
Machine Learning
A Practical Course

Disclaimer: This is work in progress!

Mikio L. Braun, Paul Buenau

started April 20, 2007,

last change May 13, 2009

2

Contents

1 Preface 5

2 Introduction 7

2.1 What is Machine Learning? . 7
2.1.1 An attempt at defining Machine Learning 7
2.1.2 Lack of Explicit Problem Formalization 7
2.1.3 Lack of Explicit Problem Solving 8
2.1.4 Proper Validation of Algorithms in Machine Learning 9

2.2 Data Types . 10
2.2.1 Xs and Ys . 10
2.2.2 Vectorial Data . 11
2.2.3 The Labels . 11

2.3 Notational Issues . 12

3 Unsupervised Learning 13

3.1 Dimension Reduction . 13
3.1.1 Principal Component Analysis . 13
3.1.2 Isomap . 15
3.1.3 Local Linear Embedding . 17

3.2 Clustering . 19
3.2.1 K-Means Clustering . 19
3.2.2 Hierarchical Clustering . 20
3.2.3 The EM Algorithm for Mixture Density Estimation 21

4 Supervised Learning 25

4.1 Introduction . 25
4.2 General Tools . 27

4.2.1 Crossvalidation . 27
4.3 Classical Methods . 28

4.3.1 Decision Trees . 28
4.3.2 Ordinary Least Squares and Ridge Regression 30

4.4 Kernel methods . 35
4.4.1 The Kernel Trick . 35

3

4 CONTENTS

4.4.2 Kernel Ridge Regression . 37
4.4.3 Support Vector Machines . 38

4.5 Bayesian Methods . 45
4.5.1 Belief Propagation in Markov Random Fields 46

Chapter 1

Preface

I always thought that the fastest way to learn something is to “hands-on”, directly inter-
acting with the matter at hand. The alternative, approaching the subject more from an
abstract-theoretical point of view, is equally adequate only as long as you already know
the underlying concepts. Otherwise, just trying things out seems to be the best way to
acquire the necessary concepts as fast as possible.

This observation is maybe most true for a young field like machine learning which
lacks a thorough theoritization. Methods are motivated using many different approaches,
and there does not exist a single theory which is able to derive everything conclusively.
Furthermore, methods often rely on heuristics, putting us in the somewhat curious situation
that there exist many methods where you think you know why they work, without being
able to prove exactly why.

So my advice to all those who want to get to know machine learning quickly is to expose
themselves to concrete algorithms: Take a handful of methods, implement them, and try to
make them run. Tweak the parameters, get your own idea why something works, and then
go back to the theory to see whether other people have arrived at the same conclusions as
you did.

Then, once you have first-hand experience and acquired an idea about how things work,
you can go back to find out how people have analyzed the methods theoretically, and which
general principles underlie the different methods.

This document tries to be a guide to exactly this approach. A number of methods
from all areas of machine learning will be discussed. The emphasis is put on being able to
implement the methods quickly, and on passing on a general intuition about the workings
of the algorithms. Each method is listed with its name, field of application, the main idea,
the implementation, and cross-references to other algorithms. Furthermore, some general
tools like cross-validation will be discussed as well.

After all, I hope that I can get the important fact across that machine learning can also
be fun.

Mikio L. Braun,
April 20, 2007 (with minor additions on December 18, 2007)

5

6 CHAPTER 1. PREFACE

Chapter 2

Introduction

2.1 What is Machine Learning?

Actually, it is somewhat unclear, where the exact boundaries of “machine learning” lie.
What is the difference between machine learning and computer science? After all, computer
science aims to automate cognitive processes, like computation. The next best candidate
would be artificial intelligence. Is machine learning the same as artificial intelligence (AI)?
Finally, when you actually look at a number of machine learning papers, it seems to be all
about statistics and probability theory. What is the difference between ML and statistics?

2.1.1 An attempt at defining Machine Learning

In one sentence, machine learning studies the question how one can learn some task solely
from examples of the desired behavior. Such a task might be for example, to classify
objects into different categories. To be even more specific, consider the task of recognizing
handwritten characters. Each character is scanned and represented by an image, and the
task consists to correctly predict which character is shown in the image.

This approach has two characteristics which set it aside from both artificial intelligence
(the example with the characters might be simple. Consider the task to understand spoken
commands: the mapping to be learned is from the audio recording to possible meanings),
and also from the way in which computer science usually addresses problems:

1. lack of explicit problem formalization

2. lack of explicit problem solving

Let us discuss both points in more detail.

2.1.2 Lack of Explicit Problem Formalization

Usually in computer science there is first an explicit, formalized description of the problem
you are trying to solve. For example, the problem of sorting can be formalized as mapping

7

8 CHAPTER 2. INTRODUCTION

a set of objects on which an order is defined to a sequence such that the objects are in
increasing order. Or, given a weighted graph, compute the shortest path between any
given two nodes in the graph. These are problem definitions which are formally exact
(well, maybe not in the informal tone stated above) in the sense that given an algorithm,
I can prove that the algorithm solves the given problem, that it is in fact correct.

In principle, the problems one considers in machine learning are also formally defined.
For example, the categorization task mentioned above has a clear formal description: From
a finite set of examples, you should derive a function such that the expected error is minimal,
that is, if I choose a point and the desired outcome at random, measure that error, and
average over all such choices, the error should be minimal. This is in fact a formal definition,
and you can even prove that it is correct.

However, note that at the same time, the problem definition is also extremely abstract.
It does not even mention handwritten characters, or images. In fact, algorithms which solve
some instantiation of this categorization problem may not work at all on other problems.
So the bottom line is that there exists an abstract definition, but it does not capture the
real nature of the problem.

So instead of a formal problem definition, we have a (possibly large) data set which
is the definition of the problem. This approach has an important advantage: we do not
need to have a full formal understanding of the problem in order to study it. Consider
the problem of natural language processing. If we could actually formally define what the
problem is, we will have solved a huge part of the problem, because we will have managed
to define formally what meaning is, how to handle real world grammars, etc.

If you think about it, you see that the formal approach taken in theoretical computer
science is really already part of the solution because the main remaining problem is in most
cases to solve the problem efficiently. In contrast, in machine learning we’re already happy
if we can already solve the problem well. And by well we mean that we perform well on
the actual data set defining the problem.

2.1.3 Lack of Explicit Problem Solving

Now the other characteristic is that we do not try to solve the problem explicitly. By this I
mean that one does not try to fully design an algorithm by hand which solves the problem
well. Instead, one usually designs a more general algorithm which is then tuned to the
actual problem during a training or learning step.

Note that these two steps are actually independent. Take for example translation of
natural languages. Instead of defining the problem formally, you collect a huge amount of
examples to define the problem. But then, you could try to directly solve the problem,
for example by designing grammars and parsers for both languages, developing a meta-
language to express the concepts behind the languages and procedures for transforming
between the natural languages and the meta-language. Such an approach has actually
been studied.

In fact, I think the greatest difference between AI and ML is that AI often tries do
directly model cognitive processes whereas ML tries to solve problems supposedly requiring

2.1. WHAT IS MACHINE LEARNING? 9

intelligence by learning from huge amount of data.
While at first it seems counter-intuitive that you can solve problems easier by first

solving a more general problem, it actually turns out that you can go a long way with
simple models and raw computing power. When you as a human try to design a solution
to a problem (think of the character recognition task), it will tend to end up with a
solution of a few fairly powerful components, for example a procedure for extracting lines
and interest-points like crossings, and rapid changes of directions. But there is a certain
limit to the number of such components you can deal with mentally. On the other hand,
a computer can combine thousands or hundred of thousands simple models (like small
patches which it takes as templates) to build something more accurate and robust than
what you could do by hand.

This is maybe also the downside of the current state-of-the-art of machine learning:
Most algorithms are quite dumb when you look at how they work, and there is not really
a lot of “intelligence” hidden in there, just sheer computing power.

If I said above that one does not try to explicitly solve the problem, I didn’t mean that
one does not invest any hand-tuning at all. In fact, for almost all real-world problems you
actually have to put a lot of work in there to find the right kind of feature extractor and
preprocessing to make an algorithm like the support vector machine perform well.

As I see it, machine learning is actually a hybrid approach: You try to solve the problem
partially by transforming the raw data to make the interesting information pop up more
prominently, but building on these handwritten partial solutions, you put an algorithm
which is mostly agnostic to the actual application domain it is dealing with. This is also
the reason why one can still learn a lot from the non-ML approaches which try to solve
the problem explicitly. Their experience should not be ignored.

2.1.4 Proper Validation of Algorithms in Machine Learning

How machine learning algorithms work is the topic of this little guide. Before we start on
that, it is important to briefly discuss how to evaluate such algorithms. We focus on the
supervised learning task (as in the categorization problem mentioned above), but the same
principles hold for other problem areas as well.

Recall that in theoretical computer science, the problem is often stated formally, and
it is often quite easy to find an algorithm which is correct (for example, by explicitly
enumerating the whole solution set). Therefore, one has to resort to other characteristics
to measure the quality of an algorithm. Asymptotic run-time complexity is one example.
You basically say that your algorithm is better than all these other algorithms which solve
the same problem because it is faster. Memory requirements would be another choice.

Now, in machine learning, we have to take a step back. Actually solving the problem
at all is important, and run-time is secondary. Only when it is accepted that the problem
is in principle solved well, it becomes important how long it takes.

In order to measure the performance of the algorithm you have to test the algorithm
against its definition, in this case a concrete data set. Now, you have to take a few
precautions to get meaningful results.

10 CHAPTER 2. INTRODUCTION

First of all, you cannot test your algorithm on the same data set (or part of the data
set) you have used to train you algorithm. The reason is that it is too easy to perform
well: Simply memorize the whole data set and just recall everything.

The goal is to perform well on unseen data. Therefore, the first important rule is
that you have to evaluate your algorithm on data you haven’t seen in the training step.
Practically, this means that you split your data set into a training and test step. Typically,
you iterate this procedure several times to also measure how stable your algorithm is.

Using this procedure you can now compare your algorithm against another algorithm:
you iterate over random splits of your data set into training and test data sets and collect
the resulting error rates. To properly compare these two numbers, you should use some
statistical test to see if the difference is really significant. This is the second rule

Most algorithms also have some free parameters which control, for example, the com-
plexity of the learned function. One commonly taken approach to adjusting these numbers
is to evaluate different choices of parameters as described above and then taking the one
which works best. If you do this, you actually have to re-split the training set again. This
is the important third rule the test set can really only be used for the final evaluation of
your data set. Otherwise, the reported results will be too good. You have chosen your
parameters to be optimal on the test set, but how does this choice perform on further
unseen data?

So to summarize: (1) Evaluate your algorithm on data you haven’t used in training. (2)
Compare the resulting performance measures using sound statistical tests. (3) Parameter
tuning is part of the training, so you must not use the test data there either.

If you follow these three steps, you’re already a large step towards properly validating
algorithms. And being able to do this is important, irrespective whether you are “just” a
practitioner (because you would want to use which algorithm works best, not just which
looks most fancy), or a researcher (because ultimately, you’ll have to defend your new
method by comparing it against the state-of-the-art).

2.2 Data Types

Before we’ll actually play around with some algorithms, let us talk about the data we will
deal with. For some reason, machine learning is at the one time rich in data types (for
example, we have vectors, strings, graphs, images, time series data et cetera), while at
the same time, when you actually look at a machine learning paper, people will only talk
about Xs and Y s.

