Learning Signals

Interprete Learning Result

Structure Learning

mGene - a sophisticated Bioinformatics Application (Transcriptionsstart, Splice Sites, PolyA Site Prediction) Structure Learning

A. Zien^{*,‡}, G. Schweikert^{*,‡}, G. Zeller^{*,‡}, C. S. Ong^{*,‡}, F. De Bona^{*,‡}, P. Philips^{*,‡}, K. -R. Müller^{†,+}, S. Sonnenburg[†], G. Rätsch^{*,‡}

[‡] Friedrich Miescher Laboratory of the Max Planck Society, Tübingen
 ^{*} Max Planck Institute for Biological Cybernetics, Tübingen

 $^+$ Technical University Berlin, † Fraunhofer FIRST.IDA, Berlin

Fraunhofer Institut Rechnerarchitektur und Softwaretechnik

Background

Bioinformatics - Benefits

- Molecular medicine
 - More drug targets
 - Personalised medicine
 - Preventative medicine
 - Gene therapy
- Microbial genome applications
 - Waste cleanup
 - Climate change
 - Alternative energy sources
 - Biotechnology
 - Antibiotic resistance
 - Forensic analysis of microbes
 - Evolutionary studies
- Agriculture
 - Insect resistance
 - Improve nutritional quality
 - Grow crops in poorer soils and that are drought resistant

Background

Bioinformatics - Applications

In Cell

- which genes are on / off ?
- in which tissue ?
- under which conditions ?

• Sequence Analysis on DNA/RNA \leftarrow in this Lecture

- locate sequences (genes, start, stop, splice sites,...)
- detect properties
- how do individuals of same species differ (SNP's)
- conservation
- functional elements
- on Proteins
 - determine structure
 - determine function
 - find protein of similar functions
 - find binding sites (protein-protein, protein-dna)

Learning Signal

Interprete Learning Result 0000000

Structure Learning

Background

Bioinformatics - The Genome

Learning Signals

Interprete Learning Result 0000000

Structure Learning

Background

Bioinformatics - From DNA to Protein

- What is a Gene ?
 - A segment on DNA that codes for a certain property (protein).
 - Proteins control everything, Enzymes (catalyze; involved in metabolism, DNA replication/repair, RNA synthesis)..., Cell signaling (Insulin), ligand binding (Haemoglobin),...

Bioinformatics	Learning Signals 0000000	Interprete Learning Result 0000000	Structure Learning
Finding Genes			
Finding Ge	nes - II		

- Sites to detect
 - Gene has a transcription start, transcription end only part from ATG...TAA,... is transcribed ⇒ pre-mRNA
 - Only exons code for protein, inserted introns are cut out in splicing \Rightarrow mRNA
 - Gene has a translation start and translation end that part is translated to \Rightarrow Protein

Finding Genes

Finding Genes - III

Requirements

- human genome (all DNA) has 3 billion base pairs huge!!
- $\bullet\,$ method needs to be fast + fit in memory

• 2-step approach:

- Detect Signals (focus on splice site and transcription start site prediction) ⇒ SVM on *sliding windows*
 - define kernels on strings
 - (spectrum kernel, weighted degree kernel)
- 2 Learn Structure/Gene Segmentation (complex task)

Learning Signal

Interprete Learning Result

Structure Learning

1st pass - Proceedure for splice sites

- Collecting data for training and evaluation is a complex, non-trivial task (half the work)
- two kinds, one for 1st pass (2-class classification positive/negative data); one for 2nd pass (correct segmentations)
- we assume data is given (others have done it for us :-)
- 2-class problem: solve with SVMs Classifier

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} y_i \alpha_i \mathbf{k}(\mathbf{x}, \mathbf{x}_i) + b\right)$$

 \Rightarrow How to design the kernel ?

Bioinformatics 00000000	Learning Signals •000000	Interprete Learning Result 0000000	Structure Learning
String Kernels			
Data Classes			

- Position Independent (e.g. Which Tissue? Promoter Region) AAACAAAAACGTAACTAATCTTTTAGAGAGAACGTTTCAACCATTTTGAG AAGATTAACTCATCACAGATTTCAATACAGATATAATTCAAAAATT CACTCCCCCAAATCAACGATATTTAAAAATCACTAACACATCCGTCTGTGC
 - Task: separate DNA strings, '-' class random ACGT, '+' class contains 'AAAAA' motif
- Position Dependent (e.g. Splice Site Classification) АААСАААТААGTAACTAATCTTTTAAGAAGAACGTTTCAACCATTTGAG ААGATTAAAAAAAAACAAATTTTTAACATTACAGATATAATAATCTAATT САСТСССССАААТСААСGATATTTTAATTCACTAACACACCCGTCTGTGCC
 - $\bullet\,$ Task: separate DNA strings, '-' class random ACGT, '+' class 'AA' in the middle
- Mixture Position Dependent/Independent (e.g. Promoter) АААСАААТААGTAACTAATCTTTTAAAGAGAACGTTTCAACCATTTTGAG ААGATTAAAAAAAAAACAAATTTCATTAAATACAGATATAATAATCTAATT САСТСССССАААТСААСGATATTTAAATTTCACTAACCACATCCGTCTGTGC
 - Task: separate DNA strings, '-' class random 'ACGT', '+' class 'AAA' in the middle shifted ± 15

