small WD kernel
degree, (like 1,...,8)

o Still consider high degree for learning, only project on lower
degree for interpretation

o ldea: long, overlapping k-mers contribute to small ones

We get so called Positional Oligomer Importance
Matrices
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Projecting to input space

POIMs for Splicing

substring length

||. “l W;

o 20 40 60 80

position relative to donor splice site position relative to acceptor splice site
Color-coded importance scores of substrings near splice sites. Long

substrings are important upstream of the donor and downstream of
the acceptor site (Ratsch et.al 2007)
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Structure Learning - Introduction

Structured Output Spaces

Learning Task
For a set of labeled data, we predict the label.
Difference from multiclass
The set of possible labels )V may be very large or
hierarchical.
Joint kernel on X and Y
We define a joint feature map on X x ), denoted
by ®(x, y). Then the corresponding kernel function is

k((x,y), (X, ¥)) = (®(x, ), ®(x', ).
For multiclass
For normal multiclass classification, the joint feature

map decomposes and the kernels on ) is the identity,
that is

k((x,y), (X,y")) := [ly = y'ITk(x,X).
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Structure Learning - Introduction

Joint Feature Map

Interdependent Outputs
For example a hierarchy of classes like part of speech
tagging.

Label Sequence Learning
Given an input sequence predict a label sequence
annotating the input
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Structure Learning - Introduction

Context Free Grammar Parsing

S
//\-\-\
NP VP
h s e
DT NN VBD NP
The screen was - TN owvenoowp
The screen was NP PP
a sea of red =

DT NN IN NP
| | | |
a sea of NN
|
red

Recursive Structure

From Klein & Taskar, ACL'05 Tutorial
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Structure Learning - Introduction

Bilingual Word Alignment

vertu
X de
les
What
- . !
What is the aqtmpated is ::’;;:s::m <
cost of collecting fees the
under the new proposal? a“t"’"’ates‘: quel
) est
coIIectl: le
En vertu des nouvelles feeg coiit
propositions, quel est le under 5::"“
coiit prg’vu de perception the perception
des droits? new de
proposal les
\drmts

Combinatorial Structure

From Klein & Taskar, ACL'05 Tutorial
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Structure Learning - Introduction

Handwritten Letter Sequences

x y

| Slgd = brace
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Structure Learning - Introduction

Label Sequence Learning

o Given: observation sequence
@ Problem: predict corresponding state sequence
@ Often: several subsequent positions have the same state
= state sequence defines a “segmentation”
o Learn Segmentation for Gene Finding
DNA genic Intergenic
pre - mRNA Exon _Intron Exon Intron Exon
major RNA 5 yTR PN /' 3UTR
protein
|
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Structure Learning via Generative Models

Generative Models

e Hidden Markov Models (Rabiner, 1989)

o State sequence treated as Markov chain
o No direct dependencies between observations
o Example: first-order HMM (simplified)

p(x,y) = H p(xily)p(yilyi-1)

i Y o Y,

X Xy Xn

o Efficient dynamic programming (DP) algorithms
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Structure Learning via Generative Models

Decoding via Dynamic Programming

log p(x,y) = Z(log p(xilyi) + log p(yilyi-1))
= Zg()/i—hyl',xi)

with g(yi—1, yi, xi) = log p(xily:) + log p(yilyi-1).

Problem: Given sequence x, find sequence y such that log p(x,y)
is maximized, i.e. y* = argmaxycyn log p(X,y)

Dynamic Programming Approach:

max(V(i— 1,y )+ g(y',y,x)) i>1
Vi) ::{ max(V(i = 1,y") + &y, y, )

0 otherwise
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Structure Learning via Generative Models