2.2.1 Xs and Ys

The most basic machine learning task is that of prediction. For example, you want to
learn how to predict whether an email contains spam or not. In machine learning, it is
customary to denote with Xs the input objects which you have given, and with Y s the
output you want to generate. In our case, X would denote the text of an email (or some

2.2. DATA TYPES 11

abstracted version of it), while Y denotes the binary piece of information “spam” or “no
spam.”

A core ingredient of the machine learning approach is that we don’t want to design the
algorithms which perform this prediction task by hand, for example by cleverly designing
a number of stop-words and signatures identifying spam, but we directly tackle the more
general problem of designing an algorithm which can learn this task from a set of examples.
Assuming that we have collected 1000 spam emails and 1000 normal emails, the algorithm
should automatically learn how to separate spam from “ham.”

In machine learning we will therefore often deal with data sets which consist of examples
of the mapping we want to learn. And since it is usually assumed that the examples are
independent, they are just considered as an enumerated collection of Xs and Y s, denoted
by Xi, and Yi.

In this book, n will always denote the total number of examples, such that the example
inputs are given by the sequence X1, . . . , Xn, and the example outputs by Y1, . . . , Yn.

2.2.2 Vectorial Data

For several reasons, vectorial data (that is, each Xi is an d-dimensional vector) is the most
basic data type occurring in machine learning.

Part of the reason is that vector spaces lend themselves to nice geometric intuition
which can help in the design of new algorithms. And, of course, vector spaces are very
useful. You can add vectors, compute a mean vector for a number of vectors, and compare
two vectors if they are anywhere close to each other.

With vectorial data, a data set X1, . . . , Xn can nicely be summarized in a d×n-matrix.
Now, there is some ambiguitiy here, as we could also encode the data set as a n×d-matrix
(such that the data points become rows of this matrix). However, we will stick with the
first convention. To remember it, picture vectors as column vectors (as usual). If I have a
sequence of those vectors and push them together, I’ll get the matrix.

Another nice feature is that this allows to naturally “vectorize” vector-operations no-
tationally. If X is the data set matrix to X1, . . . , Xn, and y is another vector, then

X⊤y = (X⊤
1 y, . . . , X

⊤
n y).

Dropping the index, changing the font to bold we get the operation on all vectors.

2.2.3 The Labels

One generally considers three distinct types of outputs. For classification, the output
space is discrete, as one wants to predict membership in a number of (finite) classes. For
regression, one wants to predict a real number. For multivariate regression output, one
wants to predict a vector.

Distinguishing between only two classes is the simplest form of classification. Inci-
dentally, it is also the variant which is used most. The reason is that it is hard to take

12 CHAPTER 2. INTRODUCTION

care of more than to classes directly, and that there exist effective schemes of combining
two-class-classifiers into multi-class-classifiers (More on that in Section 4).

Multivariate regression can be similarily reduced to a number of (normal) regression
problems, by considering the output dimensions independently.

For both cases, there exist algorithm which directly take care of the multi-class or multi-
variate case, and which claim to hve advantages, although they are often more complex
than the simpler cases. In practice, one has to see which works better (as always).

2.3 Notational Issues

Writing about machine learning brings certain notational problems, mainly because ma-
chine learning strongly depends on two independent branches of mathematics: probability
theory and linear algebra.

Now in probability theory, random variables are usually denoted by upper case roman
letters, while in linear algebra, upper case roman letters are usually reserved for matrices
(whose entries are then denoted by the lower case letters: A = (aij)). Sometimes people
also denote vectors by lower case bold letters, although most of the objects are vectors
which makes the typing quite unconvenient.

We will therefore use the following convention: lower case indicates fixed non-matrix
object, upper case indicates random object, upper case bold indicates matrix.

Furthermore, if a is some quantity, putting a hat over it â means that â is an estimate
of a.

From time to time, we will make use of correspondences between lower and upper case
letters or the roman and the greek alphabet. For example, denoting objects m ∈ M , or
having an index i run from 1 to n. Furthermore, we might denote an finite sample size
object by a roman letter, and its asymptotic limit by the roman letter, for example, l → λ,
a→ α.

However, invariably, the number of data points is n, and the examples are indexed by
i (sorry for that).

These conventions are summarized in this table:

This... can be...
a, x, α, . . . scalars or vectors
X, Y, . . . random variables (or vectors)
X matrices

â, b̂, . . . estimates of a, b, . . .
a ∈ A trying to make use of corrspondence between cases.
l → λ, s→ σ estimated and asymptotic quantities.

Chapter 3

Unsupervised Learning

3.1 Dimension Reduction

Most of the interesting data sets are quite high-dimensional. Images is maybe the most
extreme example (every pixel is his own dimension), but there exist other examples, for
example in bioinformatics. Microarrays are able to measure concentration of a couple
thousand different certain aminoacids in a cell at the same time.

Besides computational issues, high dimensional data bring their own problems for data
analysis. Usually, the underlying problem is not really that high-dimensional such that
there exist many correlation between individual dimensions, and ample opportunity to see
structure which is only noise.

To continue the bioinformatics example, each dimension encodes the concentration of
a certain gene in a cell (in a massively simplified view). One interesting question is which
of the genes show interesting behavior. Now, with several thousand dimensions and only
a few data points, it is inevitable that there will be many interesting dimensions—by pure
chance.

In this first section we will discuss methods which try to reduce the dimension of the
data while retaining the information contained in the data. Depending on what you define
the terms “retain” and “information”, you will end up with different ideas and algorithms.
We will discuss a few classic choices.

3.1.1 Principal Component Analysis

⊲ Name Principal Component Analysis (PCA)

Applications dimension reduction, denoising, visualization

Method The PCA method actually consists of three disjoint steps: Computing the
principal components, projecting the data to obtain a low-dimensional representation, and
reconstructing the original data set.

13

14 CHAPTER 3. UNSUPERVISED LEARNING

Algorithm 1 Compute Principal Components

Input: data points X1, . . . , Xn ∈ R
d

Output: principal values l1, . . . , ld ∈ R,
principal directions u1, . . . , ud ∈ R

d

1: Compute mean X̄ ← 1
n

∑n
i=1Xi.

2: Compute scatter matrix

S←
n∑

i=1

(Xi − X̄)(Xi − X̄)⊤.

3: Compute eigenvectors ui and eigenvalues li of S.

Algorithm 1 shows how to compute the principal components. The principal directions
ui (sorted together with li such that l1 ≥ . . . ≥ ln) show the directions where the data has
maximal variance. The directions are orthogonal (that is, u⊤i uj = 0 if i 6= j, which will
come in handy for a number of computations.

Algorithm 2 Projecting to the low-dimensional sub-space

Input: data points X1, . . . , Xn ∈ R
d,

principal directions u1, . . . , um ∈ R
d

Output: transformed data points X ′
1, . . . , X

′
n ∈ R

m.
1: for i→ 1 to n do

2: X ′
i ← (u⊤1 Xi, . . . , u

⊤
mXi)

⊤

3: end for

Using the principal directions ui, we can compute the low-dimensional representations
of the data points Xi as shown in Algorithm 2.

Algorithm 3 Reconstructing projected data points in the original space

Input: transformed data points X ′
1, . . . , X

′
n ∈ R

m,
Output: reconstructed data points X ′′

1 , . . . , X
′′
n ∈ R

d.
1: for i→ 1 to n do

2: X ′′
i ←

∑m
j=1 uj[X

′
i]j

3: end for

Finally, one may want to reconstruct the de-noised data points in the original space
(for example with images). This is accomplished by Algorithm 3.

Discussion The PCA algorithm is a old and trusted standard method from statistics. It
is based on the idea of finding an m-dimensional subspace such that the reconstructed data
points X ′′

i (Algorithm 3) have minimal distortion to the original points Xi. The distortion
used here is the usual vector norm (squared). Therefore, PCA makes sense whenever the

3.1. DIMENSION REDUCTION 15

usual (Euclidean) vector norm makes sense. This problem leads to an eigenvalue problem
which can be solved on O(n3).

For general m-dimensional subspaces, this is not trivial to see. However, for the first
principal component, it is rather easy: For simplicity, we’ll assume that theXi are centered.
Getting the projected coefficient for a one-dimensional direction can be computed by taking
the scalar product with a vector u of lenght 1 which spans this subspace: X⊤u. We wish
to minimize the reconstruction error, or alternatively, to capture as much variance along
the first direction. Thus, we wish to compute maximize

n∑

i=1

(X⊤
i u)

2 = ‖X⊤u‖2 = u⊤XX⊤u = u⊤Su

over all u with ‖u‖ = 1. However, this optimization problem is well known to be solved by
the eigenvector corresponding to the largest eigenvalue l, with u⊤Su being the eigenvalue,
since

u⊤Su = u⊤(lu) = l‖u‖2 = l,

since u has length 1.

The number of principal components m used in the denoising has to be supplied by the user.
Solving this issue is not trivial. Irrespective of the number of dimensions, PCA will find
the optimal (with respect to the Euclidean norm) subspace. Thus, fewer dimensions means
larger error, and more dimensions means more errors. By the way, the reconstruction error
can be quickly read of as the sum of the remaining principal values lm+1, . . . , ld

If the data is particularily noise-free, and the data lives on a linear affine subspace,
then it might be possible to set a threshold of distortion one is willing to tolerate, and then
choose m such that lm+1 + . . .+ ld is smaller than the threshold.

However, in the presence of noise (and as a rule of thumb, all data is noisy), this will
not be possible. Independent noise on each coordinate of the data leads to a uniform
increase of the principal values along each direction, such that the distortion will never be
negligible.

In such cases, one typically sees a “knee” in the sequence of principal values which
indicates the transition from “signal” to “noise”. This dimension is then often used as the
“right” cut-off dimension.

Applying PCA for dimension reduction and denoising is pretty straightforward. For vi-
sualization, one will typically choose m = 2 or m = 3 and plot the resulting pictures.
However, for most cases, other methods are better suited, in particular multi-dimensional
scaling, LLE, and ISOMAP.

See also Kernel PCA (a non-linear extension of PCA), LLE, ISOMAP

3.1.2 Isomap

⊲ Name Isomap

16 CHAPTER 3. UNSUPERVISED LEARNING

Applications dimension reduction, visualization

Method Isomap is a simple extension to Classical Scaling where the distances between
data points are measured as shortest paths on a graph which is assumed to follow the high
dimensional manifold of the data. From these distances, Classical Scaling reconstructs
lower dimensional coordinate vectors by applying an eigendecomposition to the inner-
product matrix that is reconstructed from the matrix of shortest paths.

Algorithm 4 Isomap

Input: data points x1, . . . , xn ∈ R
d , number of dimensions d′ ≤ d for the embedding,

parameter k or ǫ for graph construction
Output: embedded data y1, . . . , yn ∈ R

d′

1: Compute matrix D ∈ R
n×n of euclidean distances between the data points,

Dij ← ‖xi − xj‖L2
.

2: Compute adjaceny matrix A ∈ R
n×n between data points using k-nearest-neighbour or

ǫ-ball rule.
3: Compute matrix Dg ∈ R

n×n of pairwise distances as shortest paths on the graph
defined by A using Floyd-Warshall-Algorithm (or modified Dijkstra-Algorithm).

4: Compute squared distances along the manifold: (Dg)ij ← (Dg)
2
ij for all 1 ≤ i, j ≤ n.