Bioinformatics 000000000	Learning Signals 000000	Interprete Learning Result 0000000	Structure Learning
String Kernels			
Spectrum	Kernel		

To make use of position independent motifs:

- Idea: like bag of words kernel (text classification) but for Bioinformatics (words are now strings of length k (k-mers))
 - count k-mers in sequence A and sequence B.
 - Spectrum Kernel is sum of product of counts (for same k-mer)

Example k = 3:

- **x** AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
- x' TACCTAATTATGAAATTAAATTTCAGTGTGCTGATGGAAACGGAGAAGTC

3-mer	AAA	AAC	 CCA	CCC	 TTT
# in x	2	4	 1	0	 3
# in x ′	3	1	 0	0	 1

 $\mathsf{k}(\mathbf{x},\mathbf{x}') = 2 \cdot 3 + 4 \cdot 1 + \ldots 1 \cdot 0 + 0 \cdot 0 \ldots 3 \cdot 1$

Bioinformatics 000000000	Learning Signals 00●0000	Interprete Learning Result	Structure Learning
String Kernels			
Weighted	Degree Kernel		

To make use of position dependent motifs:

$$\mathbf{k}(\mathbf{x},\mathbf{x}') = \sum_{k=1}^{d} \beta_k \sum_{l=1}^{L-k} \mathbf{I}(\mathbf{u}_{k,l}(\mathbf{x}) = \mathbf{u}_{k,l}(\mathbf{x}'))$$

- *L* length of the sequence **x**
- d maximal "match length" taken into account
- $\mathbf{u}_{k,l}(\mathbf{x})$ subsequence of length k at position l of sequence \mathbf{x}

Example degree d = 3:

$$\mathsf{k}(\mathsf{x},\mathsf{x}') = \beta_1 \cdot 21 + \beta_2 \cdot 8 + \beta_3 \cdot 4$$

Bioinformatics 000000000	Learning Signals 000●000	Interprete Learning Result 0000000	Structure Learning
String Kernels			
Weighted	Degree Kernel		

- for weighting we use $\beta_k = 2 \frac{d-k+1}{d(d+1)}$.
- effort is $O(L \cdot d)$
- Speedup Idea: Reduce effort to O(L) by finding matching "blocks"

 $k(s_{1},s_{2}) = w_{7} + w_{1} + w_{2} + w_{2} + w_{3}$ $s_{1} \rightarrow a_{GTC} a_{GATAGA} c_{GGACAT} c_{AGTAGAC} c_{AGAT} c_$

Exercise: Show that WD kernel and its "block" formulation are equivalent

String Kernels

Weighted Degree Kernel with *shifts*

To make use of partially position-dependent motifs:

- If sequence is slightly mutated (Insertion,Deletion) WD kernel fails.
- Extension: Allow for some positional variance (shifts S(I))

$$\mathbf{k}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{k=1}^{d} \beta_{k} \sum_{l=1}^{L-k+1} \gamma_{l} \sum_{\substack{s=0\\s+l \leq L}}^{S(l)} \delta_{s} \ \mu_{k,l,s,\mathbf{x}_{i},\mathbf{x}_{j}},$$
$$\mu_{k,l,s,\mathbf{x}_{i},\mathbf{x}_{j}} = \mathbf{I}(\mathbf{u}_{k,l+s}(\mathbf{x}_{i}) = \mathbf{u}_{k,l}(\mathbf{x}_{j})) + \mathbf{I}(\mathbf{u}_{k,l}(\mathbf{x}_{i}) = \mathbf{u}_{k,l+s}(\mathbf{x}_{j})),$$

Interprete Learning Result 0000000

Structure Learning

String Kernels

The Final Signal and Content Sensors

- Exon vs. Intron Spectrum Kernel
- splice sites Weighted Degree Kernel
- transcription start, transcription stop Weighted Degree Kernel with shifts

Perform Model Selection:

- window length
- k-mer length (spectrum kernel), degree, shift (WD-kernel)
- SVM regularization parameter C

• . . .