Generative Models

o Generalized Hidden Markov Models
= Hidden Semi-Markov Models
o Only one state variable per segment
o Allow non-independence of positions within segment
o Example: first-order Hidden Semi-Markov Model

p(x,y) = H P((Xig—1)+15 - - > Xigi)) i) P(ilyi-1)
j N

J

%1 Y o Ya

X1, X2, Xz Xy, X5 - X1, X (use with care)

o Use generalization of DP algorithms of HMMs
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Decoding via Dynamic Programming

log p(x,y) = H p((Xi(j)» - - - » Xi(i+1)—1) 1Y) P(Yilyi-1)
J

= Z g(yi-1, i, (Xi(jfl)Jrla cee aXi(j)))
J- Vv

Xj

with g(yj-1,Y;,%;) = log p(x;ly;) + log p(y;|yj-1)-

Problem: Given sequence x, find sequence y such that log p(x,y)
is maximized, i.e. y* = argmax,cy- log p(x,y)

Dynamic Programming Approach: V(i,y) :=

V(i—d,y' Y Xidn,.)) 0> 1
{y’ey,gln:al),(...,i—l( (i—dy)+8(y.y, Xi—g+1...0)) i >

0 otherwise
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Structure Learning via Discriminative Methods

Discriminative Models

o Conditional Random Fields (Lafferty et.al 2001)
o conditional prob. p(y|x) instead of joint prob. p(x,y)

b w) = 5 expl(w, B(x,)))

(x, w)

i s Y

X =X, Xo,..., Xn
e can handle non-independent input features

o Semi-Markov Conditional Random Fields

o introduce segment feature functions
o dynamic programming algorithms exist
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Structure Learning via Discriminative Methods

Max-Margin Structured Output Learning

(*]

Learn function f(y|x) scoring segmentations y for x

(7]

Maximize f(y|x) w.r.t. y for prediction:

argmax f(y|x)
yeY*

(]

Given N sequence pairs (x1,¥1),- - -, (Xn,yn) for training

(+]

Determine f such that there is a large margin between true
and wrong segmentations

N
mfin C;fn + P[f]

wort. fyalxn) = f(ylxn) 2 1—-¢,
forally, 2yeY* n=1,....N

(7]

Exponentially many constraints!
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Structure Learning via Discriminative Methods

Joint Feature Map

Recall the kernel trick
For each kernel, there exists a corresponding feature
mapping ®(x) on the inputs such that
k(x,x") = (®(x), d(x')).

Joint kernel on X and Y
We define a joint feature map on X x ), denoted
by ®(x,y). Then the corresponding kernel function is

k(% y), (¥, ")) = (®(x,y), ®(x', ).

For multiclass
For normal multiclass classification, the joint feature
map decomposes and the kernels on ) is the identity,
that is

k((x,y), (<, y") = [ly = y'IIk(x,X).
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Structure Learning with Kernels

SO Learning with kernels

o Assume f(y|x) = (w, ®(x,y)), where w, d(x,y) € F

o Use /; regularizer: P[f] = ||w/|?
N
min C + [|w|?
i nzlsn Iwll

w.r.t. <W7 ¢(X,Yn) - q)(x?y)) >1- 5’7
forally, #2ye Y n=1,...,N

o Linear classifier that separates true from wrong labelling
o Dual: Define @,y := ®(xp,y5n) — P(Xn,y)

max § :O‘n,y - E : § :an,yan’,y’<¢n,y7¢n/,y’>
ny ny n,,y,

w.r.t. Qpy > O,Zanﬂy < Cforall nandy
y
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Structure Learning with Kernels

Kernels

o Recall: ¢,y = ®(xp,y5) — P(Xn,Y)
o Then

<¢n,y7 ¢”"Y'> = <¢(Xn, Yn) - CD(X,,, Y)7 <I>(Xn’a Yn’) - q)(xn’: y,)
= k((Xn,¥n), X, Yor)) = k((Xns ¥n); (Xar,¥')) —
_k((xm Y)a (xn’v Yn’)) + k((xm Y)ﬂ (X,,/, y))’

where
k((xn,y), (X, y/)) = (P(xn,y), P(X, y,)>

o Kernel learning (almost) as usual
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Structure Learning with Kernels