5: A← −1
2
Dg

6: Compute centering matrix H ← In − 1
n
1n×n

7: Compute matrix V ∈ R
n×p of eigenvectors (as columns) and associated non-zero eigen-

values λ1, . . . , λp of HAH .
8: Sort eigenvalues and eigenvectors V such that λ1 ≥ λ2 ≥ . . . ≥ λp > 0.
9: for i← 1 to n do

10: yi ← (
√
λ1Vi1,

√
λ2Vi2, . . . ,

√
λd′Vid′)

⊤

11: end for

Discussion Basically, the only thing that Isomap adds to Classical Scaling is a method
for obtaining geodesic distances along the data manifold without making any further as-
sumptions. However, if the matrix of shortest paths does not reflect the true geodesic
distances, Isomap will fail. To this end, it is important that the graph covers the data man-
ifold as densely as possible (to avoid unnecessary detours in the shortest paths) without
introducing shortcuts (which lead to incorrect geodesic distances). In particular, shortcuts
can induce a distance matrix which is not embeddable in a euclidean space. In that case,
the inner-product matrix will have negative eigenvalues. Therefore, one has to choose the
right k or ǫ for constructing the graph or use a different method altogether. This can be
difficult (if not impossible) in the presence of outliers and noises or when some regions of
the data are more densely sampled than others.

3.1. DIMENSION REDUCTION 17

See also LLE, PCA, Kernel PCA

3.1.3 Local Linear Embedding

⊲ Name Locally-Linear-Embedding (LLE)

Applications dimension reduction, visualization

Method The LLE algorithms aims at finding a lower dimensional embedding of the data
which preserves properties of the local neighbourhood of each datapoint. The solution of
the resulting optimization problem over the embedding coordinates is found by solving an
eigenvalue problem.

Discussion In contrast to Isomap, which aims at recovering all pair-wise distances (glob-
ally), LLE merely tries to reproduce local characteristics in the embedded data. However,
the choice of k or ǫ for defining the neighbourhood of each data point leads to a similar
dilemma: small neighbourhoods can result in large reconstruction errors and weights that
are not representative for the local geometry while large neighbourhoods may introduce
shortcuts and thereby spoil the whole solution.

See also Isomap, PCA, Kernel PCA

18 CHAPTER 3. UNSUPERVISED LEARNING

Algorithm 5 LLE

Input: data points x1, . . . , xn ∈ R
d, number of dimensions d′ ≤ d for the embedding,

parameter k or ǫ for constructing the neighbourhoods, regularization parameter for
the local covariance matrices ν

Output: embedded data y1, . . . , yn ∈ R
d′

1: for i← 1 to n do

2: Compute indices ηi1, . . . , ηiki
of the neighbourhood of xi by the k-nearest-neighbour

or ǫ-ball rule.
3: end for

4: Initialize matrix of reconstruction weights W ← 0n×n.
5: for i← 1 to n do

6: Let C ∈ R
ki×ki be the local covariance matrix.

7: for j ← 1 to ki do

8: for l← j to ki do

9: Cjl ← (xi − xηij
)⊤(xi − xηil

)
10: Clj ← Cjl

11: end for

12: end for

13: w ← (C + νI)−11ki

14: w ← 1
w⊤1ki

w

15: for j ← 1 to ki do

16: Wiηij
← wj

17: end for

18: end for

19: Let M ∈ R
n×n be the matrix of the quadratic form that we want to minimize.

20: for i← 1 to n do

21: for j ← 1 to n do

22: Mij ← δij −Wij −Wji +
∑n

l=1WliWlj

23: end for

24: end for

25: Compute matrix V ∈ R
n×n of eigenvectors (as columns) and associated eigenvalues

λ1, . . . , λn of M .
26: Sort eigenvalues and eigenvectors V such that 0 = λ1 ≤ λ2 ≤ . . . ≤ λn .
27: for i← 1 to n do

28: yi ← (Vi2, Vi3, . . . , Vi(d′+1))
⊤

29: end for

3.2. CLUSTERING 19

3.2 Clustering

3.2.1 K-Means Clustering

⊲ Name K-means clustering

Applications clustering, quantization

Method The K-means clustering algorithm aims at finding centres of clusters µ1, . . . µk

in the data by minimizing the sum of the distances of datapoints to their respective cluster
centre. More formally, the objective function can be written as

L({µ1, . . . , µk}, r) =

n∑

i=1

‖xi − µri
‖

where ri is the index of the cluster to which datapoint xi belongs to. At each iteration, the
algorithm minimizes the loss function in two steps: in the assignment step, every datapoint
is assigned to its nearest cluster centre. In the update step, the centres are set to the mean
over their members.

Algorithm 6 K-means clustering

Input: data points x1, . . . , xn ∈ R
d, number of clusters k, maximum number of iterations

m.
Output: cluster centres µ1, . . . , µk ∈ R

d, assignment vector r ∈ R
n

1: Choose random data points as initial cluster centres µ1 ← xi1 , . . . , µk ← xik where
ij 6= il for all j 6= l.

2: r ← 0n

3: r′ ← 0n

4: i← 0
5: while i < m do

6: for j ← 1 to n do

7: Find nearest cluster centre r′j ← argmin1≤l≤k ‖xj − µl‖2
8: end for

9: for j ← 1 to k do

10: Compute new cluster centre µj ← 1
|{l:r′

l
=j}|

∑

l:r′
l
=j xl

11: end for

12: if r = r′ then

13: break

14: end if

15: r ← r′

16: i← i+ 1
17: end while

20 CHAPTER 3. UNSUPERVISED LEARNING

Discussion This näıve version of K-means clustering suffers from two limitations: firstly,
each datapoint belongs to exactly one cluster (so-called hard memberships) and all data-
points in one cluster have equal weight in the update step. Thus outliers may drag their
centre into wrong directions. Secondly, clusters are spherical which is a strong parametric
assumption.

See also Hierarchical clustering

3.2.2 Hierarchical Clustering

⊲ Name Hierarchical clustering

Applications clustering, quantization

Method In contrast to standard clustering, where each datapoint is assigned to exactly
one cluster (or prototype), hierarchical clustering aims at revealing a hierarchy of clusters
in the data where clusters are joined together to form super-clusters. Most hierarchical
clustering algorithms can be regarded as post-processing steps to standard clustering.

Agglomorative clustering methods build a hierarchy of clusters by step-wise merging of
clusters. At each step, the algorithm merges those two clusters which leads to the smallest
increase in the original clustering cost function. This procedure is called step-wise optimal
agglomorative clustering. For K-means clustering, the cost function (to be minimized) is

l({x1, . . . , xn}, r) =

n∑

i=1

‖xi − µri
‖

where x1, . . . , xn are the datapoints, r ∈ R
n is the assignment vector and µ1, . . . , µk are the

cluster centres. The assignment vector r ∈ R
n holds the cluster index of each datapoint,

i.e. ri ∈ {1, . . . , k} and ri = j if datapoint i belongs to cluster j. For each cluster 1, . . . , k,
its centre is the mean over its members, i.e.

µi =
1

|{j : rj = i}|
∑

j:rj=i

xj .

Let us introduce one further bit of notation that we will use to formulate the algorithm:
if r ∈ R

n is an assignment vector, then we will denote by ri=j ∈ R
n the assignment vector

where the cluster i and j are merged, or, formally,

ri=j
l =

{
rl : if rl 6= i
j : otherwise.

for l = 1, . . . , n.

3.2. CLUSTERING 21

Algorithm 7 Step-wise optimal agglomorative clustering

Input: data points x1, . . . , xn ∈ R
d, number of clusters k, assignment vector r ∈ R

n,
clustering cost function l : R

d×n × R
n → R where the first argument is the data and

the second argument is the assignment vector.
Output: assignment matrix R ∈ R

(k−2)×n with one row for each step, vector of clustering
cost values l′ ∈ R

k−1 after each step.
1: Compute initial clustering cost l′1 ← l(X, r).
2: for i = 1 to k − 2 do

3: Compute set C that contains the remaining cluster indices in r.
4: Find the two cluster indices c1, c2 ∈ C such that if we merge the clusters c1 and c2

the cost function l(X, rc1=c2) is minimal among all possible mergers, or formally,

(c1, c2) = argmin
(c′

1
,c′

2
)∈C×C,c′

1
6=c′

2

l(X, rc′1=c′2).

5: Store new assignments r ← rc1=c2 and R(i+1)j ← rc1=c2
j for all 1 ≤ j ≤ n.

6: Compute new clustering cost l′i+1 ← l(X, r).
7: end for

Discussion Hierarchical cluster solutions are usually visualized as dendrogram plots.
The clusters correspond to positions on the horizontal axis, the vertical axis shows the
change in the clustering cost function due to the merging of clusters. Each cluster is
represented as a line that grows from bottom to top, where a merger results in two lines
joined together at a height corresponding to the increase in the clustering loss function.
Figure 3.1 shows an example of a hierarchical cluster solution along with a dendrogram
plot.

See also K-means clustering

3.2.3 The EM Algorithm for Mixture Density Estimation

⊲ Name Expectation-Maximization Algorithm for Mixture Density Estimation (“EM-
Algorithm”)

Applications clustering, density estimation, quantization

Method Actually, there is no such thing as “the” EM-Algorithm. It is rather a method to
perform maximum-likelihood estimation of densities, when there exist “hidden variables”
which prevent optimization.

Okay, let’s try to be a bit more specific. Maximum-likelihood is a classical approach to
determine the parameters of a parameterized density distribution. For example, assume
that you have some points x1, . . . , xn ∈ R, and you think that these points are indepedent

22 CHAPTER 3. UNSUPERVISED LEARNING

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Cluster solution

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cluster index

In
cr

ea
se

 in
 c

rit
er

io
n

fu
nc

tio
n

Hierarchical cluster dendrogram

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure 3.1: Hierarchical cluster solution. The left plot shows the most fine grained cluster
structure, the right plot shows the hierarchical structure obtained from agglomorative
merging of the four original clusters.

samples from a Gaussian distribution, but you don’t know the mean value µ and the
variance σ2. You want to estimate these two parameters by choosing them such that
the joint probability of x1, . . . , xn ∈ R is maximized. This corresponds to assuming the
explanation under which the data seems most plausible.

For Gaussians, this is pretty easy. The density function (also called the likelihood) is

p(x;µ, σ2) =
1√

2πσ2
exp

(

−(x− µ)2

2σ2

)

.

If you assume that the observed points are independent, then you get

p(x1, . . . , xn;µ, σ2) =

n∏

i=1

p(xi;µ, σ
2),

or for the log-likelihood (usually considered since all the exponentials just vanish, and you
are left with quadratic functions only)

log p(x1, . . . , xn;µ, σ2) =

n∑

i=1

log p(xi;µ, σ
2) = −n

2
log 2πσ2 −

n∑

i=1

(xi − µ)2

2σ2
.

Maximizing with respect to µ and σ2 lead to (i.e. differentiating and setting to zero)

µ̂ =
n∑

i=1

xi, σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2.

Anyhow, in this case (and also many others), maximum likelihood estimation is easy. You
differentiate the log-likelihood and solve for the parameters you are interested in.

3.2. CLUSTERING 23

However, this is not possible for all kinds of density functions. We are interested in a
mixture of Gaussians (and since this is more fun, we directly go to the multivariate case)

p(x) =
K∑

k=1

πkg(x;µk,Σk),
K∑

k=1

πk = 1, πk ≥ 0.

with

g(x;µ,Σ) = (2π)−d/2 det(Σ)−1/2 exp

(

−1

2
(x− µ)⊤Σ−1(x− µ)

)

.