• takes a long time (cluster)

We now have Signal and content sensors

Bioinformatics 000000000	Learning Signals 000000●	Interprete Learning Result 0000000	Structure Learning
String Kernels			
Example			

000000000	0000000	Interprete Learning Result ●000000	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
Drawbacks of Kernel Methods			
What did we l	earn ?		

• SVM decision function in kernel feature space:

$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i \underbrace{\Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}_i)}_{=\mathbf{k}(\mathbf{x}, \mathbf{x}_i)} + b$$
(1)

• learned parameters α by solving quadratic optimization problem

Problem: Decision function (2) is hard to interpret

Learning Signals

Interprete Learning Result

Structure Learning

Drawbacks of Kernel Methods

Understanding the SVM Decision

Splice Sites

Which positions in the sequence are important for discrimination?

Which motifs at which position are important?

Learning Signals

Interprete Learning Result

Structure Learning

Multiple Kernel Learning

Approach: Optimize Combination of Kernels

• Define Kernel as Convex Combination of Subkernels:

$$\mathsf{k}(\mathsf{x},\mathsf{y}) = \sum_{l=1}^{L} \beta_l \, \mathsf{k}_l(\mathsf{x},\mathsf{y})$$

e.g. Weighted Degree Kernel

$$\mathsf{k}(\mathsf{x},\mathsf{x}') = \sum_{l=1}^{L} \beta_l \sum_{k=1}^{d} \mathbf{I}(\mathsf{u}_{k,l}(\mathsf{x}) = \mathsf{u}_{k,l}(\mathsf{x}'))$$

• optimize weights β such that margin is maximized

 \Rightarrow determine (eta, lpha, b) simultaneously

 \Rightarrow Multiple Kernel Learning (Bach, Lanckriet and Jordan 2004)

Multiple Kernel Learning (MKL)

Possible solution We can add the two kernels, that is

$$k(\mathbf{x}, \mathbf{x}') := k_{sequence}(\mathbf{x}, \mathbf{x}') + k_{structure}(\mathbf{x}, \mathbf{x}').$$

Better solution We can mix the two kernels,

$$k(\mathbf{x}, \mathbf{x}') := (1 - t)k_{sequence}(\mathbf{x}, \mathbf{x}') + tk_{structure}(\mathbf{x}, \mathbf{x}'),$$

where t should be estimated from the training data. In general: use the data to find best convex combination.

$$k(\mathbf{x},\mathbf{x}') = \sum_{p=1}^{K} \beta_p k_p(\mathbf{x},\mathbf{x}').$$

Applications

- Heterogeneous data
- Improving interpretability

Method for Interpreting SVMs

• Weighted Degree kernel: linear comb. of $L \cdot D$ kernels

$$k(\mathbf{x}, \mathbf{x}') = \sum_{d=1}^{D} \sum_{l=1}^{L-d+1} \gamma_{l,d} \mathbf{I}(\mathbf{u}_{l,d}(\mathbf{x}) = \mathbf{u}_{l,d}(\mathbf{x}'))$$

• Example: Classifying splice sites

See Rätsch & Sonnenburg 2006 for more details.

Using SVM **w** from feature Space

• Recall SVM decision function in kernel feature space:

$$f(\mathbf{x}) = \sum_{i=1}^{N} y_i \alpha_i \underbrace{\Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}_i)}_{=\mathbf{k}(\mathbf{x}, \mathbf{x}_i)} + b$$
(2)

- Could explicitly compute $\mathbf{w} = \sum_{i=1}^{N} \alpha_i \Phi(\mathbf{x}_i)$
- Problem: Φ and thus w too big
- Solution:
 - Reduce dimensionality by considering a small WD kernel degree, (like $1,\ldots,8)$
 - Still consider high degree for learning, only project on lower degree for interpretation
 - Idea: long, overlapping k-mers contribute to small ones

We get so called Positional Oligomer Importance Matrices

Bioinformatics	

Learning Signals

Interprete Learning Result

Structure Learning

Projecting to input space

POIMs for Splicing

Color-coded importance scores of substrings near splice sites. Long substrings are important upstream of the donor and downstream of the acceptor site (Rätsch et.al 2007)

Structure Learning - Introduction

Structured Output Spaces

Learning Task

For a set of labeled data, we predict the label.

Difference from multiclass

The set of possible labels $\ensuremath{\mathcal{Y}}$ may be very large or hierarchical.

