IDA Wiki

Describe Main/SS09_GraphicalModels here.

Vorlesung "Einführung in Graphische Modelle" (Introduction to Graphical Models)

lecture slides are in English

Inhalt

Graphische Modelle definieren Warscheinlichkeitsfunktionen auf gekoppelten Variablen. Die gerichtete oder ungerichtete Graphstruktur erlaubt somit eine sehr flexible Modellierung von Variablen (=Knoten) und Anhängigkeiten zwischen Variablen (=Kanten).

In den letzten Jahren wurden eine Reihe sehr mächtiger Inferenzalgorithmen (z.B. Viterbi Algorithmus, Junction Tree Algorithmus) entwickelt, die es uns erlauben graphische Modelle direkt für die Modellierung von natürlich auftretender Problemstellungen zu nutzen. Sie werden beispielsweise in der Handlungsplanung von Robotern und der maschinellen Sprach- und Bildverarbeitung erfolgreich eingesetzt. Desweiteren basieren viele aktuelle Verfahren des maschinellen Lernens wie z.B. Hidden Markov Models (HMM), Conditional Random Fields (CRFs) oder Structured Support Vector Machines (SSVM) auf graphischen Modellen.

Die Vorlesung führt in die Grundlagen Graphischer Modelle ein und stellt sie anhand von praktischen Beispielen aus den genannten Gebieten (Robotik, Sprach- und Bildverarbeitung) vor. Thematisch beginnen wir mit einfachen Bayesschen Netzwerken, lernen dann verschiedene Inferenzmechanismen kennen und leiten schliesslich aktuelle Lernverfahren wie HMMs, CRFs und SSVMs her. Am Ende sollen die Teilnehmer in der Lage sein, beliebige Problemstellungen mit Hilfe von graphischen Modellen zu kodieren und zu lösen.

Voraussetzungen

gute Mathematikkenntnisse; Statistikkenntnisse sind nützlich, aber nicht zwingend erforderlich.

Übung

Es gibt jede Woche ein Übungsblatt. Voraussetzung zur Teilnahme an der Prüfung am Semesterende ist die erfolgreiche Bearbeitung der Hälfte aller Übungsaufgaben. Erfolgreiche Bearbeitung bedeutet, dass es ersichtlich wird, dass man sich mit der Aufgabe auseinandergesetzt und die zugrundeliegenden Themen prinzipiell verstanden hat. Blätter sind einzeln zu bearbeiten. Zu Beginn jeder Übung ist auf einer Liste anzukreuzen, welche Aufgaben man bearbeitet hat. Unter den möglichen Kandidaten wird einer per Zufall bestimmt, der die Aufgabe an der Tafel vorrechnet. Falls man an der Teilnahme der Übung verhindert ist, kann man ausnahmsweise seine Bearbeitung in der Vorlesung zuvor abgeben.

Projekte

Schedule

IDA Wiki: Main/SS09_GraphicalModels (last edited 2009-07-22 10:46:20 by MarcToussaint)