In words: the probability for a point x is given as a mixture of Gaussians with different
means and covariance matrices. The numbers πk are called the class priors since they say
how probable a class is.

We have to estimate three parameters: πk, µk, and Σk. It turns out that we cannot
simply compute the maximum in this case. Differentiating either of these equations leads
to an equation which depends on the other quantities in a non-linear way.

However, it turns out that estimation can be performed in an iterated manner once
an intermediate quantity is introduced, which we’ll call γnk. This γnk is given as the
probability that data point n was generated by k. Once these “soft-assignments” of Xi to
the data points X1, . . . , Xn are fixed, we can estimate π̂k, µ̂k, and Σ̂k by taking weighted
variants of the usual maximum-likelihood estimators.

For reasons too obscure to be explained right now the first step is called the “E-step”
(for expectation), while the second step is called “M-step” (for maximization).

It turns out that this introduction of a decoupling variable (in this case, the assignments
to the clusters) is a general principle, which are applicable to a large number of probability
models. The collection of all these algorithms is called the “EM Algorithm”, although it
is really more of a general idea than a concrete algorithm in the computer science sense.

Anyway, the algorithm is summarized in Algorithm 8.

Discussion One important point is the initialization of the algorithm. In Algorithm 8,
we simply set π̂k and Σ̂k to sane defaults and assign the cluster centers at random. Other
options are possible, for example, setting π̂k to a random distribution (i.e. setting each π̂k

to some positive value and normalizing everything such that they sum to one afterwards).
Alternatively, one can even initialize the parameters with a solution obtained by k-means
clustering.

Unfortunately, the EM algorithm is not stable. If you have more than two components,
you can always drive the likelihood to infinity by centering one component on a single
data point and letting the covariance go to zero. This seldom happens in practice, but to
be really sure, you have to make sure that the covariances do not tend to zero. Or, you
directly “go Bayesian” and introduce sensible priors.

K-means clustering and EM are closely related. The algorithms structure is already
very similar. In principle k-means can be interpreted as a crippled EM with covariance
matrices fixed to identity matrices and considering hard assignments for the γnk.

24 CHAPTER 3. UNSUPERVISED LEARNING

Algorithm 8 The EM Algorithm for Mixture of Gaussians

Input: Data points X1, . . . , Xn ∈ R
d, number of components K

Output: Means µ̂k and covariance matrices Σ̂k, 1 ≤ k ≤ K.
1: { Initialize }
2: π̂k ← 1/K
3: µ̂k ← random points out of X1, . . . , Xn

4: Σ̂k ← Id

5: repeat

6: { The “E”-step }
7: for k ← 1 to K do

8: for n← 1 to N do

9: Set γnk ←
π̂kg(Xn; µ̂k, Σ̂k)

∑K
k′=1 π̂k′g(Xn; µ̂k′, Σ̂k′)

{see (3.2.3)}

10: end for

11: end for

12: { The “M”-step }
13: for k ← 1 to K do

14: Nk ←
∑N

n=1 γnk

15: π̂k ← Nk/N
16: µ̂k ← 1

Nk

∑N
n=1 γnkXn

17: Σ̂k ← 1
Nk

∑N
n=1 γnk(Xn − µ̂k)(Xn − µ̂k)

⊤

18: end for

19: until “convergence”

See also k-means clustering.

Literature Bishop, “Pattern Recognition and Machine Learning”, pp. 435

Chapter 4

Supervised Learning

4.1 Introduction

Supervised learning is when we have labels. That is, every training example x is accom-
panied by the true value y that we aim to predict from x. In regression, the truth y is
called target and is typically real-valued; in classification, our target is to predict discrete
class labels y. For instance, if we want to build a system for optical character recognition
(OCR), each example x is a picture of a handwritten digit and its label y ∈ {0, 1, . . . , 9}
tells us which digit is shown. The presence of labels allows us to evaluate (or supervise)
the performance of a predictor by comparing its output against the true labels whereas
in unsupervised learning, one has to resort to subjective measures such as plausibility or
beauty of the found solution. In fact, many supervised learning algorithms simply stem
from minimizing the expected loss on the training data.

In classification problems, the predominant notion of loss is the misclassification rate,
i.e. the number of incorrectly predicted labels divided by the total number of examples.
In practice, the loss function can also be a function of the data. For regression, it is
less obvious what constitutes a correct prediction. Typical loss functions are the squared
distance between target and prediction (L2 loss) or the absolute difference (L1 loss).

Moreover, there are different types of errors. Imagine, for example, we want to predict
whether an E-mail x is spam (y = −1) or ham (y = +1). While it is surely annoying to
manually delete some spam emails from your inbox, it would be far worse, if the system
stuffed precious ham into the spam bin. Conversely, in cancer diagnosis it is obviously
better to issue some false alarms (false positives) than ignoring the possibility that a patient
is sick (false negatives). The desired trade-off between false positives and false negatives
depends on the application and the cost (or risk) involved. In many algorithms, this trade-
off can be controlled by some parameter. We can thereby identify the relationship between
false positives and true positives which is usually depicted as a ROC curve (receiver-
operator-characteristic): percentages of false positives and true positivies are shown on
the x- and y-axis respectively. The optimal curve would thus be a horizontal line at
height 1 which is rarely attainable in practice. The area under the ROC curve (AUC) is

25

26 CHAPTER 4. SUPERVISED LEARNING

a common performance measure for binary classifiers. Figure 4.1 shows a one-dimensional
classification problem along with the corresponding ROC-curve obtained from varying the
decision threshold on the x-axis.

−4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Class conditional densities

p(x|y = −1)
p(x|y = +1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (FPR)

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

ROC Curve for p(y=+1)=0.5

Figure 4.1: The left plot shows the class-conditional densities p(x|y = +1) and p(x|y =
−1) for a one-dimensional classification problem. The right plot contains the ROC-curve
obtained from varying the decision boundary.

Labelled training data is valuable but it comes at a peril: we are tempted to learn it
by heart. Remember that our ultimate goal is to train a predictor which performs well on
data that we have not observed in the training set. Thus, the error rate on the training
set should only be regarded as an approximization to the generalization error which is
the true performance on unseen data. We have to bear this in mind when we adjust the
parameters of our classifier, the model selection step. Most classifiers come with a knob
that controls the complexity of the learned function. If we follow the näıve approach of
minimizing the error rate on the training set, we will inevitably choose a level of complexity
that allows us to exactly reproduce the known labels. This behaviour is called overfitting
and leads to poor generalisation performance since we will most likely fit properties of that
particular sample, such as noise or other small sample artefacts that are not representative
of the underlying data distribution. Figure 4.2 shows an example of training data with a
decision boundary at three different levels of complexity: too simple (poor training and
generalization performance), right fit (optimal generalization performance) and overfitting
(best training but poor generalization performance). Selecting the right model without
prior knowledge or abundant training data remains a difficult problem. The most common
remedy is to employ the cross validation principle which is introduced in the following
Section 4.2.1.

4.2. GENERAL TOOLS 27

Underfitting Rightfitting Overfitting

Figure 4.2: From left to right, the plots correspond to an underfitted, rightfitted and
overfitted model. The models are kernel ridge regression classifiers with gaussian kernels
where the kernel widths are set to σ = 1, 0.05, 0.001 respectively and fixed τ = 1.

4.2 General Tools

4.2.1 Crossvalidation

In the previous chapter we have introduced the model selection problem: we want to
find parameters for a classifiers that lead to good performance on unseen data (small
generalization error) given only a limited amount of training data. If we simply choose
those parameters which minimize the error rate on the training set, we are doomed to
overfit it. That is because training and testing a classifier on the same data is not a good
measure of its performance on unseen data. This observation leads to the cross-validation
(CV) method which is a general principle applicable to a wide range of model selection
problems. In the following, we will consider cross validation for adjusting parameters of a
classifier where the loss is the misclassification rate (also called 0/1-loss).

The basic scheme is that we randomly split the available data into training and test
set, where the classifier is trained on the first and evaluated on the latter. As training
data is scarce and we want to avoid artifacts from random splitting, the most popular
practical method is to use repeated m-fold cross-validation: the data is randomly split into
m parts of equal size. For each of the partitions 1 ≤ i ≤ m , we train a classifier on the
union of all the other partitions and evaluate the performance on partition i. The average
missclassification rate over repetitions and folds serves as an estimate of the generalization
performance for a particular set of parameters.

Let us now turn to a more formal treatment of the procedure. We have training data
x1, . . . xn ∈ R

d with corresponding class labels y1, . . . , yn ∈ {−1,+1}. Our aim is to find
parameters θ for a function (a.k.a. training a classifier)

fθ;(x1,y1),...,(xn,yn) : R
d → {−1,+1}

which predicts the label given the data. The criterion for choosing θ is that the generaliza-

28 CHAPTER 4. SUPERVISED LEARNING

tion error g(θ) is minimal. Imagine we have a set of candidates θ1, . . . , θl. Then, formally
speaking, our rule for choosing θ∗ is

θ∗ = argmin
θ1,...,θl

g(θ).

However, since the function g is usually unknown, we have to rely on estimates. The
following Algorithm 9 computes an estimate ĝ(θ) of the generalization error for a parameter
θ using r-times m-fold cross-validation.

Algorithm 9 Cross-validation

Input: training data (x1, y1), . . . , (xn, yn) ∈ R
d × R, number of partitions m, number of

repetitions r, parameter θ
Output: average error rate ē
1: Set ē← 0
2: for i = 1 to r do

3: Let P1, . . . , Pm be a random partitioning of the training data of equal size (approxi-
matively, since n may not be divisible by m), i.e. |P1| ≈ . . . ≈ |Pm|

4: for j = 1 to m do

5: Assemble training set T ← ⋃

l 6=j Pl

6: for each (x, y) ∈ Pj do

7: Predict label ŷ ← fθ;T (x) using classifier trained on T
8: if ŷ 6= y then

9: ē← ē+ 1
|Pj|

10: end if

11: end for

12: end for

13: end for

14: Set ē← 1
mr
ē

4.3 Classical Methods

4.3.1 Decision Trees

⊲ Name Decision trees (CART)

Applications Classification, Data Mining

Method The principal idea of decision trees for classification is to partition the input
space R

d into set of regions R1, . . . , Rm where each region is associated with a class label
that is predicted if an unseen datapoint falls into it. This is more or less true for any
classification algorithm, but in the case of decision trees, the regions are defined in a

4.3. CLASSICAL METHODS 29

computationally inexpensive way that lends itself to easy interpretation: the region Ri of
a new datapoint x can be determined by simply checking a number of inequalities on its
dimensions x1, . . . , xd which corresponds to traversing a binary graph based on the outcome
of each test. Thus, each inner node corresponds to a question, that we ask the datapoint (is
the value of your d-dimension lower than x0?) and the leaves (or terminal nodes) represent
the partitions. Thus, for each leaf, we have an associated class label.

The objective function to be minimized for such a partition R1, . . . , Rm based on the
training data is the so-called impurity which is a measure of how well the partitioning
divides the input space into regions such that the classes do not mix. The latter is obviously
desirable if predictions are solely based on membership to partitions. Let us consider the
binary case in detail. We are given training data x1, . . . , xn ∈ R

d and labels y1, . . . , yn ∈
{−1,+1}. The impurity of a region R is defined as

I(R) = −p1(R) log(p1(R))− (1− p1(R)) log(1− p1(R))

where p1(R) is the ratio of training points from class +1 falling into R, that is

p1(R) =
|{xi ∈ R : yi = +1 ∧ 1 ≤ i ≤ n}|

|R|

and a training point xi is a member of region Rj if and only if

xi ∈ Rj ⇐⇒









n1
j∧

k=1

xd′
jk
≤ cjk



 ∧





n2
j∧

k=n1
j
+1

xd′
jk
≥ cjk







 (4.1)

where 1 ≤ d′jk ≤ d for k = 1, . . . , n2
j .