Joint kernel on ${\mathcal X}$ and ${\mathcal Y}$

We define a joint feature map on $\mathcal{X} \times \mathcal{Y}$, denoted by $\Phi(\mathbf{x}, y)$. Then the corresponding kernel function is

$$k((\mathbf{x}, y), (\mathbf{x}', y')) := \langle \Phi(\mathbf{x}, y), \Phi(\mathbf{x}', y') \rangle$$

For multiclass

For normal multiclass classification, the joint feature map decomposes and the kernels on ${\mathcal Y}$ is the identity, that is

$$k((\mathbf{x}, y), (\mathbf{x}', y')) := [[y = y']]k(\mathbf{x}, \mathbf{x}').$$

Bioinformat	ics

Learning Signals

Interprete Learning Result

Structure Learning

Structure Learning - Introduction

Joint Feature Map

Interdependent Outputs

For example a hierarchy of classes like part of speech tagging.

Label Sequence Learning

Given an input sequence predict a label sequence annotating the input

 Bioinformatics
 Learning Signals
 Interprete Learning Result
 Structure Learning

 Structure Learning - Introduction
 Context Free Grammar Parsing
 Structure Learning

Recursive Structure

From Klein & Taskar, ACL'05 Tutorial

Learning Signals

Interprete Learning Result 0000000

Structure Learning

Structure Learning - Introduction

Bilingual Word Alignment

Combinatorial Structure

From Klein & Taskar, ACL'05 Tutorial

Learning Signals

Interprete Learning Result 0000000

Structure Learning

Structure Learning - Introduction

Handwritten Letter Sequences

Bioinformatics 000000000	Learning Signals	Interprete Learning Result 0000000	Structure Learning
Structure Learning - In	troduction		
Label Sequ	Jence Learning		

- Given: observation sequence
- Problem: predict corresponding state sequence
- Often: several subsequent positions have the same state
 ⇒ state sequence defines a "segmentation"
- Learn Segmentation for Gene Finding

- Hidden Markov Models (Rabiner, 1989)
 - State sequence treated as Markov chain
 - No direct dependencies between observations
 - Example: first-order HMM (simplified)

$$p(\mathbf{x},\mathbf{y}) = \prod_{i} p(x_i|y_i) p(y_i|y_{i-1})$$

• Efficient dynamic programming (DP) algorithms

Learning Signals

Interprete Learning Result 0000000

Structure Learning

Structure Learning via Generative Models

Decoding via Dynamic Programming

$$\log p(\mathbf{x}, \mathbf{y}) = \sum_{i} (\log p(x_i|y_i) + \log p(y_i|y_{i-1}))$$
$$= \sum_{i} g(y_{i-1}, y_i, x_i)$$

with $g(y_{i-1}, y_i, x_i) = \log p(x_i|y_i) + \log p(y_i|y_{i-1})$. **Problem:** Given sequence **x**, find sequence **y** such that $\log p(\mathbf{x}, \mathbf{y})$ is maximized, i.e. $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \log p(\mathbf{x}, \mathbf{y})$ Dynamic Programming Approach:

$$V(i,y) := \left\{egin{array}{c} \max_{y' \in \mathcal{Y}} (V(i-1,y') + g(y',y,x_i)) & i > 1 \ 0 & ext{otherwise} \end{array}
ight.$$

- Generalized Hidden Markov Models = Hidden Semi-Markov Models
 - Only one state variable per segment

Use

- Allow non-independence of positions within segment
- Example: first-order Hidden Semi-Markov Model

$$p(x, y) = \prod_{j} p(\underbrace{(x_{i(j-1)+1}, \dots, x_{i(j)})}_{x_{j}} | y_{j}) p(y_{j} | y_{j-1})$$

$$\bigvee_{X_{1}, X_{2}, X_{3}} Y_{2} \cdots Y_{n}$$

$$\bigcup_{X_{1}, X_{2}, X_{3}} X_{4}, X_{5} \cdots X_{n-1}, X_{n} \text{ (use with care)}$$
generalization of DP algorithms of HMMs

Decoding via Dynamic Programming

$$\log p(\mathbf{x}, \mathbf{y}) = \prod_{j} p((x_{i(j)}, \dots, x_{i(j+1)-1}) | y_{j}) p(y_{j} | y_{j-1})$$
$$= \sum_{j} g(y_{i-1}, y_{i}, \underbrace{(x_{i(j-1)+1}, \dots, x_{i(j)})}_{\mathbf{x}_{j}})$$

with $g(y_{j-1}, y_j, \mathbf{x}_j) = \log p(\mathbf{x}_j | y_j) + \log p(y_j | y_{j-1})$. **Problem:** Given sequence \mathbf{x} , find sequence \mathbf{y} such that $\log p(\mathbf{x}, \mathbf{y})$ is maximized, i.e. $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \log p(\mathbf{x}, \mathbf{y})$ Dynamic Programming Approach: V(i, y) :=

$$\begin{cases} \max_{y' \in \mathcal{Y}, d=1, \dots, i-1} (V(i-d, y') + g(y', y, \mathbf{x}_{i-d+1, \dots, i})) & i > 1 \\ 0 & \text{otherwise} \end{cases}$$