Special Case: only two “structures”

o Assume f(y|x) = (w, ®(x,y)), where w, d(x,y) € F

w.r.t. <W7 q)(xv)/n) - (D(x? 1- ,Vn)> > 1- fn
foralln=1,...,N

o Dual: Define &, := ®(xp, yn) — P(xn, 1 — y5)

max Zan —ZZanan/(fbn,fbnx)
n

n n’

w.r.t. an,>0,a,< Cforalln

o Equivalent to standard 2-class SVM
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Optimization

o Optimization problem too big (dual as well)

N
min C 2
Jing €t v

w.r.t. <W7 (D(X,yn) - q)(xvy)) >1- gn
forally,2ye Y n=1,...,N

@ One constraint per example and wrong labeling
o lterative solution

Begin with small set of wrong labellings

Solve reduced optimization problem

Find labellings that violate constraints

Add constraints, resolve

© 6 o0 o

o Guaranteed Convergence
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How to find violated constraints?

o Constraint

(w, d(x,y,) — d(x,y)) >1-¢,

o Find labeling y that maximizes

(w, &(x,y))
o Use Dynamic Programming Decoding

y = argmax(w, ®(x,y))
yeEY*
(DP only works if ® has certain decomposition structure)
o If y =y, then compute second best labeling as well

o If constraint is violated, then add to optimization problem
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Dynamic Programming

@ number of possible paths of length T for a (fully connected)
model with n states is n”

o infeasible already for small T

Solution: Use dynamic programming (Viterbi decoding)

o runtime complexity before: O(nT)
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Algorithm

Q@ V=0 forn=1,...,N
Q@ Solve
N
(W', &") =argmin  CY &+ |[|w?
weF € —1
w.r.t. (w, d(x,y,) — P(x,y)) >1-¢&,
forally,#yecYi,n=1,...,N

© Find violated constraints (n=1,...,N)

y, = argmax(w’, ®(x,y))
YnFYEV*
If (W', &(x,yn) — @(x,y5)) < 1— & set Vit = ViU {yp}
@ If violated constraint exists then go to 2
@ Otherwise terminate = Optimal solution
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Loss functions

o So far 0-1-loss with slacks: If y # y, then prediction is wrong,
but it does not matter how wrong
@ Introduce loss function on labellings /(y.y’), e.g.

o How many segments are wrong or missing
o How different are the segments, etc
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Loss

Loss functions

@ So far 0-1-loss with slacks: If y # y, then prediction is wrong,
but it does not matter how wrong
o Introduce loss function on labellings /(y,y’), e.g.
o How many segments are wrong or missing
o How different are the segments, etc

e Extend optimization problem (Margin rescaling):

N
min C + [|w]|?
RIS SRR

w.r.t. <W7 q)(X, Yn) - (D(X, y)> > E(Y? y/) - §n
forally, 2ye Y  n=1,....N
o Finding violated constraints (n=1,...,N)

y,, = argmax(w’, ®(x,y)) + £(y,y,)
YnFAYyEY*
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Loss functions

@ So far 0-1-loss with slacks: If y =y, then prediction is wrong,
but it does not matter how wrong

o Introduce loss function on labellings /(y,y’), e.g.

o How many segments are wrong or missing
o How different are the segments, etc

o Extend optimization problem (Slack rescaling):

N
. C 2
min, ;fn + [lw

wrt. (w, O(x,yn) — ®(x,y)) =1 & /Uy, Y)
forally, #ye Y n=1,....N

o Finding violated constraints more difficult
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Problems

(7]

Optimization may require many iterations

Number of variables increases linearly

(4]

When using kernels, solving optimization problems can
become infeasible
Evaluation of (w, ®(x,y)) in Dynamic programming can be
very expensive

o Optimization and decoding become too expensive

(]

(]

Approximation algorithms useful

e o

Decompose problem

o First part uses kernels, can be precomputed
o Second part without kernels and only combines ingredients
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Gene Finding as Segmentation Task