During training we try to find a partitioning that minimizes the following cost function
L, which is the total weighted impurity plus a regularization term,

L(R1, . . . , Rm) =

(
m∑

i=1

|Ri|I(Ri)

)

+ λm.

The parameter λ controls the trade off between impurity and complexity. The minimization
of L is accomplished in a two-stage process: first, we build a partitioning by repeated
splitting that best minimizes the weighted impurity under some mild constraints. Then,
we prune this partitioning back by step-wise merging of those nodes, that least increase
the impurity (thereby reducing λm) until we have found a minimum of L.

The first stage corresponds to Algorithm 10, the pruning is carried out by Algorithm 11.
Formally, the representation of the decision tree is as follows. Let T = {t1, . . . , tr} be the
set of nodes of the tree. Each leaf corresponds to a partition of the data and each inner-node
represents a question that we ask in order to determine the partition of a datapoint.

For each leaf of the tree, we have the following functions.

• label : T → {−1,+1} is the label.

30 CHAPTER 4. SUPERVISED LEARNING

• data : T → P(Rd) is the training data associated with this leaf.

And for every inner node (i.e. non-leaf), we have the following functions.

• dim : T → N returns the dimension on which we condition.

• left : T → T returns the left child node.

• right : T → T returns the right child node.

• cutpoint : T → R returns the cutpoint x0.

For instance, if we want to determine the partition (and thus predict the label) of a
datapoint x, we start traversing a given tree T from its root node. Let t ∈ T be the
current node. If t is a leaf, then t corresponds to the partition of x and label(t) is our
prediction of the label. Otherwise, we check whether the value of dimension dim(t) of x is
smaller than cutpoint(t). If so, then we continue traversing from its left child t = left(t),
otherwise, we follow the right branch t = right(t).

Discussion

4.3.2 Ordinary Least Squares and Ridge Regression

⊲ Name Ordinary Least Squares

Applications Regression, Classification

Method This method is almost as old as applied mathematics itself. Legend has it that
Gauss himself invented this method when he was 181. Anyway, the basic idea is simple: We
assume that the dependency between the Xs and Y s is not very complicated, but “just”
linear. This means that

y =

n∑

i=1

wixi, or, in vector notation y = 〈w, x〉

for some weights wi. (For simplicity, we have assumed that there is no offset 〈w, x〉 + b.
On an actual data set this can be accomplished by centering X and Y first.)

Now, we wish to infer w from a finite set of examples: vectors X1, . . . , Xn (the inputs)
and real numbers Y1, . . . , Yn ∈ (the outputs). In principle, this task is well-defined, as soon
as one has as many data points as the dimensionality of the underlying vector space. In
reality, however, the data will always be noisy, such that we will not be able to find a w
such that the equation above is satisfied exactly.

1http://en.wikipedia.org/wiki/Least squares

4.3. CLASSICAL METHODS 31

Algorithm 10 Build full CART tree

Input: data points x1, . . . , xn ∈ R
d, labels y1, . . . , yn ∈ {−1,+1}, maximum depth of the

decision tree m, minimum number l of datapoints in a partitioning
Output: set of nodes T , root node t0 ∈ T .
1: Let T = {t0} be a tree with a single leaf where data(t0) ← {x1, . . . , xn} and label(t0)

is the label that appears most often in the whole training set.
2: for i = 1 to m do

3: Let t′ ←⊥
4: Let I ′ ← 0
5: for each leaf node t ∈ T do

6: if | data(t)| ≥ l and p1(data(t)) 6∈ {0, 1} then

7: for j = 1 to d do

8: for each possible cutpoint c between two neighbouring datapoints along di-
mension j do

9: Let L̂← {xk ∈ data(t) : xkj ≤ c} be the training data in t that lies to the
left of the cutpoint c

10: Let Î ← | data(t)| I(data(t))−
(

|L̂| I(L̂) + (| data(t)| − |L̂|) I(data(t) \ L̂)
)

be the reduction in impurity resulting from cutting at c along dimension j
11: if Î > I ′ then

12: Assign new greatest reduction I ′ ← Î
13: Store parameters of the split t′ ← t, d′ ← j, c′ ← c
14: end if

15: end for

16: end for

17: end if

18: end for

19: if t′ =⊥ then

20: break

21: else

22: Create two new leaf nodes tL and tR and set left(t′) ← tL, right(t′) ← tR. Note
that t′ is now an inner node.

23: Let cutpoint(t′)← c′

24: Let data(tL)← {xk ∈ data(t′) : xkd′ ≤ c′}
25: Let data(tR)← data(t′) \ data(tL)
26: Let label(tL) and label(tR) be the label that occurs most often in data(tL) and

data(tR) respectively
27: Add the new nodes to the tree T ← T ∪ {tL, tR}
28: end if

29: end for

32 CHAPTER 4. SUPERVISED LEARNING

Algorithm 11 Prune CART tree

Input: tree T , root node t0 ∈ T , regularization parameter λ
Output: pruned tree T , root node t0 ∈ T
1: while |T | > 1 do

2: Compute loss L′ ←∑

leaf l′∈T
(| data(l′)| I(data(l′)) + λ)

3: T ′ ←⊥
4: for each inner node t ∈ T do

5: Let T̂ ← T and let t̂ ∈ T̂ be the node corresponding to t ∈ T
6: Merge the data at node t̂ ∈ T̂ ,

data(t̂)← data(left(t̂)) ∪ data(right(t̂)),

make it a leaf node and remove all its former children from T̂ .
7: Compute loss L̂←∑

leaf l′∈T̂
(| data(l′)| I(data(l′)) + λ)

8: if L̂ < L′ then

9: Assign new minimal loss L′ ← L̂
10: T ′ ← T̂
11: end if

12: end for

13: if T ′ 6=⊥ then

14: T ← T ′

15: else

16: break

17: end if

18: end while

4.3. CLASSICAL METHODS 33

Instead, we want to find a w such that the squared error between the predicted Y s and
the actual Y s is minimal:

min
w

1

n

n∑

i=1

(Yi − 〈w,Xi〉)2 . (4.2)

This means that we do not look for a w which fits the data points exactly, but which tries
to find a good compromise between the noisy vectors.

The actual solution is found as follows: First, note that we can write (4.2) more com-
pactly using matrix notation. Recall that X is the d × n matrix whose columns are the
Xi, and Y the vector whose entries are the labels Yi.1 Then,

n∑

i=1

(Yi − 〈w,Xi〉)2 = ‖Y −X⊤w‖2.

Taking gradients w.r.t. w, we obtain

∂w‖Y −X⊤w‖2 = ∂w(Y ⊤Y − 2Y ⊤X⊤w + w⊤XX⊤w) = −2XY + 2XX⊤w
!
= 0,

or
XX⊤w

!
= XY.

We’ll assume that XX⊤ is invertible, and get

w = (XX⊤)−1XY.

(The matrix (XX⊤)−1X is also known as the pseudo-inverse.)

Algorithm 12 Ordinary Least Squares

Input: Input features X1, . . . , Xn ∈ R
d

Output labels Y1, . . . , Yn.
Output: Output weight vector w
1: Center X and Y if not already the case.
2: Set X← (X1, . . . , Xn). {Store Xi in columns of X}
3: Set Y ← (Y1, . . . , Yn)

⊤.
4: w ← (XX⊤)−1XY .

Discussion OLS more or less behaves as expected. The idea of minimizing the squared
error is also quite general. The reason why this works is that the squared error is minimized
by the expectation: Consider a random variable X. The number α which minimizes the
expected square error E(X − α)2 is given by α = EX. Therefore, squared error is usefull
to remove any additive zero-mean noise.

The maybe biggest drawback of the squared error is its sensitivity to outliers. Assume
that in one of the Yi there was a really huge estimation error, leading to a very large value

34 CHAPTER 4. SUPERVISED LEARNING

of Yi. Since the error is squared, this error can then dominate the whole cost function and
effectively sabotage learning of w. In order to circumvent this, one can employ other loss
functions which scale only linearly for large values. However, the optimization becomes
more complex then (and cannot be expressed as simple matrix algebra).

We have assumed that the data is already centered. There are at least three ways
to deal with this practically. The first is to center the data “by hand”. This makes
the prediction a bit more complex as new points have to be transformed first, and the
prediction afterwards. The second alternative is to explicitly optimize for the offset b as
well. This is in principle also possible, but the formulas become a bit more complex. The
third alternative is to transform the X by adding an extra dimension which is always set
to 1. This way, the offset is computed automatically. This last alternative becomes a bit
problematic if regularization is used (see below).

Ordinary least squares can be extended to fitting linear-combinations of functions quite
easily. For example, in order to fit third-order polynomials, we transform X as follows:

X 7→ (1, X,X2, X3).

The fitted function will then be

f(x) = w0 + w1X + w2X
2 + w3X

3,

a polynomial of degree three as promised.
In this setting, the matrix X will contain entries

X =







1 · · · 1
X1 · · · Xn

X2
1 · · · X2

n

X3
1 · · · X3

n







and is sometimes called the design matrix.

Finally, in particular for high-dimensional data, the matrix XX⊤ can be close to sin-
gular. In such situations, one stabilizes the solution by regularizing the weight vector
w.

The matrix XX⊤ has been introduced as the covariance matrix (see page 13). The
eigenvalues of this matrix are therefore the principal values. For high-dimensional data,
often many correlations between individual coordinates exist, such that there are only a
few large principal values. Small principal values make estimation of weights difficult, in
particular since the data is known to contain noise.

Therefore, one stabilizes the solution by restricting the size of the w, and thereby also
the amount of fluctuation possible. Computationally, this is done by adding a regularization
term to the original cost-function:

min
w
‖Y −X⊤w‖2 + C‖w‖.

4.4. KERNEL METHODS 35

In order to optimize this function, a good compromise has to be found between the goodness
of the fit, and the size of the weight vector w.

Interestingly, the solution does not differ too much from the original problem:

ŵ = (XX⊤ + CI)−1XY.

The term CI “pushes” the eigenvalues of XX⊤ up, away from 0 and therefore stabilizes
the solution.

This algorithm is also known as ridge regression. The choice of the regularization
constant becomes much more important in the context of kernelized functions, see .

See also Kernel Ridge Regression

4.4 Kernel methods

4.4.1 The Kernel Trick

Linear methods (that is, methods which learn a linear discriminant function, or regression)
have a certain appeal: The underlying mathematics is often not overly complex, and there
is a good geometric intuition about what is happening.

On the other hand, linear methods are just not flexible enough, as many interesting
phenomena are actually non-linear. So what can we do? Ideally, we would like to have the
best of both worlds: Easy mathematics, well-defined optimization problems and powerful
discrimination functions.

In the discussion of ordinary least squares, we have already seen one way of dealing
with non-linear data: By transforming the data using a finite set of basis functions, we can
fit non-linear functions.

In a certain sense, the kernel trick amounts to taking this idea to its extreme. Instead
of a fixed number of basis functions, we use a set of kernel functions, one for each new data
point. There is another important ingredient: The transformation of the feature points
is only performed implicitly. This allows us not only to use n basis functions on n data
points, but also to use potentially infinite-dimensional feature spaces.