- Conditional Random Fields (Lafferty et.al 2001)
 - conditional prob. p(y|x) instead of joint prob. p(x, y)

$$p(y|x,\mathbf{w}) = \frac{1}{Z(x,\mathbf{w})} \exp(\langle \mathbf{w}, \Phi(x,y) \rangle)$$

- can handle non-independent input features
- Semi-Markov Conditional Random Fields
 - introduce segment feature functions
 - dynamic programming algorithms exist

Learning Signals

Interprete Learning Result 0000000 Structure Learning

Structure Learning via Discriminative Methods

Max-Margin Structured Output Learning

- Learn function $f(\mathbf{y}|\mathbf{x})$ scoring segmentations \mathbf{y} for \mathbf{x}
- Maximize $f(\mathbf{y}|\mathbf{x})$ w.r.t. \mathbf{y} for prediction:

$$\operatorname{argmax}_{\mathbf{y}\in\mathcal{Y}^*} f(\mathbf{y}|\mathbf{x})$$

- Given N sequence pairs $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)$ for training
- Determine *f* such that there is a large margin between true and wrong segmentations

$$\begin{array}{ll} \min_{f} & C\sum_{n=1}^{N}\xi_{n}+\mathbf{P}[f]\\ \text{w.r.t.} & f(\mathbf{y}_{n}|\mathbf{x}_{n})-f(\mathbf{y}|\mathbf{x}_{n})\geq 1-\xi_{n}\\ \text{for all } \mathbf{y}_{n}\neq\mathbf{y}\in\mathcal{Y}^{*}, n=1,\ldots,N \end{array}$$

Exponentially many constraints!

Recall the kernel trick

For each kernel, there exists a corresponding feature mapping $\Phi(\mathbf{x})$ on the inputs such that $k(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle$.

Joint kernel on ${\mathcal X}$ and ${\mathcal Y}$

We define a joint feature map on $\mathcal{X} \times \mathcal{Y}$, denoted by $\Phi(\mathbf{x}, y)$. Then the corresponding kernel function is

$$k((\mathbf{x}, y), (\mathbf{x}', y')) := \langle \Phi(\mathbf{x}, y), \Phi(\mathbf{x}', y') \rangle.$$

For multiclass

For normal multiclass classification, the joint feature map decomposes and the kernels on ${\mathcal Y}$ is the identity, that is

$$k((\mathbf{x}, y), (\mathbf{x}', y')) := [[y = y']]k(\mathbf{x}, \mathbf{x}').$$

Learning Signals

Interprete Learning Result

Structure Learning

Structure Learning with Kernels

SO Learning with kernels

• Assume
$$f(\mathbf{y}|\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \rangle$$
, where $\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \in \mathcal{F}$

• Use ℓ_2 regularizer: $\mathbf{P}[f] = \|w\|^2$

$$\begin{array}{ll} \min_{\mathbf{w}\in\mathcal{F},\boldsymbol{\xi}\in\mathbb{R}^{N}} & C\sum_{n=1}^{N}\xi_{n}+\|w\|^{2}\\ \text{w.r.t.} & \langle \mathbf{w}, \Phi(\mathbf{x},\mathbf{y}_{n})-\Phi(\mathbf{x},\mathbf{y})\rangle \geq 1-\xi_{n}\\ \text{for all } \mathbf{y}_{n}\neq\mathbf{y}\in\mathcal{Y}^{*}, n=1,\ldots,N \end{array}$$

Linear classifier that separates true from wrong labelling
Dual: Define Φ_{n,y} := Φ(x_n, y_n) - Φ(x_n, y)

$$\begin{split} \max_{\boldsymbol{\alpha}} & \sum_{n,\mathbf{y}} \alpha_{n,\mathbf{y}} - \sum_{n,\mathbf{y}} \sum_{n',\mathbf{y}'} \alpha_{n,\mathbf{y}} \alpha_{n',\mathbf{y}'} \langle \Phi_{n,\mathbf{y}}, \Phi_{n',\mathbf{y}'} \rangle \\ \text{w.r.t.} & \alpha_{n,\mathbf{y}} \geq 0, \sum_{\mathbf{y}} \alpha_{n,\mathbf{y}} \leq C \text{ for all } n \text{ and } \mathbf{y} \end{split}$$

Bioinformatics 000000000	Learning Signals 0000000	Interprete Learning Result	Structure Learning
Structure Learning with Kernel	S		
Kernels			

• Recall:
$$\Phi_{n,\mathbf{y}} := \Phi(\mathbf{x}_n, \mathbf{y}_n) - \Phi(\mathbf{x}_n, \mathbf{y})$$