@ Nodes correspond to sequence signals
o Depend on recognition of signals on the DNA

o Transitions correspond to segments
o Depend on length or sequence properties of segment

@ Markovian on segment level, non-Markovian within segments
o Allows efficient decoding and modeling of segment lengths

Intron

CONTENTS Intergenic 5'UTR Exon Exon 3'UTR Intergenic
T — [ . —

TATAA AGU GU AT UAG CA

SIGNALS 1SS @L' stop | cleave
*J“
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Learning to Predict Segmentations

("]

Learn function f(y|x) scoring segmentations y for x

(7]

f considers signal, content and length information

(]

Maximize f(y|x) w.r.t. y for prediction: argmax f(y|x)
y

(7]

Determine f such that there is a large margin between true
and wrong segmentations

N
mfin Z&n + P[f]
n=1

w.rt. f(yalxn) — f(ylxn) > 1 -4,
forally #y,,n=1,...,N

(7]

Use approximation (Ratsch & Sonnenburg, NIPS'06)

o Train signal and content detectors separately
o Combine in large margin fashion
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Large Margin Combination (simplified)

Ssqueﬂce AATCAACGTTGGCTCCACGAATACGGATCGCGCTGCGACGAGGATATCGGTCCTACTTAAMACAAAC AATTCTGATTTCAGGAACAATAA
SWMar

datector

output t

S¥Mis T ’J

| days

detector

true splicing

wrong splicing  —m——————— —

candidate

g 4 large
cumulative margin
splice score

o Simplified Model: Score for splice form y = {(p;, qj)}le:

g dals

J-1 J J-1 J
Fy) =Y Ser(FT) + D Sac(f )+ Si,(piv1— a) + Y _ Sie(aj — py)
j=1 j=2 j=1 j=1

Splice signals Segment lengths

o Tune free parameters (in functions SgT, Sag, St., St,) by solving
linear program using training set with known splice forms



Structure Learning

Loss

Example

I R ==

TSS TSS

TIS s
Donor ‘ L 1 I 1 1 II n l A A i n Dor‘lor

Stop Stop

PolyA I

L L | | P?IyA

Cleavage Cleavage

T T T LAALE AARLLY I e B T T T T T T T a3
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Results Summary

o Splicing only (Réatsch et al., PLoS Comp. Biol., 2007)
o Comparison with other methods
o Analysis of a few disagreeing cases
o Results available on http://www.wormbase.org

o Full gene predictions

o Relevant for the nGASP competition
o Evaluation by organizers still pending


http://www.wormbase.org
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Results | (Splice forms only)

@ ~3,800 gene models derived from cDNAs and ESTs

o 60% for training and validation
o 40% for testing (exclude alt. spliced genes)

o Out-of-sample accuracy (/1100 gene models):

o Splice form error rate 409, With ORFinformation _ without OR information
o 4.8% (coding) | @ o
o 13.1% (mixed)
o Much lower error rates than
state-of-the-art
o Exonhunter (Brejova et al.,
ISMB'05)
o Snap (Korf, BMC
Bioinformatics 2004)

Error rate in out-of-sample evalutation
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Results Il (Splice forms only)

100%

80%

o Validation by RT-PCR & direct sequencing
o Consider 20 disagreeing cases
o Annotation was never correct
o 75% of our predictions were correct

60% .
40% -

20% -

Experimental error rate on “hard” set

0%
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mGene - Summary

2-step approach
o Content and Signal Sensors(transcription start,. . .)
o Support Vector Machine with String Kernel
(spectrum,weighted degree,. . .)
o Label Sequence (Segmentation) Learning

Joint feature maps for inputs and outputs
Related to (generalized) HMMs
o Result in large optimization problems

o Can be solved iteratively
o But still too large for medium size problems

Decomposition of the Problem

o Use efficient kernel-based two-class detectors
o Integrate without kernels

o Beats HMM based approaches in Gene finding :-)
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