The kernel trick boils down to replacing scalar products between data points by a
function k. In order for such function to be admissible replacements, the kernel has to
satisfy the important condition that for any set of points x1, . . . , xn, the matrix K =
(k(xi, xj))

n
i,j=1 has to be positive definite, just as would be the case if k(x, z) = 〈x, z〉.

It can be shown that in this case, k can be interpreted as a scalar-product on trans-
formed features Φ(x):

k(x, z) = 〈Φ(x),Φ(z)〉.
Now, let us consider replacing the usual linear function f(x) = 〈w, x〉 by a kernel. Since

we can only replace scalar products between data points Xi, we first represent the weight
vector w as a linear combination of data points: w =

∑n
i=1 αiXi. That this is actually

possible is the result of so-called representer theorems.

36 CHAPTER 4. SUPERVISED LEARNING

Then,

f(x) = 〈w, x〉 = 〈
n∑

i=1

αiXi, x〉 =
n∑

i=1

αi〈Xi, x〉
n∑

i=1

αik(Xi, x) =
n∑

i=1

αi〈Φ(Xi),Φ(x)〉

So, introducing the kernel enhances the power of linear methods. The last formula is just
a linear prediction on transformed data.

Two typical examples are polynomial kernels and Gaussian kernels:

k(x, z) = (〈x, z〉+ 1)d

k(x, z) = exp

(

−‖x− z‖
2

2w

)

The main problem in the case of kernel methods is proper regularization. For the
rbf-kernel, the feature space is potentially infinite-dimensional, and methods will directly
overfit severly without proper regularization.

Computing Distance-Based Kernels Efficiently

In order to compute distance-based kernels like the rbf-kernel efficiently, one should rather
not start by computing all n2 pairwise distances in big loops. In interpreted languages like
Matlab, such explicit computations are inherently slower than the matrix multiplications
(which are usually performed using some highly optimized Toolbox like ATLAS).

But even if you are coding in C, there is a reason not compute the distances explicitly.
As we will see below, one can reduce the problem of computing the squared distances
to some matrix algebra. Now, this matrix algebra basically has the same theoretical
complexity as computing the distances explicitly, however, for large numbers of training
examples or high dimensional data, there is an additional effect to take into account, namely
L1 and L2-cache misses. The data becomes to large to fit in those caches, and every naive
implementation will likely not be very good in terms of memory locality, leading to a huge
number of cache misses and severe performance degradation. (If you don’t believe me,
benchmark your own naive implementation of matrix-matrix multiplication against those
of ATLAS. I doubt that you have a chance).

So by reducing the problem to matrix algebra, you can directly take advantage of the
highly-optimized existing linear algebra routines, leading to extremely efficient implemen-
tations.

So, after this rather lengthy preamble, let us come to the trick. It is very easy, for two
vectors x, and z, making it “vectorized” over a set of vectors is bit harder.

Recall that the squared norm is just the scalar product ‖x‖2 = 〈x, x〉. Then,

‖x− z‖2 = 〈x− z, x− z〉 = 〈x, x〉 − 2〈x, z〉+ 〈z, z〉.

Now, assume that we have two matrices X and Z which have the same number of rows
and whose columns are the data vectors. All pairwise scalar products are easily computed
by X⊤Z. For the individual norms, we take the squared column sums ‖xi‖2 =

∑d
j=1[X]ji.

4.4. KERNEL METHODS 37

Then, do figure out how to map the square sums on columns or rows of the scalar-
products (or some serious repmat’ing in Matlab), and you’re done, basically.

4.4.2 Kernel Ridge Regression

⊲ Name Kernel Ridge Regression

Applications Classification, Regression

Method Kernel Ridge Regression (KRR) amounts to kernelized ridge regression (p. 30).
Let us retrace the transformation step by step. Recall that scalar products between

the Xs are replaced by the kernel evaluation. Therefore, X⊤X is replaced by the kernel
matrix Kij = k(Xi, Xj). The other ingredient is representing w as a linear combination of
the Xi: w = Xα.

With these two terms, we can transform the ridge regression cost function and obtain
KRR:

min
w
‖Y −X⊤w‖2 + C‖w‖2

⇓ w = Xα

min
α
‖Y −X⊤Xα‖2 + Cα⊤X⊤Xα

⇓ X⊤X = K

min
α
‖Y −Xα‖2 + Cα⊤Kα

The solution to this optimization problem is surprisingly simple:

α̂ = (K + CI)−1Y.

Kernel Ridge Regression

Input: Input features X1, . . . , Xn ∈ R
d,

Output labels Y1, . . . , Yn ∈ R,
Kernel function k.

Output: Weight vector α
1: Compute kernel matrix Kij = k(Xi, Xj) for 1 ≤ i, j ≤ n.
2: α← (K + CI)−1Y .

Discussion Kernel ridge regression may be the kernel methods which can be imple-
mented most easily2. The downside is that it does not scale very well: Inversion of the

2And we don’t say that just because one of the authors has written his thesis about it.

38 CHAPTER 4. SUPERVISED LEARNING

kernel matrix might be practical up to a few thousand data points. In such cases, other
algorithms exist (for example, conjugate gradients). KRR also does not produce sparse
solutions, all of the α will have non-zero data.

These thoughts aside, KRR is just as powerfull as Support Vector Machines (for exam-
ple).

Efficient Leave-One-Out Cross-Validation

An interesting additional property of KRR is that the automatic selection of C can be
performed efficiently (meaning faster than explicitly computing cross-validation).

The leave-one-out cross-validation error can be computed in closed form: Let S =
K(K + CI)−1. Then,

err =
1

n

n∑

i=1

(
Yi − [SY]i

1− Sii

)2

.

The next insight is that SY can be computed without inverting K each time by computing
the eigendecomposition of K first. Let K = ULU⊤, meaning that U is an orthogonal
matrix (UU⊤ = U⊤U = I), whose columns are the eigenvectors of K, and L is the
diagonal matrix which contains the corresponding eigenvalues on the diagonal. Then,

K(K + CI)−1 = UL(L + CI)−1U⊤

Here, L+CI is a diagonal matrix, such that the inverse can be computed just by inverting
the diagonal elements. Pre-computing U⊤Y leads to further speed-up.

The choice of kernel parameters (like the widths for rbf-kernels) must, however, be
performed by explicit cross-validation.

Large Scale Kernel-Ridge-Regression

4.4.3 Support Vector Machines

⊲ Name Support Vector Machine

Applications Classification

Method The Support Vector Machine (SVM) in its original form computes nothing more
than a separating hyperplane (that is, a linear separation) between two classes. What
brought SVMs to fame are the following features:

• The separating hyperplane is chosen to maximize the “margin”. Geometrically, this
means that the decision boundary tries to be as far from the given points as possible.
Thus, even when there is some noise on the data set, they are classified robustly.

4.4. KERNEL METHODS 39

• One can show that such maximum margin hyperplanes have nice statistical features.
In particular, their “Vapnik-Chervonenkis”-dimension (a measure for the complexity
of a set of functions) does not depend on the dimension of the underlying space.
Put differently, if the data points are contained in a ball of finite radius and can
be separated by a hyperplane with a large margin, one can prove that the solution
converges as more points become available.

• Using the kernel trick, one can easily extend the algorithm to produce non-linear
decision boundaries.

• SVMs can be learned efficiently. Modern implementation easily scale up to hundreds
of thousands or even several million data points.

There exist several different versions of SVMs which choose slightly different norms for
different parts. The original support vector machine cannot deal with misclassified points
and will therefore be omitted.

Support Vector Machines, like all kernel methods, learn a function

f(x) =
n∑

i=1

k(x,Xi)Yiαi − b.

This basically means that a new function is placed around every data point, and in princi-
ple, as n→ ∞, the set of functions which can be represented like this becomes more and
more complex.

Now Support Vector Machines are special since the solutions are sparse, which means
that most of the αi are zero. If a coefficient αi is zero it means that we do not need Xi for
prediction. The remaining data points are called “support vectors”, giving the method its
name.

Algorithmically, the SVM is learned by solving the following quadratic optimization
problem (corresponding to the 1-Norm Soft Margin, see below).

max
α

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

yiαik(Xi, Xj)αjyj

subject to 0 ≤ αi ≤ C, 1 ≤ i ≤ n
n∑

i=1

αiyi = 0.

(4.3)

The offset b is chosen such that yif(Xi) = 1 for any i with 0 < αi < C. Note that the
objective function is a quadratic function in α due to the second term of the objective
function, while the constraints are all linear.

Actually, as we will discuss below, this is the dual problem to the original optimization
problem. While the dual problem is easier to optimize, the original problem is easier to
understand. For now, let us just say that the optimization problem minimizes the error of

40 CHAPTER 4. SUPERVISED LEARNING

a misprediction while keeping the weight vector small. The error of the prediction at Xi

is measured by
max(0, 1− yif(Xi)).

Let’s take a closer look at this function. If yif(Xi) ≥ 1, then the error is zero. Note that
this implies that yi and f(Xi) have the same sign (recall that in classification yi is either
+1 or −1). On the other hand, if yif(Xi) < 1, the deviation is penalized linearily. In other
words, if yi = 1, then f(Xi) should be larger than 1, otherwise we have an error.

The next problem is how to optimize the above problem. One solution is to pass the
whole problem to some generic quadratic optimizer like Matlab’s quadprog. However, it
is instructive to see that the problem can actually be solved by hand, as we will discuss
next.

The Sequential Minimal Optimization Algorithm

This algorithm due to Microsoft’s John Platt (inventor of the ClearTypeTM subpixel
smoothing for LCD displays, among other things, homepage http://research.microsoft.
com/~jplatt/).

The crucial insight was that it is possible to solve the problem iteratively by considering
only two variables αi and αj at a time. Just one variable won’t work due to the constraint
∑

i yiαi = 0. If you take two variables, this constraint effectively removes one dimension
such that the resulting optimization problem is one-dimensional and can be solved in closed
form.

Algorithm 13 summarizes the computation necessary to compute the restricted problem
(where we have assumed for simplicity that we are optimizing α1, and α2). The computa-
tions might actually look quite complicated but can be derived using basic computations.
The optimization is made difficult because you have to make sure that the box constraints
0 ≤ αi ≤ C are not violated by clipping the result accordingly if the minimum lies outside
of the box.

So in principle, you could pick two coordinates of the αs, and in each step, it is guar-
anteed that you will get closer to the true solution—only very slowly if you don’t choose
the coordinates correctly.

We need a heuristic to choose the coordinates. It is based on the concept of “Karush-
Kuhn-Tucker”-conditions. These are conditions which indicate that a certain point is
optimal. We will concentrate on points for which the KKT-conditions are violated, thereby
hopefully getting closer to the true solution.

For the problem above, the KKT-conditions read

Yif(Xi) ≥ 1 if αi = 0

Yif(Xi) ≤ 1 if αi = C

Yif(Xi) = 1 if 0 < αi < C.

So, we choose the first coordinate whenever

(αi < C and Yif(Xi) < 1− ε) or (αi > 0 and Yif(Xi) > 1 + ε),

4.4. KERNEL METHODS 41

where ε is a (small) tolerance level. The second coordinate is chosen at random such
that it does not coincide with the first one. The resulting algorithm is summarized in
Algorithm 14.