• Then

$$\begin{split} \langle \Phi_{n,\mathbf{y}}, \Phi_{n',\mathbf{y}'} \rangle &= \langle \Phi(\mathbf{x}_n, \mathbf{y}_n) - \Phi(\mathbf{x}_n, \mathbf{y}), \Phi(\mathbf{x}_{n'}, \mathbf{y}_{n'}) - \Phi(\mathbf{x}_{n'}, \mathbf{y}') \\ &= k((\mathbf{x}_n, \mathbf{y}_n), (\mathbf{x}_{n'}, \mathbf{y}_{n'})) - k((\mathbf{x}_n, \mathbf{y}_n), (\mathbf{x}_{n'}, \mathbf{y}')) - \\ &- k((\mathbf{x}_n, \mathbf{y}), (\mathbf{x}_{n'}, \mathbf{y}_{n'})) + k((\mathbf{x}_n, \mathbf{y}), (\mathbf{x}_{n'}, \mathbf{y})), \end{split}$$

where

$$k((\mathbf{x}_n, \mathbf{y}), (\mathbf{x}_{n'}, \mathbf{y}')) := \langle \Phi(\mathbf{x}_n, \mathbf{y}), \Phi(\mathbf{x}_{n'}, \mathbf{y}') \rangle$$

• Kernel learning (almost) as usual

Learning Signals

Interprete Learning Result

Structure Learning

Structure Learning with Kernels

Special Case: only two "structures"

• Assume
$$f(\mathbf{y}|\mathbf{x}) = \langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \rangle$$
, where $\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \in \mathcal{F}$

$$\begin{array}{ll} \min_{\mathbf{w}\in\mathcal{F},\boldsymbol{\xi}\in\mathbb{R}^{N}} & C\sum_{n=1}^{N}\xi_{n}+\|w\|^{2}\\ \text{w.r.t.} & \langle \mathbf{w}, \Phi(\mathbf{x},y_{n})-\Phi(\mathbf{x},1-y_{n})\rangle \geq 1-\xi_{n}\\ \text{for all } n=1,\ldots,N \end{array}$$

• Dual: Define $\Phi_n := \Phi(\mathbf{x}_n, y_n) - \Phi(\mathbf{x}_n, 1 - y_n)$

$$\begin{array}{ll} \max_{\alpha} & \sum_{n} \alpha_{n} - \sum_{n} \sum_{n'} \alpha_{n} \alpha_{n'} \langle \Phi_{n}, \Phi_{n'} \rangle \\ \text{w.r.t.} & \alpha_{n} \geq 0, \alpha_{n} \leq C \text{ for all } n \end{array}$$

Equivalent to standard 2-class SVM

Bioinformatics 000000000	Learning Signals 0000000	Interprete Learning Result	Structure Learning
Algorithm			
Optimization			

• Optimization problem too big (dual as well)

$$\begin{split} \min_{\mathbf{w} \in \mathcal{F}, \boldsymbol{\xi}} & C \sum_{n=1}^{N} \xi_n + \|w\|^2 \\ \text{w.r.t.} & \langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}_n) - \Phi(\mathbf{x}, \mathbf{y}) \rangle \geq 1 - \xi_n \\ \text{for all } \mathbf{y}_n \neq \mathbf{y} \in \mathcal{Y}^*, n = 1, \dots, N \end{split}$$

- One constraint per example and wrong labeling
- Iterative solution
 - Begin with small set of wrong labellings
 - Solve reduced optimization problem
 - Find labellings that violate constraints
 - Add constraints, resolve
- Guaranteed Convergence

Bioinformatics 000000000	Learning Signals	Interprete Learning Result	Structure Learning
Algorithm			

How to find violated constraints?

Constraint

$$\langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}_n) - \Phi(\mathbf{x}, \mathbf{y})
angle \geq 1 - \xi_n$$

• Find labeling **y** that maximizes

 $\langle \boldsymbol{\mathsf{w}}, \boldsymbol{\Phi}(\boldsymbol{\mathsf{x}}, \boldsymbol{\mathsf{y}}) \rangle$

• Use Dynamic Programming Decoding

$$\mathbf{y} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}) \rangle$$

(DP only works if Φ has certain decomposition structure)
If y = y_n, then compute second best labeling as well
If constraint is violated, then add to optimization problem

Dynamic Programming

- number of possible paths of length T for a (fully connected) model with n states is n^T
- infeasible already for small T

Solution: Use dynamic programming (Viterbi decoding)

• runtime complexity before: $\mathcal{O}(n^T) \Rightarrow$ **NOW:** $\mathcal{O}(n^2 \cdot T)$

Bioinformatics 000000000	Learning Signals 0000000	Interprete Learning Result 0000000	Structure Learning
Algorithm			
Algorithm			

$$\mathcal{Y}_{n}^{1} = \emptyset, \text{ for } n = 1, \dots, N$$

Solve
$$(\mathbf{w}^{t}, \boldsymbol{\xi}^{t}) = \underset{\mathbf{w} \in \mathcal{F}, \boldsymbol{\xi}}{\operatorname{argmin}} \qquad C \sum_{n=1}^{N} \xi_{n} + \|\mathbf{w}\|^{2}$$

w.r.t.
$$\langle \mathbf{w}, \Phi(\mathbf{x}, \mathbf{y}_{n}) - \Phi(\mathbf{x}, \mathbf{y}_{n}) \rangle$$

$$\begin{array}{ll} \mathsf{w} \in \mathcal{F}, \boldsymbol{\xi} & \overbrace{n=1}^{n=1} \\ \text{w.r.t.} & \langle \mathsf{w}, \Phi(\mathbf{x}, \mathbf{y}_n) - \Phi(\mathbf{x}, \mathbf{y}) \rangle \geq 1 - \xi_n \\ & \text{for all } \mathbf{y}_n \neq \mathbf{y} \in \mathcal{Y}_n^t, n = 1, \dots, N \end{array}$$

Solution Find violated constraints (n = 1, ..., N)

$$\mathbf{y}_n^t = \operatorname*{argmax}_{\mathbf{y}_n \neq \mathbf{y} \in \mathcal{Y}^*} \langle \mathbf{w}^t, \Phi(\mathbf{x}, \mathbf{y}) \rangle$$

 $\mathsf{lf} \langle \mathbf{w}^t, \Phi(\mathbf{x}, \mathbf{y}_n) - \Phi(\mathbf{x}, \mathbf{y}_n^t) \rangle < 1 - \xi_n^t, \, \mathsf{set} \, \, \mathcal{Y}_n^{t+1} = \mathcal{Y}_n^t \cup \{\mathbf{y}_n^t\}$

- If violated constraint exists then go to 2
- **(**) Otherwise terminate \Rightarrow Optimal solution

Bioinformatics 000000000	Learning Signals	Interprete Learning Result 0000000	Structure Learning
Loss			
Loss functi	one		

- So far 0-1-loss with slacks: If y ≠ y, then prediction is wrong, but it does not matter how wrong
- Introduce loss function on labellings $\ell(\mathbf{y}, \mathbf{y}')$, e.g.
 - How many segments are wrong or missing
 - How different are the segments, etc

Bioinformatics 000000000	Learning Signals 0000000	Interprete Learning Result 0000000	Structure Learning
Loss			
Loss function	ons		

- So far 0-1-loss with slacks: If y ≠ y, then prediction is wrong, but it does not matter how wrong
- Introduce loss function on labellings $\ell(\mathbf{y}, \mathbf{y}')$, e.g.
 - How many segments are wrong or missing
 - How different are the segments, etc
- Extend optimization problem (Margin rescaling):

$$\begin{split} \min_{\boldsymbol{w} \in \mathcal{F}, \boldsymbol{\xi}} & C \sum_{n=1}^{N} \xi_n + \|\boldsymbol{w}\|^2 \\ \text{w.r.t.} & \langle \boldsymbol{w}, \boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{y}_n) - \boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{y}) \rangle \geq \ell(\boldsymbol{y}, \boldsymbol{y}') - \xi_n \\ & \text{for all } \boldsymbol{y}_n \neq \boldsymbol{y} \in \mathcal{Y}^*, n = 1, \dots, N \end{split}$$

• Finding violated constraints (n = 1, ..., N)

$$\mathbf{y}_n^t = \operatorname*{argmax}_{\mathbf{y}_n \neq \mathbf{y} \in \mathcal{Y}^*} \langle \mathbf{w}^t, \Phi(\mathbf{x}, \mathbf{y}) \rangle + \ell(\mathbf{y}, \mathbf{y}_n)$$

- So far 0-1-loss with slacks: If y ≠ y, then prediction is wrong, but it does not matter how wrong
- Introduce loss function on labellings $\ell(\mathbf{y}, \mathbf{y}')$, e.g.
 - How many segments are wrong or missing
 - How different are the segments, etc
- Extend optimization problem (Slack rescaling):

$$\begin{split} \min_{\mathbf{w}\in\mathcal{F},\boldsymbol{\xi}} & \quad C\sum_{n=1}^{N}\xi_{n} + \|w\|^{2} \\ \text{w.r.t.} & \quad \langle \mathbf{w}, \Phi(\mathbf{x},\mathbf{y}_{n}) - \Phi(\mathbf{x},\mathbf{y}) \rangle \geq 1 - \xi_{n}/\ell(\mathbf{y},\mathbf{y}') \\ & \quad \text{for all } \mathbf{y}_{n} \neq \mathbf{y} \in \mathcal{Y}^{*}, n = 1, \dots, N \end{split}$$