Algorithm 13 Optimizing for α1, α2

Input: Input points X1, X2

Input labels Y1, Y2 ∈ {±1}
Kernel function k : X × X → R

Prediction errors E1 = f(X1)− Yi, E2 = f(X2)− Y2

Old parameters αold
1 , αold

2 , bold

Output: Updated parameters αnew
1 , αnew

2 , bnew

or “no changes”
1: { Compute box constraints }
2: if Y1 = Y2 then

3: L← max(0, αold
1 + αold

2 − C), H ← min(C, αold
1 + αold

2)
4: else

5: L← max(0, αold
2 − αold

1), H ← min(C,C + αold
2 − αold

1)
6: end if

7: if L = H then return “no changes”
8: { Compute updated αs }
9: κ← 2k(X1, X2)− k(X1, X1)− k(X2, X2),

10: if κ ≥ 0 then return “no changes”
11: αnew′

2 ← αold
2 − Y2(E1−E2)

κ

12: αnew
2 ←







H αnew′

2 > H

L αnew′

2 < L

αnew
2 else

13: αnew
1 ← αold

1 + Y1Y2(α
old
2 − αnew

2),
14: if |αold

2 − αnew

2 | < 10−5 then return “no changes”
15: { Compute new b }
16: b1 ← bold + E1 + Y1(α

new
1 − αold

1)k(X1, X1) + Y2(α
new
2 − αold

2)k(X1, X2)
17: b2 ← bold + E2 + Y1(α

new
1 − αold

1)k(X1, X2) + Y2(α
new
2 − αold

2)k(X2, X2)

18: bnew ←







b1 0 < α1 < C

b2 0 < α2 < C

(b1 + b2)/2 else

Discussion There are a lot of things one could say about SVMs. The most important
once have already been stated above: SVMs compute decision boundaries which can be
shown to be statistically robust (although it is not easy to exactly quantify how robust).
Using kernels, SVMs can be adapted to many different applications. Finally, the optimiza-
tion problem can be solved efficiently such that it is possible to train on up to several

42 CHAPTER 4. SUPERVISED LEARNING

Algorithm 14 The SMO algorithm for SVMs with simplified heuristic
Input: Input points X1, . . . , Xn

Input labels Y1, . . . , Yn ∈ {±1}
Kernel function k : X × X → R

Regularization constant C > 0
Maximum number of passes P > 0
Tolerance level tol > 0

Output: Learned parameter vector α, and offset b
1: Initialize all αi ← 0.
2: Set p← 0 {counts passes over the whole datasets without changes}
3: while p < P do

4: a← 0 {counts changed αs}
5: for i = 1 to n do

6: Calculate Ei = f(Xi)− Yi

7: if (YiEi < −tol and αi < C) or (YiEi > tol and αi > 0) then

8: Select j 6= i at random
9: Calculate Ej = f(Xj)− Yj

10: Compute updated αnew
i , αnew

j , and bnew.
11: if successfully updated then

12: Increment a.
13: end if

14: end if

15: end for

16: if a = 0 then

17: Increment p.
18: else

19: p = 0
20: end if

21: end while

4.4. KERNEL METHODS 43

million data points.
The statistical properties are clearly beyond the scope of this guide. We will therefore

focus on the practical aspects and discuss the optimization problem a bit more.
The original optimization problem is given by the following problem (initially formulted

for the case of a linear kernel (that is, k(x, z) = x⊤z). This is also known as the 1-:

min
w,b,ξ

1

2
w⊤w + C

n∑

i=1

ξi

subject to Yi(X
⊤
i w + b) ≥ 1− ξi, 1 ≤ i ≤ n

ξi ≥ 0, 1 ≤ i ≤ n

(4.4)

The first thing we can quickly see is that we want to minimize the norm of w and the sum
of the ξis. It can be shown that the norm of w is related to the size of the margin (that
is, the amount of separatedness of the two classes). Minimizing w amounts to maximizing
the margin.

Now, the ξi are so called slack variables, which are a standard trick in the area of
optimization to re-write constraints to fit into formal criteria.

In this case, originally, the optimization problem read

min
w,b

1

2
w⊤w + C

n∑

i=1

max(0, 1− Yif(Xi)). (4.5)

The maximum in the second term has already been explained above: it measures whether
f(Xi) predicts the correct class by outputting at least 1 (or −1). Smaller (or larger) values
are penalized.

While the optimization problem in the last display is mathematically correct, it is not
easy to see that it is a quadratic optimization problem in w. After all, the maximum is a
piecewise linear function. The solution is to translate the maximum term into the actual
amount of measured error, and some linear constraints.

The amount of error is given by

ξi = max(0, 1− Yif(Xi)).

This equality constraint is replaced by two inequality constraints

Yif(Xi) ≥ 1− ξi, ξi ≥ 0,

and minimizing over ξi. The optimal ξi is then given as either the error, or 0, if f predicts
correctly.

The final insight is that it is OK to have constraints which depend on other variables
you are optimizing. In fact, any linear combination of variables can occur in a constraint.

In summary, the optimization problem (4.4) is actually just a reformulation of the
original problem (4.5), which shows that the SVM tries to find a comprimise between the
size of w (related to the margin), and the errors ξi.

44 CHAPTER 4. SUPERVISED LEARNING

Let us now look how the “dual” optimization problem (4.3) is related to (4.4). In
principle, it is possible to directly optimize (4.4), however, it is possible to transform the
problem such that (a) only scalar products between points X⊤

i Xj are used, opening the
possibility of applying the kernel trick, and such that (b) the constraints in the optimization
problem are easier.

This is accomplished by computing the dual of the original optimization problem. This
step is closely related to the use of Lagrange multipliers. As you certainly know, you
can identify the extremal points of a differential function by finding the roots of the first
derivatives. In the presence of constraints, it is no longer that easy since the extrema
typically lie on the border of the set of feasible points, where the derivative is typically
anything but zero.

In this situation, the use of Lagrange multipliers permits to transform the problem such
that one ends up with an optimization problem with simpler constraints. More formally,
assume that you have an optimization problem like this:

min
x

f(x)

subject to gi(x) ≤ 0, 1 ≤ i ≤ s,

hj(x) = 0, 1 ≤ j ≤ t.

Adding the constraints using Lagrangian multipliers leads to the new cost function

f(x) +

s∑

i=1

λigi +

t∑

j=1

µjhj .

Now, if you take this unconstraint optimization problem and minimize it in x, you obtain
a new function f ′ which depends on λ and µ. This function is called the Lagrange dual
function. If f is convex and obeys additional mild conditions, one can show that the
maximum of the Lagrange dual under the constraints λi ≥ 0 is the same as the solution to
the original optimization problem.

In summary, the dual problem is given by

max
λ,µ

f ′(λ, µ) = inf
x

(

f(x) +

s∑

i=1

λigi +

t∑

j=1

µjhj

)

subject to λi ≥ 0, 1 ≤ i ≤ s.

Often, the dual function is easier to solve than the original function. Intuitively, this
is the case since the constraints are easier, and part of the optimization has already been
carried out. The remaining step is thus “just” to find the correct Lagrange multipliers.

While the SVM can in practice be trained very efficiently, the same does not hold for model
selection. Normally, you have to pick the regularization constant plus any parameters
the kernel functions have. While there exist methods to compute the leave-one-out error
without performing full re-training, in general one will have to resort to cross-validation.

4.5. BAYESIAN METHODS 45

Given the complexity of writing a large scale SVM solver, several libraries exist, for example
libsvm, svmligth, or svmtorch. There exist libraries which provide a standardized front
end to all these libraries, for example the shogun toolbox.

4.5 Bayesian Methods

There are two prominent schools in statistics (which also pervade the ML community):
Frequentists and Bayesians. The basic disagreement is about the precise notion of a random
variable and how unknown parameters should be inferred from observations. We will
illustrate the two viewpoints with the following example: imagine, we want to infer the
behaviour of a two-sided coin from observed tosses. That is, we are interested in the
unknown parameter θ which is the probability that the coin lands heads up, p(X = 1) = θ
given n observed tosses X = {x1, . . . , xn} where xi ∈ {0, 1}.

The Frequentist says: great, we have a sensible model for the data generating process
(the tosses are Bernoulli distributed) that is governed by one parameter, so let’s use an
estimator to get hold of it. An obvious choice would be the Maximum Likelihood Estimator
which selects those parameters θ∗, that maximize the likelihood L(X|θ) of observing the
data,

θ∗ = argmax
0≤θ≤1

logL(X|θ) =
1

n

n∑

i=1

xi.

Even though the Maximum Likelihood paradigm is intuitively appealing, the Bayesians
take a dim view: imagine your observation consisted of three head tosses (X = {1, 1, 1}),
would you be happy with the estimate θ∗ = 0 given your common sense? Probably not.

The Bayesian makes the assumption that there is a joint distribution of the parameter
θ and the observations,

p(X, θ) = p(X|θ)
︸ ︷︷ ︸

Likelihood

p(θ)
︸︷︷︸

Prior

.

Thus we can compute the distribution over possible parameters given the observed data
by using Bayes’ Law,

p(θ|X) =
p(X|θ)p(θ)
p(X)

=
p(X|θ)p(θ)

∫
p(X|θ)p(θ) dθ .

From a frequentist point of view, however, this approach is plain wrong: the parameter
θ is not a random variable but simply an unknown quantity. And how on earth shall we
specify the prior p(θ)? A Bayesian might reply: yes, our concept of random variables is
broader since we allow any unknown quantity to follow a probability distribution. Also, any
sensible prior is better than no prior at all, as we have seen in the previous example. With
few observations, our prior knowlege about θ is updated only slightly by observing X but
as we gather more data, the influence of the likelihood term p(X|θ) increases. Moreover,
instead of making just one point estimate θ∗, our posterior p(θ|X) contains much more
information.

46 CHAPTER 4. SUPERVISED LEARNING

To some extent, the two schools can be reconciled: while the Bayesians use priors
that are sometimes hard to justify, the Frequentists resort to regularization methods for
stabilising their estimates, which are often equivalent to certain priors.

4.5.1 Belief Propagation in Markov Random Fields

Taken literally, a graphical model is just a visual notation for defining the factorization
structure of a joint distribution of several variables. However, when people talk about
using graphical models they usually mean that they have phrased an inference task in
the language of graphical models (of which there are numerous variants) and employ a
particular algorithm (of which there are many) for computing the posteriors of the variables
of interest (e.g. whether someone is suffering from cancer) given the values of the observable
variables (e.g. the outcome of medical tests). In this section, we first discuss factorization
in general, then consider a particular type of graphical model in more detail and finally
present an algorithm for doing inference.

Let us first observe what it means if we can factor a joint distribution in one way or
the other. Imagine, for instance, we are looking at joint distribution over five variables,
x1, . . . x5 which we denote by p(x1, . . . , x5). Now let us consider the case where we have
no factorization. That is, the joint distribution cannot be written as a product. In a
way, this is the worst case because many important calculations become difficult: first
of all, computing the joint distribution of any subset of variables requires integration or
summation for discrete variables, e.g. for obtaining p(x3, x4) we have to integrate over x1,
x2 and x5,

p(x3, x4) =

∫

dx1

∫

dx2

∫

dx5 p(x1, . . . , x5),

which might be difficult to do. In the discrete case, where, say, each variable can take z dif-
ferent states, the required number of summations would be z3 because we are marginalising
over three variables. The complexity of this computation is exponential in the number of
variables that need to be marginalised over and polynomial in the number of states z, thus
it becomes infeasible very quickly. Consequently, we cannot easily compute conditional
distributions because they require normalization by the marginals.

Now let us consider the opposite case where the joint distribution can be written as

p(x1, . . . , x5) = p(x1)p(x2)p(x3)p(x4)p(x5).

We say that this is a fully factorized distribution where all variables are independent of
each other. Note that in this case, we immediately have all possible marginals because the

4.5. BAYESIAN METHODS 47

joints are the product of the marginals, or, equivalently, the integrals drop out, e.g.,

p(x3, x4) =

∫

dx1

∫

dx2

∫

dx5 p(x1) · · ·p(x5)

= p(x3)p(x4)

∫

dx1

∫

dx2

∫

dx5 p(x1)p(x2)p(x5)

= p(x3)p(x4)

∫

dx1 p(x1)

∫

dx2 p(x2)

∫

dx5 p(x5)
︸ ︷︷ ︸

=1
︸ ︷︷ ︸

=1
︸ ︷︷ ︸

=1

= p(x3)p(x4).

Finally, consider the intermediate case where the joint distribution can be broken down
into several factors, e.g.

p(x1, . . . , x5) = p(x1, x2, x3)p(x4)p(x5).

Hence we can compute the marginals corresponding to the two factors with little effort
while other marginals remain cumbersome. Note that this factorization structure would
be particularly handy if x4 and x5 were our variables of interest while the others are
observables: the posteriors could be readily computed as

p(x4|x1, x2, x3, x5) = p(x1, x2, x3)p(x4) and p(x5|x1, x2, x3, x4) = p(x1, x2, x3)p(x5).

Thus one always strives to impose a factorization structure that lends itself to computa-
tionally tractable inference.

We will now consider a type of graphical models, Markov Random Fields, which are
particulary popular in the Computer Vision and Image Processing community. A Markov
Random Field (MRF) is composed of a set of latent (unobserved) discrete random variables
X = {X1, . . . , Xn} along with a set of corresponding variables Y1, . . . , Yn (usually pixels of
some sort) for which observations y1, . . . yn are available and a graph G = (X,E) on the
latent variables X.

The graphical representation of an MRF is defined as follows: latent variables are
depicted by circles, observable variables as black dots where each latent variable Xi is
connected to its corresponding observable Yi by a line. The edges in G correspond to lines
between the latent variables. See Figure 4.3 for an example.

Each line in the graphical representation corresponds to a factor in the joint distribution
p(X1, . . . , Xn, Y1, . . . , Yn): the presence of an edge (i, j) ∈ E between latent variables
Xi and Xj indicates that there is a factor ψi,j(Xi, Xj) in the joint distribution which is
proportional to the compatibility of the values ofXi andXj. Moreover, the lines connecting
latent variables Xi with their associated observable variables Yi represent the evidence
functions φi(Xi, yi) for which we adopt the shorter notation φi(Xi) since the observation
yi is constant. See Figure 4.4 for an illustration.

48 CHAPTER 4. SUPERVISED LEARNING

X1

X2

X3 X4

X5

X6

Y1

Y2

Y3 Y4

Y5

Y6

Figure 4.3: Markov Random Field with latent variablesX1, . . . , X5 and observable variables
Y1, . . . Y5.

The unnormalized joint distribution specified by an MRF is the product of evidence
and compatibility functions

p(X1, . . . , Xn|Y1 = y1, . . . , Yn = yn) ∝
∏

(i,j)∈E

ψij(Xi, Xj)

n∏

i=1

φi(Xi).

The evidence factors represent the knowledge that we gain from observing the data y1, . . . , yn

while the compatibility functions measure the pair-wise plausibility of the latent variables.
Therefore the joint distribution from the MRF in Figure 4.3 is

p(X1, . . . , X6|Y1 = y1, . . . , Y6 = y6) ∝ φ1(X1) · · ·φ6(X6)ψ1,3(X1, X3)

ψ2,3(X2, X3)ψ3,4(X3, X4)ψ4,5(X4, X5)ψ4,6(X4, X6).

X1 X3 X4

Y1 ψ3,4(X3, X4)

φ1(X1)

Figure 4.4: Two types of factors in an MRF: compatibility functions ψij(Xi, Xj) and
evidence φi(Xi) correspond to lines in the graph.

Inference in a Markov Random Field boils down to computing the n marginal distri-
butions p(Xi|Y1 = y1, . . . , Yn = yn) for each latent variable given the observations. For
instance, if the latent variables are discrete with z states, Xi ∈ {1, . . . , z}, then, by the
sum-rule of probability, we have the marginal distributions

p(Xi = x| . . .) ∝
z∑

X1=1

· · ·
z∑

Xi−1=1

z∑

Xi+1=1

· · ·
z∑

Xn=1

p(X1, . . . , Xi−1, x,Xi+1, . . . , Xn) (4.6)

4.5. BAYESIAN METHODS 49

where we have omitted the conditioning by the values of the observables for syntactical
convenience. However, this is horrendous to compute since it involves summing up zn−1

evaluations of the joint distribution! This where the Belief Propagation (BP) algorithm
comes in. The BP algorithm belongs to the class of message passing algorithms, where
a costly computation is broken down into many small problems which together yield the
solution by clever exchange of preliminary results (the messages).

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

Figure 4.5: Simple chain MRF.

Standard Belief Propagation is an efficient algorithm for computing exact marginal
distributions for Markov Random Fields whose graph structure is a tree. Loopy belief
propagation is an extension of standard BP to arbitrary MRFs. We start off by illustrating
the core idea of the Standard BP algorithm on the simple chain MRF depicted in Figure 4.5
where again each discrete latent variable can have z states, Xi ∈ {1, . . . , z}. Imagine
we want to compute the marginal distribution of X3. Then, by using the sum rule of
probability as in Equation (4.6), we get

p(X3 = x| . . .) ∝
z∑

X1=1

z∑

X2=1

z∑

X4=1

z∑

X5=1

φ1(X1) · · ·φ5(X5)ψ1,2(X1, X2) · · ·ψ4,5(X4, X5).

Note that only φ5(X5) and ψ4,5(X4, X5) depend on X5, thus by the distributive law we can
write

p(X3 = x| . . .) ∝
z∑

X1=1

z∑

X2=1

z∑

X4=1

[

φ1(X1) · · ·φ4(X4)ψ1,2(X1, X2) · · ·ψ3,4(x,X4)

[
z∑

X5=1

φ5(X5)ψ4,5(X4, X5)

]]

.

Applying this exercise again and pulling out the constant φ3(x) yields

p(X3 = x| . . .) ∝ φ3(x)

z∑

X1=1

z∑

X2=1

[

φ1(X1)φ2(X2)ψ1,2(X1, X2)ψ2,3(X2, x)

[
z∑

X4=1

φ4(X4)ψ3,4(x,X4)

[
z∑

X5=1

φ5(X5)ψ4,5(X4, X5)

]]]

.

50 CHAPTER 4. SUPERVISED LEARNING

Now since the sum over X4 is independent of X1 and X2 we can rewrite the whole sum-
mation as a product of two factors. Note that the sum over X1 decomposes in reverse
order,

p(X3 = x| . . .) ∝ φ3(x)

[
z∑

X2=1

φ2(X2)ψ2,3(X2, x)

[
z∑

X1=1

φ1(X1)ψ1,2(X1, X2)

]]

(4.7)

[
z∑

X4=1

φ4(X4)ψ3,4(x,X4)

[
z∑

X5=1

φ5(X5)ψ4,5(X4, X5)

]]

.

The next thing to observe is that the two inner-most sums can be regarded as functions of
X2 and X4 respectively. Hence we can think of them as z-dimensional vectors. Now if we
introduce (z× z)-matrices Ψij and z-dimensional vectors Φi to represent the compatibility
and evidence functions respectively,

(Ψij)lk = ψi,j(l, k) (Φi)l = φi(l)

we can use matrix notation to rewrite the inner-most sum of the first factor in Equa-
tion (4.7) as the z-dimensional vector (note that X2 is the free parameter on the left hand
side which can take z different values),

z∑

X1=1

φ1(X1)ψ1,2(X1, X2) = Ψ⊤
12Φ1.

Putting it all together, we can express the z-dimensional vector (p3)l = p(X3 = l| . . .)
representing the unnormalized marginal distribution of X3 as in Equation (4.7) by

p3 = Φ3 ⊙
[
Ψ⊤

23

[
Φ2 ⊙Ψ⊤

12Φ1

]]
⊙ [Ψ34 [Φ4 ⊙Ψ45Φ5]] .

where ⊙ denotes element-wise multiplication of vectors. Because the compatiblity relation
is symmetric we have Ψij = Ψ⊤

ji and thus

p3 = Φ3 ⊙



Ψ⊤
23



Φ2 ⊙Ψ⊤
12Φ1
︸ ︷︷ ︸

=:m12









︸ ︷︷ ︸

=:m23

⊙



Ψ⊤
43



Φ4 ⊙Ψ⊤
54Φ5
︸ ︷︷ ︸

=:m54









︸ ︷︷ ︸

=:m43

which leads to the following interpretation: the vectors mij are called messages which are
sent from node Xi to Xj because the computation of each message mij only requires local
information available at the sending node Xi: the evidence function Φi, the compatibility
function Ψij and all messages received from its neighbours except forXj . Figure 4.6 depicts
the message flow in the graph towards X3.

More formally, we can write the messages as

mij = Ψ⊤
ij







Φi ⊙
⊙

l:(l,i)∈E,
l 6=j

mli







(4.8)

4.5. BAYESIAN METHODS 51

and the marginal vectors can be expressed as

pi = Φi ⊙
⊙

l:(l,i)∈E

mli, (4.9)

that is, the evidence at Xi multiplied by all the messages received from its neigbours. The
above equations hold for all MRFs that are trees, i.e. where the graph G has no loops.

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

m12 m23 m54m43

Figure 4.6: Messages flowing towards X3.

In most applications, we want to compute all the marginals p1, . . . , pn. In order to do
that, we see from Equation (4.9) that every node needs to receive all the messages from
its neighbours. Those can be computed efficiently if we start sending messages from the
leaves of the tree (since the leaves are always ready to send their message) and then keep
on sending and storing the received messages at each node. In Figure 4.7 you can see the
message flow for a more complex graph. The following Algorithm 15 formalizes this idea.
The normalization ensures numerical stability for large MRFs.

Algorithm 15 Belief Propagation: Node Xj receives a message from Xi

Input: message mij received from adjacent node Xi, graph G, evidence Φj , compatibility
functions Ψjl for all neighbours l

1: Store received message Mj ←Mj ∪mij .
2: for each neigbour Xl : (l, j) ∈ E, l 6= i except for Xi do

3: if all required messages were received, mkj ∈Mj for all (k, j) ∈ E, k 6= l then

4: Compute message mjl using Equation 4.8.
5: Normalize message mjl ← mjl/(1

⊤mjl).
6: Send message mjl to neighbour Xl.
7: end if

8: end for

The simplest extension of MRFs to arbitrary graphs is called loopy belief propagation.
In contrast to the standard belief propagation algorithm, the order in which messages are
to be sent needs to be defined because the graph may contain loops that makes messages
flow around forever. Moreover, as the graph may not have leaves, all inbound messages are
initially set to 1 and convergence is achieved when the messages do not change anymore.

52 CHAPTER 4. SUPERVISED LEARNING

X1

X2

X3 X4

X5

X6

1.

2. 3.

4.

5.

6.

7.

8.

9.

10.

Figure 4.7: Message flow initiated from the leaves. The arrows depict the messages and
the numbers next to them indicate the order in which they are sent.

Index

53