• Finding violated constraints more difficult

Bioinformatics 000000000	Learning Signals 0000000	Interprete Learning Result 0000000	Structure Learning
Loss			
Problems			

- Optimization may require many iterations
- Number of variables increases linearly
- When using kernels, solving optimization problems can become infeasible
- Evaluation of $\langle \bm{w}, \bm{\Phi}(\bm{x}, \bm{y}) \rangle$ in Dynamic programming can be very expensive
 - Optimization and decoding become too expensive
- Approximation algorithms useful
- Decompose problem
 - First part uses kernels, can be precomputed
 - Second part without kernels and only combines ingredients

Loss

Gene Finding as Segmentation Task

- Nodes correspond to sequence signals
 - Depend on recognition of signals on the DNA
- Transitions correspond to segments
 - Depend on length or sequence properties of segment
- Markovian on segment level, non-Markovian within segments
 - Allows efficient decoding and modeling of segment lengths

Loss

Learning to Predict Segmentations

- Learn function $f(\mathbf{y}|\mathbf{x})$ scoring segmentations \mathbf{y} for \mathbf{x}
- f considers signal, content and length information
- Maximize $f(\mathbf{y}|\mathbf{x})$ w.r.t. \mathbf{y} for prediction: $\operatorname{argmax} f(\mathbf{y}|\mathbf{x})$
- Determine *f* such that there is a large margin between true and wrong segmentations

$$\begin{array}{ll} \min_{f} & \sum_{n=1}^{N} \xi_{n} + \mathbf{P}[f] \\ \text{w.r.t.} & f(\mathbf{y}_{n} | \mathbf{x}_{n}) - f(\mathbf{y} | \mathbf{x}_{n}) \geq 1 - \xi_{n} \\ & \text{for all } \mathbf{y} \neq \mathbf{y}_{n}, n = 1, \dots, N \end{array}$$

- Use approximation (Rätsch & Sonnenburg, NIPS'06)
 - Train signal and content detectors separately
 - Combine in large margin fashion

Loss

Learning Signals

Interprete Learning Result 0000000

Structure Learning

Large Margin Combination (simplified)

• Simplified Model: Score for splice form $\mathbf{y} = \{(p_j, q_j)\}_{j=1}^J$:

$$f(\mathbf{y}) := \underbrace{\sum_{j=1}^{J-1} S_{GT}(f_j^{GT}) + \sum_{j=2}^{J} S_{AG}(f_j^{AG})}_{\text{Splice signals}} + \underbrace{\sum_{j=1}^{J-1} S_{L_i}(p_{j+1} - q_j) + \sum_{j=1}^{J} S_{L_E}(q_j - p_j)}_{\text{Segment lengths}}$$

 Tune free parameters (in functions S_{GT}, S_{AG}, S_{LE}, S_{LI}) by solving linear program using training set with known splice forms

Bioinformatics 00000000	Learning Signals 0000000	Interprete Learning Result 0000000	Structure Learning
Loss			
Example			

Loss

Results Summary

- Splicing only (Rätsch et al., PLoS Comp. Biol., 2007)
 - Comparison with other methods
 - Analysis of a few disagreeing cases
 - Results available on http://www.wormbase.org
- Full gene predictions
 - Relevant for the nGASP competition
 - Evaluation by organizers still pending

Loss

Learning Signals

Interprete Learning Result

Structure Learning

Results I (Splice forms only)

- $\bullet~{\approx}3{,}800$ gene models derived from cDNAs and ESTs
 - 60% for training and validation
 - 40% for testing (exclude alt. spliced genes)
- Out-of-sample accuracy (pprox1100 gene models):
 - Splice form error rate
 - 4.8% (coding)
 - 13.1% (mixed)
 - Much lower error rates than state-of-the-art
 - Exonhunter (Brejova et al., ISMB'05)
 - Snap (Korf, BMC Bioinformatics 2004)

Loss

Learning Signals

Interprete Learning Result

Structure Learning

Results II (Splice forms only)

- Consider 20 disagreeing cases
- Annotation was never correct
- 75% of our predictions were correct

2-step approach

- Content and Signal Sensors(transcription start,...)
 - Support Vector Machine with String Kernel (spectrum,weighted degree,...)
- Label Sequence (Segmentation) Learning
 - Joint feature maps for inputs and outputs
 - Related to (generalized) HMMs
 - Result in large optimization problems
 - Can be solved iteratively
 - But still too large for medium size problems
 - Decomposition of the Problem
 - Use efficient kernel-based two-class detectors
 - Integrate without kernels
- Beats HMM based approaches in Gene finding :-)